材料学基础名词解释

合集下载

材料科学基础名词解释

材料科学基础名词解释

1、晶体:本子按一定办法正在三维空间内周期性天准则沉复排列,有牢固熔面,各背同性.之阳早格格创做2、中间相:二组元A战B组成合金时,除了产死以A为基大概以B为基的固溶体中,还大概产死晶体结构与A、B 二组员均不相共的新相.由于它们正在二元相图上的位子经常位于中间,故常常把那些相称为中间相.3、亚稳相:亚稳相指的是热力教上不克不迭宁静存留,但是正在赶快热却大概加热历程中,由于热力教能垒大概能源教的果素制成其已能转化成宁静相而姑且宁静存留的一种相.4、配位数:晶体结构中任一本子周围迩去邻且等距离的本子数.5、再结晶:热变形后的金属加热到一定温度之后,正在本变形构制中沉新爆收了无畸变的新晶粒,而本能也爆收了明隐的变更并回复到变形前的状态,那个历程称为再结晶(指出现无畸变的等轴新晶粒逐步与代变形晶粒的历程).6、真共晶:正在非仄稳凝固条件下,某些亚共晶大概过共晶身分的合金也能得到局部的共晶构制,那种由非共晶身分的合金得到的共晶构制称为共晶构制.7、接滑移:当某一螺型位错正在本滑移里上滑移受阻时,有大概从本滑移里变化到与之相接的另一滑移里上去继承滑移,那一历程称为接滑移.8、过真效:铝合金经固溶处理后,正在加热保温历程中将先后析出GP时资料的硬度强度将下落,那种局里称为过真效.9、形变加强:金属经热塑性变形后,其强度硬度降下,塑性战韧性下落,那种局里称为形变加强.10、固溶加强:由于合金元素(杂量)的加进,引导的以金属为基体的强度得到加强的局里.11、弥集加强:许多资料由二相大概多相形成,如果其中一相为细小的颗粒并弥集分集正在资料内,那种资料的强度往往会减少,称为弥集加强.12、不齐位错:柏氏矢量不等于面阵矢量整数倍的位错称为不齐位错.13、扩展位错:常常指一个齐位错领会为二个不齐位错,中间夹杂着一个堆垛层错的所有位错形态.14、螺型位错:位错附近的本子按螺旋形排列的位错称为螺型位错.15、包晶转化:包晶转化便是以结晶的固相与结余液好同应产死另一固相的恒温转化.16、共晶转化:由一个液相转化成二个分歧固相的转化.17、共析转化:由一种固相转化成其余二个分歧固相的转化.18、上坡扩集:溶量本子从矮浓度背下浓度处扩集的历程称为上坡扩集,标明扩集的驱能源是化教位梯度,而非浓度梯度.19、间隙扩集:那是本子扩集的一种体制,对付于间隙本子去道,由于其本子尺寸小,处于晶格间隙中,正在扩集时,间隙本子从一个间隙位子跳到相邻的另一个位子,产死本子的移动.20、身分过热:界里前沿液体中的本量温度,矮于由溶量分集所决断的凝固温度时爆收的过热.21、一级相变:凡是新旧二相化教位相等,化教位的一次偏偏导不相等的相变.22、二级相变:从相变热力教上道,相变前后二相的自由能(焓)相等,自由能(焓)的一阶偏偏导数相等,但是二阶偏偏导数不等的相变称为二级相变,如磁性转化,有序-无序转化,常导-超导转化.23、共格相界:如果二相界里上的所有本子均成-对付应的真足匹配闭系,即界里上的本子处于二相晶格的节面上,为相邻二晶体所公有,那种相界里称为共格界里.24、调幅领会:过鼓战固溶体正在一定温度下领会成结构相共,身分分歧的二个相的历程.25、回火坚性:淬火钢正在回火历程中,普遍情况下随回火的温宿的普及,其塑性、韧性普及,但是正在特定的回火温度范畴内,反而产死韧性下落的局里称为回火坚性.对付于钢铁资料存留第一类战第二类回火坚性.他们的温度范畴,效率果素战个性分歧.26、再结晶退火:所谓再结晶退火工艺,普遍是指将热变形后的金属加热到再结晶温度以上,保温一段时间后,缓缓热却到室温的历程.27、回火索氏体:淬火钢正在正在加热到400-600ºC温度回火后产死的回火构制,其由等轴状的铁素体战细小的颗粒状(蠕虫状)渗碳体形成.28、有序固溶体:当一种组元溶解正在另一组元中时,各组元本子分别吞噬各自的布推维面阵的一种固溶体,产死一种各组元本子有序排列的固溶体,溶量正在晶格真足有序排列.29、非匀称形核:新相劣先正在母相中存留的同量处形核,即依附于液相中的杂量大概中去表面形核.30、马氏体相变:钢中加热至奥氏体后赶快淬火所产死的下硬度的针片状构制的相变历程.31、贝氏体相变:钢正在珠光体转化温度以下,马氏体转化温度以上范畴内(550ºC-230ºC)的转化称为贝氏体相变.32、铝合金的真效:经淬火后的铝合金强度、硬度随时间延少而爆收隐著普及的局里称之为真效,也称为铝合金的真效.33、热弹性马氏体:马氏体相变制成弹性应变,而当中加弹性变形后不妨使马氏体相变爆收顺转化,那种马氏体称为热弹性马氏体.大概马氏体相变由弹性变形去协做.那种马氏体称为热弹性马氏体.34、柯肯达我效力:反映了置换本子的扩集体制,二个杂组元形成扩集奇,界里将背扩集速率快的组元一侧移动.35、热弹性马氏体相变:当马氏体相变形状的变更是通过弹性变形去协做时,称为热弹性马氏体相变.36、非晶体:本子不少程的周期排列,无牢固的熔面,各背同性等.37、致稀度:晶体结构中本子体积占总体积的百分数.38、多滑移:当中力正在几个滑移系上的分切应力相等并共时达到了临界分切应力时爆收共时滑移的局里.39、过热度:相变历程中热却到相变温度以下某个温度后爆收转化,仄稳相变温度与该本量转化温度只好称为过热度.40、间隙相:当非金属(X)战金属(M)本子半径的比值.41、齐位错:把柏氏矢量等于面阵矢量大概其整数倍的位错称为齐位错.42、滑移系:晶体中的一个滑移里及该里上一个滑移目标的推拢称为一个滑移系.43、离同共晶:共晶体中的α相依附于初死α相死少,将共晶体中另一相β相推到末尾凝固的晶界处,进而使共晶体二组成相相间的构制个性消得,那种二相分散的共晶体称为离同共晶.44、匀称形核:新相晶核是正在母相中匀称死少的,即晶核由液相中的一些本子团间接产死,不受杂量粒子大概中表面的效率.45、刃型位错:晶体中的某一晶里,正在其上半部有多余的半排本子里,佳像一把刀刃拔出晶体中,使那一晶里上下二部分晶体之间爆收了本子错排,称为刃型位错.46、细晶加强:晶粒越细小,晶界总少度愈少,对付位错滑移的阻拦愈大,资料的伸服强度愈下,晶粒细化引导晶界减少,位错的滑移受阻,果此普及了资料的强度.47、单接滑移:如果接滑移后的位错再转回战本滑移里仄止的滑移里上继承疏通,则称为单接滑移.48、单位位错:把柏氏矢量等于单位面阵矢量的位错称为单位位错.49、反应扩集:伴伴随化教反应而产死新相的扩集称为反应扩集.50、晶界偏偏散:由于晶内与晶界上的畸变能不共大概由于空位的存留使得溶量本子大概杂量本子正在晶界上富集的局里.51、柯氏气团:常常把溶量本子与位错接互效率后,正在位错周围偏偏散的局里称为气团,是由柯垂我最先提出,又称柯氏气团.52、形变织构:多晶体形变历程中出现的晶体教与背择劣的局里喊搞形变织构.53、面阵畸变:正在局部范畴内,本子偏偏离其仄常的面阵仄稳位子,制成面阵畸变.54、稳态扩集:正在稳态扩集历程中,扩集组元的浓度只随距离变更,而不随时间变更.55、包析反应:二个固好同应得到一个固相的历程为包析反应.56、非共格晶界:当二相正在相界处的本子排列出进很大.共大角度晶界相似,可瞅成由本子不准则排列的很薄的过度层形成.57、置换固溶体:当溶量本子溶进溶剂中产死固溶体时,溶量本子吞噬溶剂面阵的阵面,大概者道溶量本子置换了溶剂面阵的部分溶剂本子那种固溶体称为置换固溶体.58、间隙固溶体:溶量本子分集于溶剂晶格间隙而产死的固溶体称为间隙固溶体.59、二次再结晶:再结晶中断后仄常少大被压制而爆收的少量晶粒非常十分少大的局里.60、真共析转化:非仄稳转化历程中,处正在共析身分面附近的亚共析,、过共析合金,转化结束构制局部呈共析构制形态.61、肖脱基空位:正在个体晶体中,当某一本子具备脚够大的振荡能而使振幅删大到一定程度时便大概克服周围本子对付它的约束效率,跳离其本去位子,迁移到晶体表面大概内表面的仄常节面位子上而使晶体里里留住空位,称为肖脱基空位.62、弗兰克我空位:离启仄稳位子的本子挤进面阵中的间隙位子,而正在晶体中共时产死相等数手段空位战间隙本子.63、非稳态扩集:扩集组元的浓度不但是随距离x变更,也随时间变更的扩集称为非稳态扩集.64、真效:过鼓战固溶体后绝正在室温大概下于室温的溶量本子脱溶历程.65、回复:指新的无畸变晶粒出现之前所爆收的亚结媾战本能变更的阶段.66、相律:相律给出了仄稳状态下体系中存留的相数与组元.67、合金:二种大概二种以上的金属大概金属与非金属经熔炼、烧结大概其余要领推拢而成并具备金属个性的物量.68、孪晶:孪晶是指二个晶体(大概一个晶体的二部分)沿一个大众晶里形成镜里对付称的位背闭系,那二个晶体便称为孪晶,此大众晶里便称为孪晶里.69、相图:形貌各相存留条件大概共存闭系的图解,也可称为仄稳时热力教参量的几许轨迹.70、孪死:晶体受力后,以孪晶的办法举止的切变历程称喊孪死.71、晶界:晶界是身分结构相共的共种晶粒间的界里.72、晶胞:正在面阵中与出一个具备代表性的基础单元(最小仄止六里体)动做面阵的组成单元,称为晶胞.73、位错:是晶体内的一种线缺陷,其个性是沿一条线目标本子有顺序天爆收错排,那种缺陷用一个线目标战柏氏矢量共共形貌.74、偏偏析:合金中化教身分的不匀称性.75、金属键:自由电子与本子核间之间静电效率爆收的键合力.76、固溶体:以某一组元为溶剂,正在其晶体面阵中溶进其余组元本子(溶量本子)所产死的匀称混同的固溶体,它坚持溶剂的晶体结构典型.77、亚晶粒:一个晶粒中若搞个位背稍有好别的晶粒称为亚晶粒.78、亚晶界:相邻亚晶粒间的界里称为亚晶界.79、晶界能:无论是小角度晶界大概大角度晶界,那里的本子大概多大概少天偏偏离了仄稳位子,所以相对付于晶体里里,晶界处于较下的能量状态,超过的那部分能量称为晶界能,大概称晶界自由能.80、表面能:表面本子处于不匀称的力场之中,所以其能量大大降下,超过的能量称为表面自由能(大概表面能). 81、界里能:界里上的本子处正在断键状态,具备逾额能量.仄稳正在界里单位里积上的逾额能量喊界里能.82、淬透性:淬透性是指合金淬成马氏体的本领,主要与临界热速有闭,大小用淬透层深度表示.83、淬硬性:淬硬性是指钢正在淬火后所能达到的最下硬度,主要与钢的含碳量有闭.84、惯习里:固态相变时,新相往往正在母相的一定晶里上启初产死,那个晶里称为惯习里.85、索氏体:中温段珠光体转化产品,由片状铁素体渗碳体组成,片层间距较小,片层较薄.86、珠光体:铁碳合金共析转化得产品,是共析铁素体战共析渗碳体层片状混同物.87、莱氏体:铁碳相图共晶转化的产品,是共晶奥氏体战共晶渗碳体的板滞混同物.88、柏氏矢量:形貌位错个性的一个要害矢量,它集结反映了位错天区内畸变总量的大小战目标,也是位错扫过后晶体相对付滑动的量.89、空间面阵:指几许面正在三维空间搞周期性的准则排列所产死的三维阵列,是人为的对付晶体结构的抽象.90、范德华键:又瞬间奇极矩战诱导奇极矩爆收的分子间引力所形成的物理键.91、位错滑移:正在一定应力效率下,位错线沿滑移里移动的位错疏通.92、同量形核:晶核正在液态金属中依赖中去物量表面大概正在温度不匀称处择劣产死.93、结构起伏:液态结构的本子排列为少程无序,短程有序,而且短程有序本子团不是牢固稳定的,它是此消彼少,转眼万变,尺寸不宁静的结构,那种局里称为结构起伏.94、沉心规则:处于三相仄稳的合金,其身分面必位于共轭三角形的沉心位子.95、应变真效:第一次推伸后,再坐时举止第二次推伸,推伸直线上不出现伸服阶段.但是第一次推伸后的矮碳钢试样正在室温下搁置一段时间后,再举止第二次推伸,则推伸直线上又会出现伸服阶段.不过,再次伸服的强度要下于初次伸服的强度.那个真验局里便称为应变真效.96、枝晶偏偏析:固溶体正在非仄稳热却条件下,匀晶转化后新得的固溶体晶粒里里的身分是不匀称的,先结晶的内核含较多的下熔面的组元本子,后结晶的中缘含较多的矮熔面组元本子,而常常固溶体晶体以树枝晶办法少大,那样,枝搞含下熔面组元多,枝间含矮熔面组元较多,制成共一晶粒里里身分不匀称的局里.97、临界变形度:给定温度下金属爆收再结晶所需的最小预先热变形量.98、电子化合物:电子化合物是指由主要电子浓度决断其晶体结构的一类化合物,又称戚姆-罗赛里相,凡是具备相共的电子浓度,则相的晶体结构典型相共.99、共量同构体:化教组成相共,由于热力教条件分歧而产死分歧的晶体结构.100、再结晶温度:形变金属正在一定时间(普遍1h)内刚刚佳完毕再结晶的最矮温度.101、布推菲面阵:除思量晶胞形状中,还思量阵面位子所形成的面阵.102、配位多里体:本子大概离子周围与它间接相邻分散的本子大概离子的核心连线所形成的多里体,称为本子大概离子的配位多里体.103、施稀特果子F的夹角.与中力F104、拓扑稀堆相:由二种大小分歧的金属本子所形成的一类中间相,其中大小本子通过适合的协共形成空间利用率战配位数皆很下的搀杂结构,由于那类结构具备拓扑个性,故称那些相为拓扑稀堆相.105、间隙化合物:当非金属(X)战金属(M)本子半径的隙化合物.106、大角度晶界:多晶资料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的大角度晶界的位出进大于10度的晶界.107、小角度晶界:相邻亚晶粒之间的位背好小于10度,那种亚晶粒间的晶界称为小角度晶界,普遍小于2度,可分为倾斜晶界、扭转晶界、沉合晶界等.108、临界分切应力:滑移系启动所需的最小分切应力;它是一个定值,与资料自己本量有闭,与中力与背无闭.。

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性.之迟辟智美创作2、中间相:两组元A和B组成合金时,除形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相.由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相.3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转酿成稳定相而暂时稳定存在的一种相.4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数.5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新发生了无畸变的新晶粒,而性能也发生了明显的变动并恢复到变形前的状态,这个过程称为再结晶(指呈现无畸变的等轴新晶粒逐步取代变形晶粒的过程).6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成份的合金也能获得全部的共晶组织,这种由非共晶成份的合金获得的共晶组织称为共晶组织.7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移.8、过时效:铝合金经固溶处置后,在加热保温过程中将先后析出GP料的硬度强度将下降,这种现象称为过时效.9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化.10、固溶强化:由于合金元素(杂质)的加入,招致的以金属为基体的强度获得加强的现象.11、弥散强化:许多资料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在资料内,这种资料的强度往往会增加,称为弥散强化.12、不全位错:柏氏矢量不即是点阵矢量整数倍的位错称为不全位错.13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态.14、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错.15、包晶转变:包晶转变就是以结晶的固相与剩余液相反应形成另一固相的恒温转变.16、共晶转变:由一个液相转酿成两个分歧固相的转变.17、共析转变:由一种固相转酿成其他两个分歧固相的转变.18、上坡扩散:溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散,标明扩散的驱动力是化学位梯度,而非浓度梯度.19、间隙扩散:这是原子扩散的一种机制,对间隙原子来说,由于其原子尺寸小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个位置,形成原子的移动.20、成份过冷:界面前沿液体中的实际温度,低于由溶质分布所决定的凝固温度时发生的过冷.21、一级相变:凡新旧两相化学位相等,化学位的一次偏导不相等的相变.22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变.23、共格相界:如果两相界面上的所有原子均成-对应的完全匹配关系,即界面上的原子处于两相晶格的节点上,为相邻两晶体所共有,这种相界面称为共格界面.24、调幅分解:过饱和固溶体在一定温度下分解成结构相同,成份分歧的两个相的过程.25、回火脆性:淬火钢在回火过程中,一般情况下随回火的温宿的提高,其塑性、韧性提高,但在特定的回火温度范围内,反而形成韧性下降的现象称为回火脆性.对钢铁资料存在第一类和第二类回火脆性.他们的温度范围,影响因素和特征分歧.26、再结晶退火:所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却到室温的过程.27、回火索氏体:淬火钢在在加热到400-600ºC温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体构成.28、有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列.29、非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来概况形核.30、马氏体相变:钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程.31、贝氏体相变:钢在珠光体转变温度以下,马氏体转变温度以上范围内(550ºC-230ºC)的转变称为贝氏体相变. 32、铝合金的时效:经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称为铝合金的时效.33、热弹性马氏体:马氏体相变造成弹性应变,而当外加弹性变形后可以使马氏体相变发生逆转变,这种马氏体称为热弹性马氏体.或马氏体相变由弹性变形来协调.这种马氏体称为热弹性马氏体.34、柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,界面将向扩散速率快的组元一侧移动.35、热弹性马氏体相变:当马氏体相变形状的变动是通过弹性变形来协调时,称为热弹性马氏体相变.36、非晶体:原子没有长程的周期排列,无固定的熔点,各向异性等.37、致密度:晶体结构中原子体积占总体积的百分数.38、多滑移:当外力在几个滑移系上的分切应力相等并同时到达了临界分切应力时发生同时滑移的现象.39、过冷度:相变过程中冷却到相变温度以下某个温度后发生转变,平衡相变温度与该实际转变温度只差称为过冷度.40、间隙相:当非金属(X)和金属(M)原子半径的比值. 41、全位错:把柏氏矢量即是点阵矢量或其整数倍的位错称为全位错.42、滑移系:晶体中的一个滑移面及该面上一个滑移方向的组合称为一个滑移系.43、离异共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β相推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶.44、均匀形核:新相晶核是在母相中均匀生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外概况的影响.45、刃型位错:晶体中的某一晶面,在其上半部有过剩的半排原子面,好像一把刀刃拔出晶体中,使这一晶面上下两部份晶体之间发生了原子错排,称为刃型位错.46、细晶强化:晶粒越细小,晶界总长度愈长,对位错滑移的阻碍愈年夜,资料的屈服强度愈高,晶粒细化招致晶界增加,位错的滑移受阻,因此提高了资料的强度.47、双交滑移:如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移.48、单位位错:把柏氏矢量即是单位点阵矢量的位错称为单位位错.49、反应扩散:陪陪伴化学反应而形成新相的扩散称为反应扩散.50、晶界偏聚:由于晶内与晶界上的畸变能分歧或由于空位的存在使得溶质原子或杂质原子在晶界上富集的现象.51、柯氏气团:通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团.52、形变织构:多晶体形变过程中呈现的晶体学取向择优的现象叫做形变织构.53、点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变.54、稳态扩散:在稳态扩散过程中,扩散组元的浓度只随距离变动,而不随时间变动.55、包析反应:两个固相反应获得一个固相的过程为包析反应.56、非共格晶界:当两相在相界处的原子排列相差很年夜.同年夜角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成.57、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部份溶剂原子这种固溶体称为置换固溶体.58、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体.59、二次再结晶:再结晶结束后正常长年夜被抑制而发生的少数晶粒异常长年夜的现象.60、伪共析转变:非平衡转变过程中,处在共析成份点附近的亚共析,、过共析合金,转变终了组织全部呈共析组织形态.61、肖脱基空位:在个体晶体中,当某一原子具有足够年夜的振动能而使振幅增年夜到一定水平时就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体概况或内概况的正常节点位置上而使晶体内部留下空位,称为肖脱基空位.62、弗兰克尔空位:离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子. 63、非稳态扩散:扩散组元的浓度不单随距离x变动,也随时间变动的扩散称为非稳态扩散.64、时效:过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程.65、回复:指新的无畸变晶粒呈现之前所发生的亚结构和性能变动的阶段.66、相律:相律给出了平衡状态下体系中存在的相数与组元.67、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质.68、孪晶:孪晶是指两个晶体(或一个晶体的两部份)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称为孪晶面.69、相图:描述各相存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹.70、孪生:晶体受力后,以孪晶的方式进行的切变过程称叫孪生.71、晶界:晶界是成份结构相同的同种晶粒间的界面.72、晶胞:在点阵中取出一个具有代表性的基本单位(最小平行六面体)作为点阵的组成单位,称为晶胞.73、位错:是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排,这种缺陷用一个线方向和柏氏矢量共同描述.74、偏析:合金中化学成份的不均匀性.75、金属键:自由电子与原子核间之间静电作用发生的键合力.76、固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固溶体,它坚持溶剂的晶体结构类型.77、亚晶粒:一个晶粒中若干个位向稍有差此外晶粒称为亚晶粒.78、亚晶界:相邻亚晶粒间的界面称为亚晶界.79、晶界能:无论是小角度晶界或年夜角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对晶体内部,晶界处于较高的能量状态,高出的那部份能量称为晶界能,或称晶界自由能.80、概况能:概况原子处于不均匀的力场之中,所以其能量年夜年夜升高,高出的能量称为概况自由能(或概况能).81、界面能:界面上的原子处在断键状态,具有逾额能量.平均在界面单位面积上的逾额能量叫界面能.82、淬透性:淬透性是指合金淬成马氏体的能力,主要与临界冷速有关,年夜小用淬透层深度暗示.83、淬硬性:淬硬性是指钢在淬火后所能到达的最高硬度,主要与钢的含碳量有关.84、惯习面:固态相变时,新相往往在母相的一定晶面上开始形成,这个晶面称为惯习面.85、索氏体:中温段珠光体转变产物,由片状铁素体渗碳体组成,片层间距较小,片层较薄.86、珠光体:铁碳合金共析转变得产物,是共析铁素体和共析渗碳体层片状混合物.87、莱氏体:铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物.88、柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的年夜小和方向,也是位错扫过后晶体相对滑动的量.89、空间点阵:指几何点在三维空间做周期性的规则排列所形成的三维阵列,是人为的对晶体结构的笼统.90、范德华键:又瞬间偶极矩和诱导偶极矩发生的分子间引力所构成的物理键.91、位错滑移:在一定应力作用下,位错线沿滑移面移动的位错运动.92、异质形核:晶核在液态金属中依靠外来物质概况或在温度不均匀处择优形成.93、结构起伏:液态结构的原子排列为长程无序,短程有序,而且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏.94、重心法则:处于三相平衡的合金,其成份点必位于共轭三角形的重心位置.95、应变时效:第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不呈现屈服阶段.但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会呈现屈服阶段.不外,再次屈服的强度要高于初度屈服的强度.这个实验现象就称为应变时效.96、枝晶偏析:固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成份是不均匀的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点组元原子,而通常固溶体晶体以树枝晶方式长年夜,这样,枝干含高熔点组元多,枝间含低熔点组元较多,造成同一晶粒内部成份不均匀的现象.97、临界变形度:给定温度下金属发生再结晶所需的最小预先冷变形量.98、电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗赛里相,凡具有相同的电子浓度,则相的晶体结构类型相同.99、同质异构体:化学组成相同,由于热力学条件分歧而形成份歧的晶体结构.100、再结晶温度:形变金属在一按时间(一般1h)内刚好完成再结晶的最高温度.101、布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵.102、配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体.103、施密特因子与外力F F的夹角. 104、拓扑密堆相:由两种年夜小分歧的金属原子所构成的一类中间相,其中年夜小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构,由于这类结构具有拓扑特征,故称这些相为拓扑密堆相.105、间隙化合物:当非金属(X)和金属(M)原子半径的隙化合物.106、年夜角度晶界:多晶资料中各晶粒之间的晶界称为年夜角度晶界,即相邻晶粒的年夜角度晶界的位相差年夜于10度的晶界.107、小角度晶界:相邻亚晶粒之间的位向差小于10度,这种亚晶粒间的晶界称为小角度晶界,一般小于2度,可分为倾斜晶界、扭转晶界、重合晶界等.108、临界分切应力:滑移系开动所需的最小分切应力;它是一个定值,与资料自己性质有关,与外力取向无关.。

材料科学基础名词解释

材料科学基础名词解释

第二章1.定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?定性:对称轴、对称中心、晶系、点阵、晶胞定量:晶胞参数,晶向指数1.依据结合力的本质不同,晶体的键合作用分为哪几类?其特点是什么?共价键、离子键、金属键、范德华键、氢键。

离子键:没有方向性和饱和性,结合力很大。

共价键:具有方向性和饱和性,结合力也很大,一般大于离子键。

金属键:没有方向性和饱和性的共价键,结合力是原子实和电子云之间的库仑力。

范德华键:是通过分子力而产生的键合,结合力很弱氢键:是指氢原子与半径较小,电负性很大的原子相结合所形成的键。

2.等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?六方最密堆积、面心立方紧密堆积,8个四面体空隙,6个八面体空隙3.n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2n个四面体空隙,n个八面体空隙。

不等径球堆积时,较大球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。

其中稍小的球体填充在四面体空隙,稍大的则填充在八面体空隙,如果更大,则会使堆积方式稍加改变,以产生较大的空隙满足填充的要求。

4.解释下列概念晶体:是内部质点在三维空间有周期性和对称性排列的固体。

晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。

(六三四立方,单三斜正交)晶包:是从晶体取出反映其周期性和对称性的结构的最小重复单元。

晶胞参数:晶胞的形状和大小可以用6个参数来表示,此即晶胞参数,它们是三条棱边的长度a,b,c和三条棱边的夹角a,B,r.空间点阵:空间点阵是一种表示晶体内部质点排列规律的几何图形。

米勒指数:是晶体的常数之一,是晶面在3个结晶轴上的截距系数的倒数比,当化为最简单的整数比后,所得出的3个整数称为该晶面的米勒指数。

离子晶体的晶格能:晶格能又叫点阵能。

材料科学基础最全名词解释

材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

2.金属键:自由电子与原子核之间静电作用产生的键合力。

3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。

这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。

部分位错:柏氏矢量小于点阵矢量的位错包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。

材料科学基础名词解释

材料科学基础名词解释

金属材料:以金属键结合为主的材料,如钢铁材料。

无机非金属材料:以离子键和共价键结合为主的材料,如陶瓷材料。

高分子材料:以共价键结合为主的材料,如塑料、橡胶。

复合材料:以界面特征结合为主的材料,如玻璃钢。

结构材料:利用它的力学性能,用于制造需承受一定载荷的设备、零部件、建筑结构等。

功能材料:利用它的特殊物理性能(电、热、光、磁等),用于制造各种电子器件、光敏元件、绝缘材料等。

高聚物:是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。

复合材料:是由两种或两种以上化学性质或组织结构不同的材料组合而成。

晶体:物质的质点(分子、原子或离子)在三维空间呈规则的周期性重复排列的物质。

空间点阵:把质点看成空间的几何点,点所形成的空间阵列。

晶格:用假想的空间直线,把这些点连接起来,所构成的三维空间格架。

晶胞:从晶格中取出具有代表性的最小几何单元。

晶格参数:描述晶胞的六个参数a、b、c、晶体中各种方位上的原子面叫晶面,表示晶面的符号叫晶面指数。

{hkl}代表原子排列完全相同,只是空间位向不同的各组晶面,称为晶面族。

晶体中各个方向上的原子列叫晶向,表示晶向的符号叫晶向指数。

<unw>代表原子排列完全相同,只是空间位向不同的各组晶向,称为晶向族所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。

属此晶带的晶面称为共带面。

晶胞原子数:指一个晶胞内所含的原子个数。

原子半径:指晶胞中原子密度最大方向上相邻两个原子之间距离的一半,与晶格常数有关。

配位数:指晶格中任一原子周围所具有的最近且等距的原子数。

致密度:合金:是指由两种或两种以上元素组成的具有金属特性的物质。

如:黄铜,Cu、Zn合金;碳钢,Fe、C合金。

组元:组成合金最基本的独立物质(组成合金的元素、稳定化合物)。

相:成分结构相同并以界面分开的均匀部分。

组织:在显微镜下所看到的相的分布形态。

固溶体:指溶质组元溶于溶剂晶格中,并保持溶剂组元晶格类型而形成的均匀固体。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释第一章固体结构1、晶体 :原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体 :原子没有长程的周期排列,无固定的熔点,各向同性等。

2、中间相 : 两组元 A 和 B 组成合金时,除了形成以 A 为基或以 B 为基的固溶体外,还可能形成晶体结构与 A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排列方式称为晶体结构或晶体点阵。

4、配位数 :晶体结构中任一原子周围最近邻且等距离的原子数。

5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。

6、晶胞 :在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。

8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位向,称为晶向。

9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。

10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种符号,这种符号称为晶面指数和晶向指数。

国际上通用的是密勒指数。

一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。

11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以<uvw>表示。

12、晶面间距:相邻两个平行晶面之间的垂直距离。

低指数晶面的面间距较大,而高指数晶面的面间距较小。

晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。

13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。

14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结这种性质构,称为晶体的多晶型性。

15、多晶型性转变:具有多晶型性的金属在温度或压力变化由一种结构转变为另一种结时,构的过程称为多晶型性转变,也称为同素异构转变。

材料学基础名词解释

材料学基础名词解释

1 派-纳力:书(260页)2 柯氏气团:(书上:择优分布在刃形位错的张应力区并紧靠位错线的点缺陷便形成柯氏气团。

)(课件上:偏聚在刃位错张应力区的一团间隙原子)3 全位错:柏氏矢量为沿滑移方向的原子间距的整数倍的位错称为全位错。

4 分位错:伯氏矢量小于滑移方向上的原子间距的位错称为分位错。

5 shockley位错: FCC中位于{111}面上b1=[121]/6的分位错。

6 Frank分位错:通过插入或抽走部分{111}面也能形成局部层错,这样形成的分位错称为Frank分位错。

7 铃木气团: 溶质原子与扩展位错之间会发生化学交互作用,产生铃木气团。

铃木秀次指出,由于扩展位错的层错区具有与周围基体不同的晶体结构(如fcc中层错区属hcp),为保持热力学平衡,溶质原子在层错区浓度与在基体中浓度不同,有的原子偏聚于层错区,减小表面能,使层错区宽度d增大,不易于束集,难于交滑移,从而提高合金强度,这种由化学交互作用而产生溶质原子在层错区偏聚,构成了“铃木气团”。

1)铃木气团与温度无关2)铃木气团与位错类型无关8压杆位错: 由两条Shockley分位错线、一条压杆位错线和相交成70 32´的两个层错带组成的稳定的缺陷组态。

又称Lomer-Cottrell或L-C位错.1 成分过冷:由于界面前沿液相中成分差别引起的过冷。

2 平衡分配系数:一定温度下,固/液两平衡相中溶质浓度之比值,即::K0=Cs / CL ;CS、CL分别为固、液相的平衡浓度3 正常凝固:在讨论金属合金的实际凝固问题时,一般不考虑固相内部的原子扩散,即把凝固过程中先后析出的固相成份看作没有变化,而仅讨论液相中的溶质原子混合均匀程度问题。

4 非平衡凝固:5 区域熔炼:6 伪共晶:由非共晶成分所得到的全部共晶组织称为伪共晶7 离异共晶:是一种被分离开来的共晶组成。

(书:369页)8 正常偏析:9 宏观偏析:在宏观区域的成分不均匀现象10 比重偏析:由于两相比重不同而造成铸锭上下部分化学成分不均匀现象。

材料科学基础名词解释

材料科学基础名词解释

原子结构与结合键 + 材料的结构1、第一电离能气态原子失去一个电子成为气态一价正离子所需要的最低能量称为第一电离能。

2、第二电离能气态A+再失去一个电子成为气态二价正离子所需要的最低能量称为第二电离能。

3、结合键原子间的结合力,主要表现为原子间的吸引力和排斥力的合力结果。

4、离子键通过两个或多个原子失去或获得电子而成为离子后形成,本质上可以归结为静电吸引作用,主要存在于晶体化合物中。

5、共价键由两个或多个电负性相差不大的原子共用电子对所形成的化学键,有方向性、饱和性。

6、金属键金属正离子和自由电子之间的相互作用所构成的结合力,无方向性、饱和性7、范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键,属于分子间作用力,无方向性和饱和性。

8、氢键已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力,具有方向性和饱和性。

9、晶体指内部质点(原子、分子或离子)在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。

10、晶胞能充分反映晶体的晶体结构特征的最小体积单位(平行六面体)。

11、阵胞在三维方向上两两平行且相等的六面体,是空间点阵中的体积单元。

12、晶格原子在晶体中排列规律的空间格架。

13、空间点阵由一系列在三维空间按周期性排列的几何点称为一个空间点阵。

空间点阵四要素:阵点、阵列、阵面、阵胞)14、晶族依据晶体中高次轴(n>2)的数目,将晶体分为低级(无高次轴),中级(一个高次轴)和高级(多于一个高次轴)晶族。

15、空间群晶体结构中所有对称要素的组合所构成的对称群,晶体微观结构中共存在230种空间群。

16、晶面/晶向在晶体内部构造中,由物质质点所组成的平面/穿过物质质点所组成的直线方向。

17、晶带所有相交于某一直线或平行于此直线的所有晶面的组合(此直线称为晶带轴)。

18、晶面间距一组平行晶面中,最近邻的两个晶面间距称为晶面间距。

晶面间距越大,晶面上原子排列的密度越大,反之越小。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

材料科学基础名词解释---自己总结

材料科学基础名词解释---自己总结

0、金属键:自由电子与原子核之间静电作用产生的键合力。

0、晶胞:具有代表性的基本单元(即最小平行六面体)作为点阵的组成单元。

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、晶带:所有平行或相交于某一晶向直线的晶面构成一个晶带3、三种金属结构:面心立方、体心立方、密排六方结构5、固溶体:是以某一组元为溶剂,在其晶体点阵中溶人其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

分为置换固溶体和间隙固溶体5-1、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

5-2、固溶体的微观不均匀性6、晶体缺陷:点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构的正常排列的一种缺陷。

晶体点缺陷包括空位、间隙原子、杂质或溶质原子,以及由它们组成的复杂点缺陷,如空位对、空位团和空位-溶质原子对等。

、6-1:位错:是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。

刃型位错和螺型位错。

运动为滑移、攀移、交割6-2:交滑移:晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移称为交滑移。

6-3:位错密度:单位体积晶体中所含的位错线的总长度,及p=L/v(cm-2)7、晶界:多数晶体物质是由许多晶粒所组成,属于同一固相但位向不同的晶粒之间的界面称为晶界,它是一种内界面;而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。

8、孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为"孪晶",此公共晶面就称孪晶面。

孪晶界:共格孪晶界和非共格孪晶界9、相界:具有不同结构的两相之间的分界面称相界。

材料科学基础基本概念-名词解释

材料科学基础基本概念-名词解释

材料科学基础基本概念-名词解释单晶体:是指在整个晶体内部原子都按照周期性的规则排列。

多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。

在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。

包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。

线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。

主要为位错dislocations。

面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。

包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。

空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。

弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。

晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。

从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。

热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。

过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。

材料科学基础-名词解释

材料科学基础-名词解释

第六章组元:组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物.相:在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。

相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡.各组元在各相中的化学势相同。

相图:表示合金系中合金的状态与温度、成分之间的关系的图形,又称为平衡图或状态图。

相变:从一种相转变为另一种相的过程称为相变。

若转变前后均为固相,则称为固态相变。

凝固:物质由液态到固态的转变过程称为凝固结晶:如果液态转变为结晶态的固体这个过程称为结晶过冷:纯金属的实际凝固温度Tn总比其熔点Tm低的现象过冷度:Tm与Tn的差值△T叫做过冷度均匀形核:在液态金属中,存在大量尺寸不同的短程有序的原子集团.当温度降到结晶温度以下时,短程有序的原子集团变得稳定,不再消失,成为结晶核心。

这个过程叫自发形核。

非均匀形核:实际金属内部往往含有许多其他杂质。

当液态金属降到一定温度后,有些杂质可附着金属原子,成为结晶核性,这个过程叫非自发形核.临界晶核:半径恰为r*的晶核称为临界晶核临界半径:r*称为晶核的临界晶核半径临界形核功:形成临界晶核时自由能的变化△G*>0,这说明形成临界晶核是需要能量的.形成临界晶核所需的能量△G*称为临界形核功。

能量起伏:形成临界晶核时,液、固两相之间的自由能差只提供所需要的表面能的三分之二,另外的三分之一则由液体中的能量起伏来提供结构起伏:液态金属中的规则排列的原子团总是处于时起时伏,此起彼伏的变化之中,人们把液态金属中的这种排列原子团的起伏现象称为相起伏或结构起伏。

粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层.但是宏观上看,界面反而是平直的。

光滑界面:光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的。

材料科学基础名词解释(40个)

材料科学基础名词解释(40个)

名词解释(40个)1 同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象,称为同质多晶现象。

类质同晶:化学组成相似或相近的物质,在相同的热力学条件下,形成相同结构晶体的现象,称为类质同晶现象。

反萤石结构:如果晶体的结构与萤石完全相同,但阴阳离子的位置与萤石刚好相反,这种结构称为反萤石结构。

铁电效应:压电效应:晶体在外力作用下发生变形,正负电荷中心产生相对位移,使晶体总电矩发生变化所表现的现象,称为压电效应。

四面体空隙:等径球体作最紧密堆积时,由其中四个球体球心连线而构成的正四面体所围成的空隙。

八面体空隙:等径球体作最紧密堆积时,由其中六个球体球心连线而构成的正八面体所围成的空隙。

位移性转变:在同质多晶中,两个变体之间由于结构差异小,转变时只是原子的位置发生少许位移,仅仅是键长和键角的调整,不涉及旧键的破坏和新键的产生,这类变体之间的转变称为位移性转变,其特点是转变速度很快。

重建性转变::在同质多晶中,两个变体之间由于结构差异大,转变时必须破坏原子间的键,形成一个具有新键的结构,这类变体之间的转变称为重建性转变,其特点是转变速度很慢。

2 结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

点缺陷:又称零维缺陷,缺陷尺寸处于原子大小数量级上,即三维方向上缺陷的尺寸都很小。

点缺陷包括空位、间隙质点、杂质质点和色心等。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维上很小,故又称二维缺陷。

如晶界、表面、堆积层错等,与材料的断裂韧性有关。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向上较长,另外二维方向上很短,故又称一维缺陷热缺陷:当晶体温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较高的原子偏离平衡位置所造成的缺陷,称为热缺陷(又称本征缺陷)。

弗伦克尔缺陷:当晶格热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而在原来位置形成空位,这种缺陷称弗伦克尔缺陷。

材料科学基础名词解释

材料科学基础名词解释

解释下列名词1、奥氏体本质晶粒度是根据标准实验条件,在930±10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。

2、奥氏体实际晶粒度指在某一热处理加热条件下,所得到的晶粒尺寸。

3、珠光体晶粒在片状珠光体中,片层排列方向大致相同的区域称为珠光体团4、二次珠光体转变由于贝氏体转变的不完全性,当转变温度较高时,未转变的奥氏体在随后的保温过程中有可能会发生珠光体转变,此时的珠光体转变称为二次珠光体转变。

5、马氏体转变是一种固态相变,是通过母相宏观切变,原子整体有规律迁移完成的无扩散相变。

6、形变马氏体由形变诱发马氏体转变生成的马氏体称为形变马氏体。

7、马氏体异常正方度“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度。

8、马氏体相变塑性相变塑性:金属及合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。

钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性。

9、相变冷作硬化马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体内产生大量微观缺陷,如位错、孪晶、层错等。

这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。

10、位向关系在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。

11、K-S关系在固态相变母相与新相之间所保持的晶体学位向关系,例如:奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ∥(110)α,〈110〉γ∥〈111〉α12、组织遗传;指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。

13、相遗传;母相将其晶体学缺陷遗传给新相的现象称为相遗传。

14、反稳定化在热稳定化上限温度M C以下,热稳定程度随温度的升高而增加;但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。

材料科学基础概念名词解释

材料科学基础概念名词解释

单晶体:是指样品中所含分子(原子和离子)在三维空间中呈规则、周期排列的一种固体状态。

退火孪晶:退火后形成的孪晶就是退火孪晶或由于相变过程中原子重新排列时发生错排而产生的;孪晶是两个晶体(或一个晶体的两个部分)沿一个公共晶面(即特定取向关系)构成镜面对称的位向关系,这就叫孪晶。

肖特基空位:离开平衡位置的原子迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下的空位。

弗仑克尔缺陷:离开平衡位置的原子挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子。

单位位错:通常把伯氏矢量等于单位点阵矢量的位错称为单位位错。

刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对另一部分出现一个多余的半原子面。

这个多余的半原子面有如切入晶体的刀片,刀片的刃口线即为位错线。

这种线缺陷称为刃型位错。

滑移:晶体中相邻两部分在切应力作用下沿着一定的晶面和晶向相对滑动。

孪生:是塑性变形的另一种重要形式,它常作为滑移不易进行时的补充。

滑移系:一个滑移面和此面上的一个滑移方向合起来叫作一个滑移系。

晶格畸变:点缺陷出来破坏了原子间的平衡状态,使晶格发生扭曲,称为晶格畸变。

固溶强化:溶质原子与位错的弹性交互作用。

弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。

第二相强化,亚组织强化。

回复:是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

熔晶转变:是一个固相转变为另一个固相和一个液相的恒温转变。

之所以熔晶转变,是因为固相在温度下降时可以部分熔化。

过冷:结晶只有在T0以下的实际结晶温度下才能进行,这种现象称为过冷。

过冷度:实际结晶温度与理论结晶温度之间的差值。

均匀形核:晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

平衡分配系数:平衡凝固时固相的溶质质量分数和夜相溶质质量分数之比。

伪共晶:非平衡凝固时,成分在共晶点附近的非共晶成分合金也可能得到100%的共晶组织,这样的共晶组织称为伪共晶。

经过精心整理的材料科学基础名词解释

经过精心整理的材料科学基础名词解释
5. 固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。而如果组成合金相的异类原子有固定的比例,所形成的固相的晶体结构与所有组元均不同,且这种相的成分多数处在A在B中溶解限度和B在A中的溶解限度之间,即落在相图的中间部位,故称它为中间相。
57. 扩散系数):相当于质量浓度为一时,单位时间内的扩散通量。
58. 互扩散系数):在互扩散当中,用来代替两种原子的方向相反的扩散系数D1、D2。
59. 柯肯达尔效应):对于置换型溶质原子的扩散,由于溶剂与溶质原子的半径相差不会很大,原子扩散时必须与相邻原子间作置换,两者的可动性大致趋于同一数量级,因此,必须考虑溶质和溶剂原子不同的扩散速率!
67. 能量起伏:是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。
68. 过冷度:凝固过程中冷却到熔点以下某个温度后发生Байду номын сангаас变,熔点与该实际凝固温度之差称过冷度。
69. 均匀形核:新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。
48. 扩散:在固体中,其原子或分子由于热运动从一个位置不断迁移到另一个位置的现象。
49. 自扩散:不依赖于浓度梯度,而仅由热振动而产生的扩散。【(solid-state physics ) The spontaneous movement of an atom to a new site in a crystal of its own species.】
42. 相界):由结构不同或结构相同而点阵参数不同的两块晶体相交接而形成的界面。沉淀相与基体间、外延层与衬底间、马氏体与母相间的界面均为相界。

材料科学基础名词解释

材料科学基础名词解释

阵点:点阵中的各个点,称为阵点。
晶胞:晶胞 能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。
晶向指数、晶面指数:为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶
向指数与晶面指数。
晶向族:原子排列情况相同在空间位向不同(即不平行)的晶向统称为晶向族。
不对称倾斜晶界:如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是 倾斜晶界不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。
扭转晶界:扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成 。
柯肯达尔效应(kirkendall effect):原来是指两种扩散速率不同的金属在扩散过程中会形成缺陷,现已成为中空纳米颗粒的一种制备方法。可以作为固态物质中一种扩散现象的描述。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
粘流态:当温度高于粘流化温度Tf并继续升高时,高聚物得到的能量足够使整个分子链都可以自由运动,从而成为能流动的粘液,其粘度比液态低分子化物的粘度要大得多,所以称为粘流态。
弹性形变:弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。
晶面族:立方晶系中,由于原子的排列具有高度的对称性,往往存在有许多原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族。

材料学基础

材料学基础

材料学基础材料学基础是指关于材料科学与工程领域中一些基本概念和原理的学习,包括材料的组成、结构、性能和应用等方面的知识。

以下是材料学基础的一些重要内容。

首先,材料的组成是指材料的构成成分。

材料可以分为金属、非金属和复合材料等多种类型。

金属材料主要由金属元素构成,具有良好的导电性、导热性和可塑性等特点。

非金属材料主要由非金属元素构成,包括陶瓷、塑料和高分子材料等,具有绝缘性和耐高温性等特点。

复合材料是由两种或多种不同材料组合而成的材料,具有多种材料的优点,如轻质、高强度和耐腐蚀性等。

其次,材料的结构是指材料的内部组织。

晶体结构是最基本的材料结构,材料中的原子、离子或分子按照一定规律排列而成的结晶体。

晶体结构的类型有很多,如立方晶系、六方晶系和四方晶系等。

除了晶体结构,还有非晶体结构,即无定型结构,原子、离子或分子的排列没有规则性。

再次,材料的性能是指材料在不同条件下表现出来的特点。

材料的力学性能包括强度、硬度和韧性等,用来描述材料的抗压、抗剪和抗拉等方面的性能。

材料的物理性能包括密度、导热性和热膨胀系数等,用来描述材料在物理方面的特性。

材料的化学性能包括腐蚀性和耐磨性等,用来描述材料在化学性质和耐久性方面的特点。

最后,材料的应用是指材料在实际工程中的使用。

不同类型的材料具有不同的特点和应用领域。

金属材料广泛应用于汽车制造、飞机制造和建筑工程等领域。

非金属材料广泛应用于电子器件、塑料制品和建筑装饰等领域。

复合材料广泛应用于航空航天、体育器材和高速运输工具等领域。

综上所述,材料学基础是学习材料科学与工程领域中一些基本概念和原理的过程,包括材料的组成、结构、性能和应用等方面的知识。

掌握材料学基础对于深入理解材料科学和工程领域具有重要意义,并为进一步研究和应用材料提供了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用。

金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。

近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章 固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。

晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性。

3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面。

14、晶面间距:晶面间的距离。

18、点群:点群是指一个晶体中所有点对称元素的集合。

19、空间群:用以描述晶体中原子组合所有可能的方式,是确定晶体结构的依据,它是通过宏观和微观对称元素在三维空间的组合而得出的。

20、晶胞原子数:一个晶胞体积内的原子数。

21、点阵常数:晶胞的大小一般是由晶胞的棱边长度来衡量的,它具有表征晶体结构的一个重要基本参数。

22、配位数:指晶体结构中任一原子周围最近邻且等距离的原子数。

23、致密度:指晶体结构中原子体积占总体积的百分数。

24、多晶型:有些固态金属在不同的温度和压力下具有不同的晶体结构,即具有多晶型,转变产物为同素异形体。

25、合金:指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

26、相:指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。

27、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀固态溶体,它保持着溶剂的晶体结构类型。

28、中间相:两组元 A和B组成合金时,除了可形成以A为基或以B为基的固溶体(端际固溶体)外,还可能形成晶体结构与A,B两组元不同的新相,由于它们在二元相图上位置总是位于中间,故通常把这些相称为中间相。

29、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

30、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。

31、有限固溶体:金属元素彼此之间形成有限溶解的称为有限固溶体。

32、无限固溶体:金属元素彼此之间能形成无限溶解的称为无限固溶体。

33、无序固溶体:溶质原子统计式分布在溶剂晶格的结点上,它们或占据着与溶剂原子等同的位置,或占据着溶剂原子间隙的位置,看不出有什么次序性或规律性,这类固溶体叫无序固溶体。

34、有序固溶体:有些固溶体结构在高温时形成无序固溶体,但在缓慢冷却或低温退火时,溶质原子按适当比例并按一定顺序和方向,围绕着溶质原子重新排列.使溶质,溶剂原子在晶格中占据一定的位置,这一过程称为固溶体的有序化.溶质和溶剂原子呈有序排列的固溶体称为有序固溶体或称超结构:35、正常价化合物:在元素周期表中,一些金属与电负性较强的IVA,VA,VIA族的一些元素按照化学上的原子价规律所形成的化合物称为正常价化合物。

38、间隙相:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径比小于0.59时,形成具有简单晶体结构的相,称为间隙相。

39、间隙化合物:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径大于0.59时,形成具有复杂晶体结构的相,通常称为间隙化合物。

第三章晶体缺陷点缺陷:点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。

其特征是在三维空间的各个方向上尺寸都很小,尺寸范围约为一个或几个原子尺寸,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子等。

线缺陷:其特征是在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷,如各类位错。

面缺陷:其特征是在一个方向尺寸上很小,另外两个方向上扩展很大,也称二维缺陷,晶界、相界、孪晶界和堆垛层错都属于面缺陷。

空位:一个原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点。

间隙原子:从空位中跳离,挤入点阵的空隙位置的原子。

刃型位错:一种位错在晶体中有一个刀刃状的多余半原子面的位错形式。

螺型位错:原来与位错线相垂直的品而都将由平而变成螺旋的一种位错形式。

混合位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度的位错。

全位错:把伯氏矢量等于点阵矢量或其整数倍的位错称为“全位错”不全位错:柏氏矢量不等于点阵矢量的不全位错。

柏氏回路:在实际晶体中,西欧那个任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路,称为柏氏回路。

柏氏矢量:通常将形成一个位错的晶体的相移矢量定义为该位错的柏氏矢量,用b表示。

柏氏矢量的物理意义:同一晶体中,位错的柏氏矢量愈大,位错强度也愈大,表明该位错导致的点阵畸变愈严重,它所具有的能量也愈高。

柏氏矢量的守恒性:不论所做柏氏回路的大小、形状、位置如何变化,怎样任意扩大、缩小或移动,只要它不与其他位错线相交,对给定的位错所确定的柏氏矢量是一定的。

位错的滑移:在外加应力作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移的过程。

交滑移:当某一螺型位错在原滑移面上受阻时,从滑移面转移到与之相交的另一滑移面上的过程叫做交滑移。

位错的攀移:刃型位错在垂直于滑移面的方向上运动,把多余半原子面向上或向下运动的过程。

位错的交割:一个位错在某一滑移面上运动时,会与穿过滑移面的其他位错发生相互作用的过程。

割阶:垂直于位错滑移面得曲折滑移曲线。

扭折:在滑移面上的曲折滑移曲线。

位错密度:单位体积晶体中所含的位错线的总长度。

位错增殖:晶体在受力过程中,位错发生运动,位错数目增加,位错密度变大的过程。

扩展位错:通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错组称为扩展位错。

层错能:层错破坏晶体的完整结构和争产的周期性,使电子发生反常的衍射效应,使晶体增加的能量。

扩展位错交滑移:位错束集呈全螺型位错,然后再由该全位错滑移到另一个滑移面上的过程。

晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。

亚晶界:相邻亚晶粒之间的界面称为亚晶界。

晶界能:形成单位面积界面时系统的自由能变化。

孪晶界:两个晶体沿一个公共晶面构成晶面对称的位向关系,这两个晶体的公共晶面就称为孪晶面。

相界:具有不同结构的两相之间的分界面称为相界。

按结构特点,相界面可分为共格相界、半共格相界和非共格相界三种类型。

第四章固体中原子及分子的运动质量浓度单位体积混合物中某组分的质量称为该组分的质量浓度。

扩散物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。

间隙扩散原子从一个晶格中间隙位置迁移到另一个间隙位置。

空位扩散通过空位进行跳动的扩散称为空位扩散。

下坡扩散物质从高浓度向低浓度的扩散。

上坡扩散物质从低浓度向高浓度的扩散。

稳态扩散质量浓度不随时间变化而变化的扩散称为稳态扩散。

非稳态扩散质量浓度随时间变化而变化的扩散称为非稳态扩散。

扩散系数扩散系数是描述物质扩散难易程度的重要参量。

扩散通量表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量。

(J表示)表面扩散在样品自由表面发生的扩散称为表面扩散。

第五章 材料的形变和再结晶1、弹性变形:指外力去除后能够完全恢复的那部分,可从原子间结合力的角度来了解它的物质本性。

2、弹性模量:材料(金属、陶瓷和部分高分子材料)不论是加载还是卸载时,只要在弹性形变的比称为弹性模量。

3、包申格效应::材料经预先加载产生少量塑性变形(小于4%),而后通向加载则σ升高,反向加载则σ下降,此现象称之为包申格效应。

4、弹后效应:一些实际晶体,在加载或卸载时,应变不是瞬时达到其平衡,而是通过一种驰豫过程来完成其变化,在弹性极限σ范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或弹滞性。

5、粘弹性:一些晶体,有时甚至多晶体,在比较小的应力时可以同时表现出弹性和黏性,这就是黏弹性现象。

6、塑性变形:应力超过弹性极限,材料发生塑性变形,即产生不可逆的永久变形。

孪生:孪生是塑性变形的另一种形式,它常作为滑移不易进行时的补充。

孪晶面:发生均匀切变的那组晶面称为孪晶面(即(111面))。

孪生方向:孪生面的移动方向称为孪生方向。

孪晶:变形与未变形两部分晶体合称为孪晶。

扭折:在孪生过程中阻力很大,如果继续增大压力,则为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折。

固溶强化:溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。

加工硬化:金属材料经过另加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。

弥散强化:当第二相以细小弥散的微粒均匀分布于基体当中时,将会产生显著的强化作用,称为弥散强化。

形变织构:在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构。

回复:回复是一种形核和长大过程,是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

再结晶:是指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。

晶粒长大:晶粒长大是指再结晶结束之后晶粒的继续长大。

相关文档
最新文档