苏教版九年级下册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

合集下载

苏教版九年级下数学知识点总结

苏教版九年级下数学知识点总结

第六章 二次函数一般地,形如)0是常数,且c 、b 、(2≠++=a a c bx ax y 的函数成为二次函数(quadratic function ),其中x 是自变量,y 是x 的函数。

抛物线是轴对称图形,每条抛物线都有一条对称轴,对称轴与抛物线的交点叫做抛物线的顶点。

二次函数)0(2≠=a ax y 的图象是顶点在原点、对称轴是y 轴所在直线的抛物线:当0>a 时,抛物线的开口向上,顶点是抛物线的最低点当0<a 时,抛物线的开口向下,顶点是抛物线的最高点 二次函数c bx ax y ++=2的图象是抛物线,它的顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22对称轴是过顶点且与y 轴平行的直线(当b=0时,对称轴是y 轴所在直线)若a>0,则当ab x 2-=时,函数c bx ax y ++=2有最小值,a b ac y 442-=最小值 若a<0,则当ab x 2-=时,函数c bx ax y ++=2有最大值,a b ac y 442-=最大值第七章 锐角三角函数在Rt △ABC 中∠C=o 90,a 、b 分别是∠A 的对边和邻边。

我们把∠A 的对边a 与邻边b 的比叫做∠A 的正切(tangent ),记作tanA ,即tanA=b a 的邻边A 角的对边A 角tan ==A 。

我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦(sine ),记作sinA ,即c a 斜边的对边A 角sin ==A 。

我们把锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦(cosine ),记作cosA ,即cb 斜边的邻边A 角cos ==A 。

锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometric function )。

2130sin =o ,2245sin =o ,2360sin =o2330cos =o ,2245cos =o ,2160cos =o 3330tan =o ,2245tan =o ,360tan =o由三角函数求锐角,直角三角形中三边关系(勾股定理)、锐角之间关系(两角互余)、边角之间关系(三角函数关系)。

苏科版数学九年级下册知识梳理

苏科版数学九年级下册知识梳理

苏科版数学九年级下册知识梳理第五章二次函数5.1二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,且a≠0)的函数叫做二次函数,其中x 是自变量,y是x的函数5.2二次函数的图像和性质一、基本形式1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大,抛物线的开口越小。

=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减) 4. ()2y a x h k =-+的性质:二、二次函数图象的平移 1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.5.3用待定系数法确定二次函数表达式二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.5.4二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:5.5用二次函数解决问题熟练解决实际问题第六章 图像的相似6.1图上距离与实际距离1、在四条线段中,如果两天线段的比等于另两条线段的比,那么这四条线段叫做比例线段2、比例的基本性质:如果a :b=c :d ,那么ad=bc ;反过来,如果ad=bc (b ≠0,d ≠0),那么a :b=c :d ,3、在比例式a :b=b :c 中,b 叫做a 和c 的比例中项4、比例尺:图上距离:实际距离6.2黄金分割点B 把线段AC 分成两部分,如果ACABAB BC ,那么称线段AC 被点B 黄金分割,点B 为线段AC 的黄金分割点,AB 与AC 的比称为黄金比,它们的比值为21-5,在计算时,通常取近似值0.6186.3相似图形1、形状相同的图形叫做相似形;各角分别相等、各边成比例的两个多边形,它们的形状相同,称为相似多边形2、相似多边形的对应角相等,对应边乘比例。

2020年苏科版九年级下册知识点归纳(最新最全)

2020年苏科版九年级下册知识点归纳(最新最全)

苏科版九年级数学下册知识点总结第五章 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少 十二、二次函数考查重点与常见题型2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)21. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

苏教版九年级数学下册知识点总结(苏科版)

苏教版九年级数学下册知识点总结(苏科版)

知识点总结第五章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。

的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:上加下减。

的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.3. 的性质:左加右减。

1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用十二、二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点,则的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()y yy y110 x o-1 x 0 x 0 -1 xA BC D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

苏科版初中九年级下册数学:第5章 二次函数

苏科版初中九年级下册数学:第5章  二次函数

8、已知抛物线y=
线段OA,OB的长度之和是 2√3 。
9.某商场将进价40元一个的某种商品按50元一个售出时,能卖 出500个,已知这种商品每个涨价1元,销量减少10个,设每 个涨价x元,销售价可以表示为 (50+x)元 ,一个商品所获利 润可以表示为 (50+x-40)元 ,销售量可以表示为 _(5_0_0_-1_0_x)_个_, 利润可以为 (50+x-40)(500-10x) ,因此,定价是 70 元时, 最大利润是 9000 元。
一、选择题
1.在二次函数y=ax2+bx+c中,ac >0,则它的图像
与x轴的关系是( B )
A. 没有交点
ቤተ መጻሕፍቲ ባይዱ
B. 有两个交点
C. 有一个交点
D. 不能确定
2.已知抛物线y=x2+px+q经过点(5,0),(-5,0),则 p+q=( C )
A. 0 B. 25 C. -25 D. 5
3.若二次函数 y=ax2 +bx+c 的图象如下,与x轴的一个
x2-2x-8=0 解方程得:x1=4, x2=-2
P
∴AB=4-(-2)=6 而P点坐标是(1,-9) ∴S△ABC=27
6、抛物线 y=-2x2+4x+6 顶点为A,与x轴交于B、C y 两点,与y轴交于D点,求四边形ABCD的面积。 D A
y=-2x2+4x+6=-2(x-1)2+8,图像如图
增大而增大。
而减小。
4、二次函数 y=ax2+bx+c 的图象和x轴交点的三种 情况与一元二次方程根的关系:
二次函数 y=ax2+bx+c的 图象和x轴交点

苏科版九年级第五章 《二次函数》知识点

苏科版九年级第五章 《二次函数》知识点

第5章 《二次函数》知识点康 进 成一、二次函数的概念和一般式1、概念: ;2、一般式: ;3、自变量的取值范围: ;4、列实际问题的二次函数表达式 ;二、二次函数y=ax 2的图象特征和性质1、特征:开口方向 、顶点坐标 、对称轴 ;2、性质:(1)增减性:当a >0时② ;③ ;④ .当a <0时② ;② ;③ .(2)最值:当a >0时,x= ,有最小值,y 最小值是 ;当a <0时,x= ,有最大值,y 最大值是 .三、二次函数2()y a x h k =-+的图像画法、平移规律、特征和性质1、图像画法:列表(取五对数)、描点(描五个点)、连线2、平移规律:左加右减、上加下减3、特征:开口方向 、顶点坐标 、对称轴 .4、性质:(1)增减性:当a >0时② ;③ ;④ .当a <0时② ;② ;③ .(2)最值:当a >0时,x= ,有最小值,y 最小值是 ;当a <0时,x= ,有最大值,y 最大值是 .四、二次函数2()y a x h k =-+中a 、h 、k 的意义(1)a 决定 ,(2)h ① ;② ;③ ,(3)k ① ;② ;③ . 五、二次函数一般式2y ax bx c =++对应的顶点式224()24b ac b y a x a a -=++、特征、性质 1、转化:2y ax bx c =++224()24b ac b a x a a -=++. 2、特征:开口方向、顶点坐标(2b a -,244ac b a -)、对称轴是直线2b x a=-. 3、性质(1)增减性:当a >0时② ;③ ;④ .当a <0时② ;② ;③ .(2)最值:当a >0时,x= ,有最小值,y 最小值是 ;当a <0时,x= ,有最大值,y 最大值是 .注:由一般式回答图像特征和性质的思路:(1)直接通过计算相关代数式(如2b a-,244ac b a -)的值后解决问题. (2)将一般式转化成顶点式:224()24b ac b y a x a a-=++,结合顶点式来解决问题. 六、二次函数一般式2y ax bx c =++中a 、b 、c 符合和一些重要代数式的符合的确定1、a 看 而确定符合;b 看 而确定符合;c 看 而确定符合;2、2a b +看2b a -与 而确定符合,2a b -看2b a-与 而确定符合, 24b ac -看 而确定符合.3、a b c ++ 而确定符合,a b c -+ 而确定符合, 42a b c ++ 而确定符合,42a b c -+ 而确定符合.七、二次函数的对称规律1、二次函数一般式2y ax bx c =++的对称规律(1)关于x 轴对称的表达式为:2y ax bx c -=++,即:2y ax bx c =---(2)关于y 轴对称的表达式为:()()2y a x b x c =-+-+ 即:2y ax bx c =-+ (3)关于原点轴对称的表达式为:()()2y a x b x c -=-+-+即:2y ax bx c =-+- 2、二次函数顶点式2()y a x h k =-+的对称规律(1)关于x 轴对称的表达式为:2()y a x h k =---(2)关于y 轴对称的表达式为:2()y a x h k =++(3)关于原点轴对称的表达式为:2()y a x h k =-+-八、二次函数的三种形式和用待定系数法确定函数表达式1、一般式:2y ax bx c =++,已知条件 ,设为一般式求出待定系数的值确定表达式.2、顶点式:2()y a x h k =-+,已知条件 ,设为顶点式求出待定系数的值确定表达式.3、交点式:12()()y a x x x x =--,已知条件 ,设为交点式求出待定系数的值确定表达式.九、二次函数与一元二次方程1、二次函数的图像与x 轴的交点情况与相应的一元二次方程的根的情况的关系.2、由24b ac -的符合确定二次函数2y ax bx c =++的图像与x 轴的交点情况.3、求二次函数2y ax bx c =++的图像与x 轴、y 轴的交点坐标.4、确定(求出)二次函数2y ax bx c =++的图像与x 轴的交点坐标,结合图像由y 值的符合确定x 的取值范围.5、由x 值的取值范围值,结合图像根据x 值的取值范围与抛物线对称轴的位置关系(有三种情况:对称轴在x 值的取值范围右边、之间、左边),而确定y 值的取值范围.6、利用图像由二次函数值与一次函数值、二次函数值与反比例函数值的大小关系确定x 的取值范围(关键是组成方程组,解出方程组的解而确定交点坐标,然后看图像而确定x 的取值范围).7、利用图像(或表格)确定相应的一元二次方程的近似解.十、二次函数与几何图形的综合1、这类问题的三大特点:一数形结合、二分类讨论、三运动.2、抓住二次函数的性质和一些几何图形的性质3、几何图形有等腰三角形、直角三角形、平行四边形(菱形、正方形)、相似三角形、圆,并注意这些几何图形性质的灵活应用,如等腰三角形中等边对等角,直角三角形中勾股定理,平行四边形(菱形、正方形)中对边平行且相等,由相似三角形得比例式,圆中有圆周角定理、切线长定理的应用等等4、如有求值必找等式,用方程思想解决问题、设动点横坐标,代入函数关系式表示出纵坐标,再写成坐标便于解决问题、注意数值与线段长度的区别十一、用二次函数解决问题1、用二次函数知识解决“数”的问题列二次函数解决问题与列整式方程解决问题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.常见的问题主要是解决最大(小)值(如求最大利润、最大面积、最小周长等)问题.2、用二次函数的图像解决“形”问题把涵洞、桥梁、抛物体等“抛物线形”建立在适当地直角坐标系中,转化为二次函数图像而解决问题常见的问题主要是解决涵洞、桥梁、抛物体等“抛物线形”的实际问题.。

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。

里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。

22. y ax c的性质:上加下减。

23. y a x h的性质:左加右减。

24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。

九年级数学下册5.1《二次函数》知识点解读素材苏科版(new)

九年级数学下册5.1《二次函数》知识点解读素材苏科版(new)

《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a≠0,a,b ,c 为常数)的函数是二次函数. 若b=0,则y=ax 2+c;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式。

在二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项。

为什么要规定二次项的系数a≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例.(1)a≠0是保证y 是x 的二次函数的重要条件,不能缺少.b 、c 可以为0。

(2)因为解析式是整式,所以自变量x 的取值范围是全体实数.(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件.(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项. 例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2—4(4-x )2分析:二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a≠0。

解:(1)(3)(4)(5)是二次函数;(2)不是.例2 已知,函数22)2(-+=k x k y 是关于x 的二次函数,你能确定k 的值吗?请说明理由。

分析:要想确定k 的值,可由二次函数的定义来求解。

解:由题意,得{22022=-≠+k k解得k=2。

所以,当k=2时,函数22)2(-+=k xk y 是关于x 的二次函数。

知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y(万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50。

苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—巩固练习(基础)【巩固练习】一、选择题1.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为( )A .y=﹣6x 2+3x+4 B . y=﹣2x 2+3x ﹣4 C . y=x 2+2x ﹣4D . y=2x 2+3x ﹣42.二次函数225y x x =+-有( )A .最小值-5B .最大值-5C .最小值-6D .最大值-63.把抛物线y=3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( )A . y=3(x -3)2+2B .y=3(x+3)2+2C .y=3(x -3)2-2D . y=3(x+3)2-24.如图所示,已知抛物线y =2x bx c ++的对称轴为x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数2y x x =+的图象向右平移a(a >0)个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .46.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 Y-27-13-3353则当x =1时,y 的值为 ( )A .5B .-3C .-13D .-27二、填空题7.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为____ ____.第7题 第10题8.(2014秋•江宁区校级月考)已知二次函数图象经过点(2,﹣3).对称轴为x=1,抛物线与x 轴两交点距离为4.则这个二次函数的解析式为 .9.已知抛物线222y x x =-++.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是____ ____.11.已知二次函数2y ax bx c =++ (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x (3)2- -1 12- 0 12 1 32 … y…54- -294- -254- 074…则该二次函数的解析式为_____ ___.12.已知抛物线2y ax bx c =++的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,则抛物线的解析式为___ _____.三、解答题13.根据下列条件,分别求出对应的二次函数解析式. (1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点; (3)已知抛物线与x 轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y =-2x+2分别与x 轴、y 轴交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过A 、B 、C 三点的抛物线的解析式.15.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.【答案与解析】 一、选择题 1.【答案】D ;【解析】设抛物线的解析式为2y ax bx c =++(a ≠0),将A 、B 、C 三点代入解得a=2,b=3,c=-4.故所求的函数的解析式为y=2x 2+3x ﹣4.故选D .2.【答案】C ;【解析】首先将一般式通过配方化成顶点式,即2225216y x x x x =+-=++-2(1)6x =+-,∵ a =1>0,∴ x =-1时,6y =-最小. 3.【答案】A ; 4.【答案】D ;【解析】∵ 点A ,B 均在抛物线上,且AB 与x 轴平行, ∴ 点A 与点B 关于对称轴x =2对称, 又∵ A(0,3),∴ AB =4,y B =y A =3, ∴ 点B 的坐标为(4,3). 5.【答案】B ;【解析】抛物线的平移可看成顶点坐标的平移,2y x x =+的顶点坐标是11,24⎛⎫-- ⎪⎝⎭,232y x x =-+的顶点坐标是31,24⎛⎫-⎪⎝⎭,∴ 移动的距离31222a ⎛⎫=--= ⎪⎝⎭.6.【答案】D ;【解析】此题如果先用待定系数法求出二次函数解析式,再将x =1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x =-4和x =-2时,函数值均为3,由此可知对称轴为x =-3,再由对称性可知x =1的函数值必和x =-7的函数值相等,而x =-7时y =-27.∴ x =1时,y =-27. 二、填空题7.【答案】223y x x =-++;【解析】由图象知抛物线与x 轴两交点为(3,0),(-1,0),则(1)(3)y x x =-+-. 8.【答案】y=x 2﹣2x ﹣3;【解析】∵抛物线与x 轴两交点距离为4,且以x=1为对称轴∴抛物线与x 轴两交点的坐标为(﹣1,0),(3,0) 设抛物线的解析式y=a (x+1)(x ﹣3) 又∵抛物线过(2,﹣3)点 ∴﹣3=a (2+1)(2﹣3) 解得a=1∴二次函数的解析式为y=(x+1)(x ﹣3),即二次函数的解析式为y=x 2﹣2x ﹣3.9.【答案】(1)x =1;(1,3);【解析】代入对称轴公式2bx a =-和顶点公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭即可.10.【答案】12x ≥; 【解析】将(-1,0),(1,-2)代入2y x bx c =++中得b =-1,∴ 对称轴为12x =,在对称轴的右侧,即12x ≥时,y 随x 的增大而增大. 11.【答案】22y x x =+-;【解析】此题以表格的形式给出x 、y 的一些对应值.要认真分析表格中的每一对x 、y 值,从中选出较简单的三对x 、y 的值即为(-1,-2),(0,-2),(1,0),再设一般式2y ax bx c =++, 用待定系数法求解.设二次函数解析式为2y ax bx c =++(a ≠0),由表知2,2,0.a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩ 解得1,1,2.a b c =⎧⎪=⎨⎪=-⎩∴ 二次函数解析式为22y x x =+-. 12.【答案】21(3)22y x =--; 【解析】由题意知抛物线过点(1,0)和(5,0). 三、解答题13.【答案与解析】(1)∵ 顶点是(1,2),∴ 设2(1)2y a x =-+(a ≠0).又∵ 过点(2,3),∴ 2(21)23a -+=,∴ a =1. ∴ 2(1)2y x =-+,即223y x x =-+. (2)设二次函数解析式为2y ax bx c =++(a ≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得1,1,13,a b c c a b c ++=-⎧⎪=⎨⎪-+=⎩ 解得5,7,1.a b c =⎧⎪=-⎨⎪=⎩故所求的函数解析式为2571y x x =-+.(3)由抛物线与x 轴交于点(1,0),(3,0),∴ 设y =a(x-1)(x-3)(a ≠0),又∵ 过点(0,-3), ∴ a(0-1)(0-3)=-3,∴ a =-1,∴ y =-(x-1)(x-3),即243y x x =-+-.14.【答案与解析】过C 点作CD ⊥x 轴于D .在y =-2x+2中,分别令y =0,x =0,得点A 的坐标为(1,0),点B 的坐标为(0,2). 由AB =AC ,∠BAC =90°,得△BAO ≌△ACD , ∴ AD =OB =2,CD =AO =1, ∴ C 点的坐标为(3,1).设所求抛物线的解析式为2(0)y ax bx c a =++≠,则有0,9312,a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得5,61762.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴ 所求抛物线的解析式为2517266y x x =-+.15.【答案与解析】 解:(1)由已知得:C (0,4),B (4,4), 把B 与C 坐标代入y=﹣x 2+bx+c 得:,解得:b=2,c=4,则解析式为y=﹣x 2+2x+4;(2)∵y=﹣x 2+2x+4=﹣(x ﹣2)2+6, ∴抛物线顶点坐标为(2,6),则S 四边形ABDC =S △ABC +S △BCD =×4×4+×4×2=8+4=12.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用函数观点看一元二次方程—知识讲解(基础)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac=-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>0a >抛物线2(0)y ax bx c a =++≠与x 轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=a <△=0a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-a <△<0a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)a <要点诠释:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点诠释: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0)要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点诠释:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1.已知二次函数y=(m-2)x 2+2mx+m+1,其中m 为常数,且满足-1<m<2,试判断此抛物线的开口方向,与x 轴有无交点,与y 轴的交点在x 轴上方还是在x 轴下方. 【答案与解析】∵-1<m<2.∴m-2<0,抛物线开口向下,又m+1>0,抛物线与y 轴的交点在x 轴上方.Δ=4m 2-4(m-2)(m+1)=4m 2-4(m 2-m-2) =4m+8=4(m+1)+4>0.∴抛物线与x 轴有两个不同的交点.【总结升华】此题目也可以用数形结合方法来判断抛物线与x 轴有两个不同交点(用抛物线与y 轴的交点C 在x 轴上方,开口向下,必与x 轴有两个不同交点). 举一反三:【课程名称:用函数观点看一元二次方程 356568 :例3-4】【变式】二次函数y=mx 2+(2m-1)x+m+1的图象总在x 轴的上方,求m 的取值范围。

苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—巩固练习(基础)【巩固练习】一、选择题1.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为( )A .y=﹣6x 2+3x+4 B . y=﹣2x 2+3x ﹣4 C . y=x 2+2x ﹣4D . y=2x 2+3x ﹣42.二次函数225y x x =+-有( )A .最小值-5B .最大值-5C .最小值-6D .最大值-63.把抛物线y=3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( )A . y=3(x -3)2+2B .y=3(x+3)2+2C .y=3(x -3)2-2D . y=3(x+3)2-24.如图所示,已知抛物线y =2x bx c ++的对称轴为x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数2y x x =+的图象向右平移a(a >0)个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .46.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 Y-27-13-3353则当x =1时,y 的值为 ( )A .5B .-3C .-13D .-27二、填空题7.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为____ ____.第7题 第10题8.(2014秋•江宁区校级月考)已知二次函数图象经过点(2,﹣3).对称轴为x=1,抛物线与x 轴两交点距离为4.则这个二次函数的解析式为 .9.已知抛物线222y x x =-++.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是____ ____.11.已知二次函数2y ax bx c =++ (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x (3)2- -1 12- 0 12 1 32 … y…54- -294- -254- 074…则该二次函数的解析式为_____ ___.12.已知抛物线2y ax bx c =++的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,则抛物线的解析式为___ _____.三、解答题13.根据下列条件,分别求出对应的二次函数解析式. (1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点; (3)已知抛物线与x 轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y =-2x+2分别与x 轴、y 轴交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过A 、B 、C 三点的抛物线的解析式.15.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.【答案与解析】 一、选择题 1.【答案】D ;【解析】设抛物线的解析式为2y ax bx c =++(a ≠0),将A 、B 、C 三点代入解得a=2,b=3,c=-4.故所求的函数的解析式为y=2x 2+3x ﹣4.故选D .2.【答案】C ;【解析】首先将一般式通过配方化成顶点式,即2225216y x x x x =+-=++-2(1)6x =+-,∵ a =1>0,∴ x =-1时,6y =-最小. 3.【答案】A ; 4.【答案】D ;【解析】∵ 点A ,B 均在抛物线上,且AB 与x 轴平行, ∴ 点A 与点B 关于对称轴x =2对称, 又∵ A(0,3),∴ AB =4,y B =y A =3, ∴ 点B 的坐标为(4,3). 5.【答案】B ;【解析】抛物线的平移可看成顶点坐标的平移,2y x x =+的顶点坐标是11,24⎛⎫-- ⎪⎝⎭,232y x x =-+的顶点坐标是31,24⎛⎫-⎪⎝⎭,∴ 移动的距离31222a ⎛⎫=--= ⎪⎝⎭.6.【答案】D ;【解析】此题如果先用待定系数法求出二次函数解析式,再将x =1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x =-4和x =-2时,函数值均为3,由此可知对称轴为x =-3,再由对称性可知x =1的函数值必和x =-7的函数值相等,而x =-7时y =-27.∴ x =1时,y =-27. 二、填空题7.【答案】223y x x =-++;【解析】由图象知抛物线与x 轴两交点为(3,0),(-1,0),则(1)(3)y x x =-+-. 8.【答案】y=x 2﹣2x ﹣3;【解析】∵抛物线与x 轴两交点距离为4,且以x=1为对称轴∴抛物线与x 轴两交点的坐标为(﹣1,0),(3,0) 设抛物线的解析式y=a (x+1)(x ﹣3) 又∵抛物线过(2,﹣3)点 ∴﹣3=a (2+1)(2﹣3) 解得a=1∴二次函数的解析式为y=(x+1)(x ﹣3),即二次函数的解析式为y=x 2﹣2x ﹣3.9.【答案】(1)x =1;(1,3);【解析】代入对称轴公式2bx a =-和顶点公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭即可.10.【答案】12x ≥; 【解析】将(-1,0),(1,-2)代入2y x bx c =++中得b =-1,∴ 对称轴为12x =,在对称轴的右侧,即12x ≥时,y 随x 的增大而增大. 11.【答案】22y x x =+-;【解析】此题以表格的形式给出x 、y 的一些对应值.要认真分析表格中的每一对x 、y 值,从中选出较简单的三对x 、y 的值即为(-1,-2),(0,-2),(1,0),再设一般式2y ax bx c =++, 用待定系数法求解.设二次函数解析式为2y ax bx c =++(a ≠0),由表知2,2,0.a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩ 解得1,1,2.a b c =⎧⎪=⎨⎪=-⎩∴ 二次函数解析式为22y x x =+-. 12.【答案】21(3)22y x =--; 【解析】由题意知抛物线过点(1,0)和(5,0). 三、解答题13.【答案与解析】(1)∵ 顶点是(1,2),∴ 设2(1)2y a x =-+(a ≠0).又∵ 过点(2,3),∴ 2(21)23a -+=,∴ a =1. ∴ 2(1)2y x =-+,即223y x x =-+. (2)设二次函数解析式为2y ax bx c =++(a ≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得1,1,13,a b c c a b c ++=-⎧⎪=⎨⎪-+=⎩ 解得5,7,1.a b c =⎧⎪=-⎨⎪=⎩故所求的函数解析式为2571y x x =-+.(3)由抛物线与x 轴交于点(1,0),(3,0),∴ 设y =a(x-1)(x-3)(a ≠0),又∵ 过点(0,-3), ∴ a(0-1)(0-3)=-3,∴ a =-1,∴ y =-(x-1)(x-3),即243y x x =-+-.14.【答案与解析】过C 点作CD ⊥x 轴于D .在y =-2x+2中,分别令y =0,x =0,得点A 的坐标为(1,0),点B 的坐标为(0,2). 由AB =AC ,∠BAC =90°,得△BAO ≌△ACD , ∴ AD =OB =2,CD =AO =1, ∴ C 点的坐标为(3,1).设所求抛物线的解析式为2(0)y ax bx c a =++≠,则有0,9312,a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得5,61762.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴ 所求抛物线的解析式为2517266y x x =-+.15.【答案与解析】 解:(1)由已知得:C (0,4),B (4,4), 把B 与C 坐标代入y=﹣x 2+bx+c 得:,解得:b=2,c=4,则解析式为y=﹣x 2+2x+4;(2)∵y=﹣x 2+2x+4=﹣(x ﹣2)2+6, ∴抛物线顶点坐标为(2,6),则S 四边形ABDC =S △ABC +S △BCD =×4×4+×4×2=8+4=12.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用函数观点看一元二次方程—知识讲解(基础)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac=-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>0a >抛物线2(0)y ax bx c a =++≠与x 轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=a <△=0a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-a <△<0a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)a <要点诠释:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点诠释: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0)要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点诠释:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1.已知二次函数y=(m-2)x 2+2mx+m+1,其中m 为常数,且满足-1<m<2,试判断此抛物线的开口方向,与x 轴有无交点,与y 轴的交点在x 轴上方还是在x 轴下方. 【答案与解析】∵-1<m<2.∴m-2<0,抛物线开口向下,又m+1>0,抛物线与y 轴的交点在x 轴上方.Δ=4m 2-4(m-2)(m+1)=4m 2-4(m 2-m-2) =4m+8=4(m+1)+4>0.∴抛物线与x 轴有两个不同的交点.【总结升华】此题目也可以用数形结合方法来判断抛物线与x 轴有两个不同交点(用抛物线与y 轴的交点C 在x 轴上方,开口向下,必与x 轴有两个不同交点). 举一反三:【课程名称:用函数观点看一元二次方程 356568 :例3-4】【变式】二次函数y=mx 2+(2m-1)x+m+1的图象总在x 轴的上方,求m 的取值范围。

苏教版初三数学:二次函数知识点归纳

苏教版初三数学:二次函数知识点归纳

苏教版初三数学:二次函数知识点概括一、定义与定义表达式一般地,自变量x 和因变量y 之间存在以下关系:y=ax2+bx+c(a0) ,则称 y 为 x 的二次函数。

二、二次函数的三种表达式一般式:y=ax2+bx+c(a0) 极点式:y=a(x-h)2+k(a0) ,此时抛物线的极点坐标为P(h, k)交点式:y=a(x-x1)(x-x2)(a0) 仅用于函数图像与x 轴有两个交点时, x1 、x2 为交点的横坐标,因此两交点的坐标分别为A(x1 ,0)和B(x2 , 0)),对称轴所在的直线为x=注:在 3 种形式的相互转变中,有以下关系:h=-, k=;x1,x2=;x1+x2=-三、二次函数的图像从图像能够看出,二次函数的图像是一条抛物线,属于轴对称图形。

四、抛物线的性质1.抛物线是轴对称图形,对称轴为直线 x=- ,对称轴与抛物线独一的交点是抛物线的极点 P。

特别地,当 b=0 时,抛物线的对称轴是y 轴 (即直线 x=0)2.抛物线有一个极点 P,坐标为 P(-,)。

当 x=- 时, y 最值 =,当a0 时,函数 y 有最小值 ;当 a0 时,函数 y 有最大值。

当 -=0 时,P 在 y 轴上 (即交点的横坐标为 0);当 =b2-4ac=0 时, P 在x 轴上 (即函数与x 轴只有一个交点)。

3.二次项系数 a 决定抛物线的张口方向和大小(即形状 )。

当a0 时,抛物线张口向上;当 a0 时,抛物线张口向下。

|a|越大,则抛物线的张口越小。

对于两个抛物线,若形状同样,张口方向同样,则 a 相等 ;若形状同样,张口方向相反,则 a 互为相反数。

4.二次项系数 a 和一次项系数 b 共同决定对称轴的地点,四字口诀为“左同右异”,即:当对称轴在 y 轴左侧时, a 与 b 同号(即 ab 当对称轴在 y 轴右侧时, a 与 b 异号 (即 ab0)。

5.常数项c 决定抛物线与 y 轴交点地点,抛物线与 y 轴交于点(0, c)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限. 同时满足ay x=和()y b c x =+图象的只有B . 【点评】由图1得到a 、b 、c 的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),交x 轴于A ,B 两点,交y 轴于C .则: ①b=﹣2;②该二次函数图象与y 轴交于负半轴;③存在这样一个a ,使得M 、A 、C 三点在同一条直线上;④若a=1,则OA •OB=OC 2. 以上说法正确的有( )A .①②③④B .②③④C .①②④D .①②③ 【思路点拨】①二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),因而将M 、N 两点坐标代入即可消去a 、c 解得b 值.②根据图象的特点及与直线MN 比较,可知当﹣1<x <1时,二次函数图象在直线MN 的下方. ③同②理.④当y=0时利用根与系数的关系,可得到OA •OB 的值,当x=0时,可得到OC 的值.通过c 建立等量关系求证. 【答案】C ;【解析】①∵二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键. 举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( )A .B .C .D .【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x 2+500x+5000=﹣100(x ﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x 2+500x+5000=5000,解得x 1=0,x 2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

相关文档
最新文档