八年级上册数学 【几何模型三角形轴对称】试卷中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学【几何模型三角形轴对称】试卷中考真题汇编[解析版]

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

∴P(2,﹣2).

综上述,P点坐标为(4,2),(2,﹣2).

【点睛】

本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.

2.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,

(1) 求证:点A 为BE 的中点 (2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.

(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI .

【答案】(1)证明见解析;(2)22(0,

)7

F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作E

G ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;

(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;

(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到

∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.

试题解析:(1

)过E 点作EG⊥x 轴于G ,

∵B (0,-4),E (-6,4),∴OB=EG=4,

在△AEG 和△ABO 中,

∵90EGA BOA EAG BAO EG BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩

∴△AEG ≌△ABO (AAS ),∴AE=AB

∴A 为BE 中点

(2)过A 作AD⊥AE 交EF 延长线于D ,

过D 作DK⊥x 轴于K ,

∵∠FEA=45°,∴AE=AD ,

∴可证△AEG≌△DAK,∴D(1,3),

设F (0,y ),

∵S 梯形EGKD =S 梯形EGOF +S 梯形FOKD ,

()()()111347463222

y y +⨯=+⨯++ ∴227y = ∴220,7F ⎛

⎫ ⎪⎝⎭

(3)连接MI 、NI

∵I为△MON内角平分线交点,∴NI平分∠MNO,MI平分∠OMN,在△MIN和△MIA中,

MN MA

NMI AMI

MI MI

=

∠=∠

⎪=

∴△MIN≌△MIA(SAS),

∴∠MIN=∠MIA,

同理可得∠MIN=∠NIB,

∵NI平分∠MNO,MI平分∠OMN,∠MON=90°,

∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,

∴∠AIB=135°×3-360°=45°,

连接OI,作IS⊥OM于S, ∵IH⊥ON,OI平分∠MON,

∴IH=IS=OH=OS,∠HIS=90°,∠HIP+∠QIS=45°,

在SM上截取SC=HP,可证△HIP≌△SIC,∴IP=IC,

∠HIP=∠SIC,∴∠QIC=45°,

可证△QIP≌△QIC,

∴PQ=QC=QS+HP,

∴C△POQ=OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.

3.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.

(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;

(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.

相关文档
最新文档