2013届中考数学试题分类汇编:轴对称(含解析)
2013届中考数学试题分类汇编:平行线与相交线(含解析)
(2013•衡阳)如图,AB 平行CD ,如果∠B=20°,那么∠C 为( )(2013,娄底)下列图形中,由AB CD ∥,能使12∠=∠成立的是( )A. B. C.(2013•湘西州)如图,直线a 和直线b 相交于点O ,∠1=50°,则∠2 =50° .(2013,永州)如图,下列条件中能判定直线12//l l 的是( ) A.12∠=∠ B. 15∠=∠ C.13180∠+∠= D. 35∠=∠(2013•株洲)如图,直线l 1∥l 2∥l3,点A 、B 、C 分别在直线l1、l2、l 3上.若∠1=70°,∠2=50°,则∠ABC= 120 度.(2013,成都)如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=_____60_____度.123451l ()4第题图2l 3l 4l(2013•德州)如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为 A .68° B .32° C .22° D .16°(2013•广安)如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= 63°30′ .E DC BA第4题图(2013•乐山)如图1,已知直线a//b,∠1=131º,则∠2等于A . 39º B.41º C.49º D.59º(2013•绵阳)如图,AC 、BD 相交于O ,AB//DC ,AB =BC ,∠D =40º,∠ACB =35º,则∠AOD= 。
(2013•遂宁)如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是 12° .OD C BA14题图(2013宜宾)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=115°.考点:平行线的性质.分析:将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.解答:解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=115°.故答案为:115°.点评:本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.(2013鞍山)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A 的度数为()A.100°B.90° C.80° D.70°考点:平行线的性质;三角形内角和定理.专题:探究型.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB。
2013届中考数学试题分类汇编:概率(含解析)
(2013•郴州)掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是.,则向上一面的数字是奇数的概率为=.故答案为:.的概率是()A.12B.13C.14D.16(2013•湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.故针头扎在阴影区域的概率为.每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是(2013,成都)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.(1)4, 0.7 (2)树状图(或列表)略,P=61122= (2013,成都)若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______. 117 (2013•达州)某中学举行“中国梦·我的梦”演讲比赛。
志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。
如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。
中考数学试卷分类汇编方案设计含解析试题
卜人入州八九几市潮王学校方案设计1.〔2021•A卷•10分〕如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中A D≤MN,矩形菜园的一边靠墙,另三边一一共用了100 米木栏.〔1〕假设a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;〔2〕求矩形菜园ABCD面积的最大值.【分析】〔1〕设AB=xm,那么BC=〔100﹣2x〕m,利用矩形的面积公式得到x〔100﹣2x〕=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进展大小比较即可得到AD的长;〔2〕设AD=xm,利用矩形面积得到S=12x〔100﹣x〕,配方得到S=﹣12〔x﹣50〕2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,那么当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣12a2.【解答】解:〔1〕设AB=xm,那么BC=〔100﹣2x〕m,根据题意得x〔100﹣2x〕=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;〔2〕设AD=xm,∴S=12x〔100﹣x〕=﹣12〔x﹣50〕2+1250,当a≥50时,那么x=50时,S的最大值为1250;当0<a<50时,那么当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣12a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣12a2.【点评】此题考察了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.2.〔2021•B卷•10分〕空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,木栏总长为100米.〔1〕a=20,矩形菜园的一边靠墙,另三边一一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;〔2〕0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.图1图2【分析】〔1〕按题意设出AD,表示AB构成方程;〔2〕根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:〔1〕设AD=x米,那么AB=1002x-米依题意得,(100)4502x x-=解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10 米.〔2〕设AD=x米,矩形ABCD的面积为S平方米①假设按图一方案围成矩形菜园,依题意得: S=2(100)1(50)125022x x x -=--+,0<x <a ∵0<α<50∴x<a <50时,S 随x 的增大而增大当x=a 时,S 最大=50a ﹣213a②如按图2方案围成矩形菜园,依题意得 S=22(1002)[(25)](25)244x a x a a x +-=---++,a ≤x<50+2a当a <25+4a <50时,即0<a <1003时,那么x=25+4a 时, S 最大=〔25+4a 〕2=21000020016a a ++ 当25+4a ≤a,即100503a ≤时,S 随x 的增大而减小∴x=a 时,S 最大=(1002)2a a a +-=21502a a -综合①②,当0<a <1003时,21000020016a a ++﹣〔21502a a -〕=2(3100)016a -21000020016a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米当100503a ≤时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <1003时,围成长和宽均为〔25+4a 〕米的矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当100503a ≤时,围成长为a 米,宽为〔50﹣2a 〕米的矩形菜园面积最大,最大面积为〔21502a a 〕平方米. 【点评】此题以实际应用为背景,考察了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.3.〔2021··10分〕某积极响应“三城同创〞的号召,绿化校园,方案购进A ,B 两种树苗,一共21棵,A 种树苗每棵90元,B 种树苗每棵70元.设购置A 种树苗x棵,购置两种树苗所需费用为y元.〔1〕求y与x的函数表达式,其中0≤x≤21;〔2〕假设购置B种树苗的数量少于A种树苗的数量,请给出一种费用最的方案,并求出该方案所需费用.【分析】〔1〕根据购置两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;〔2〕根据购置B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据〔1〕得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:〔1〕根据题意,得:y=90x+70〔21﹣x〕=20x+1470,所以函数解析式为:y=20x+1470;〔2〕∵购置B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最的方案是购置B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】此题考察的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描绘语,进而找到所求的量的等量关系和不等关系.4.〔2021年〕两种型号的垃圾处理设备一共10台.每台A型设备日处理才能为12吨;每台B型设备日处理才能为15吨;购回的设备日处理才能不低于140吨.〔1〕请你为该景区设计购置两种设备的方案;〔2〕每台A型设备价格为3万元,每台B型设备价格为万元.厂家为了促销产品,规定货款不低于40万元时,那么按9折优惠;问:采用〔1〕设计的哪种方案,使购置费用最少,为什么?【分析】〔1〕设购置A种设备x台,那么购置B种设备〔10﹣x〕台,根据购回的设备日处理才能不低于140吨列出不等式12x+15〔10﹣x〕≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;〔2〕分别求出各方案实际购置费用,比较即可求解.【解答】解:〔1〕设购置A种设备x台,那么购置B种设备〔10﹣x〕台,根据题意,得12x+15〔10﹣x〕≥140,解得x≤313,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购置A种设备1台,B种设备9台;方案二:购置A种设备2台,B种设备8台;方案三:购置A种设备3台,B种设备7台;〔2〕各方案购置费用分别为:方案一:3×1+×9=4>40,实际付款:4×0.9=34〔万元〕;方案二:3×2+×8=4>40,实际付款:4×0.9=37.08〔万元〕;方案三:3×3+×7=3<40,实际付款:3〔万元〕;∵37.08<34<3,∴采用〔1〕设计的第二种方案,使购置费用最少.【点评】此题考察了一次函数的应用,一元一次不等式的应用,分析题意,找到适宜的不等关系是解决问题的关键.5.〔2021湘西州12.00分〕某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店方案再一次性购进两种型号的电脑一共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.〔1〕求y关于x的函数关系式;〔2〕该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?〔3〕实际进货时,厂家对A型电脑出厂价下调a〔0<a<200〕元,且限定商店最多购进A型电脑60台,假设商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】〔1〕根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量〞可得函数解析式;〔2〕根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数〞求得x的范围,再结合〔1〕所求函数解析式及一次函数的性质求解可得;〔3〕据题意得y=〔400+a〕x+500〔100﹣x〕,即y=〔a﹣100〕x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进展求解.【解答】解:〔1〕根据题意,y=400x+500〔100﹣x〕=﹣100x+50000;〔2〕∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y获得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;〔3〕据题意得,y=〔400+a〕x+500〔100﹣x〕,即y=〔a﹣100〕x+50000,1333≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足1333≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y获得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考察了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y值的增减情况.6.〔2021••7分〕绿水青山就是金山银山〞,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:人均支出费用各是多少元;〔2〕在人均支出费用不变的情况下,为节约开支,两村准备抽调40人一共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,那么有哪几种分配清理人员方案?【解答】解:〔1〕设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得1595700010+1668000x yx y+=⎧⎨=⎩,解得:20003000 xy=⎧⎨=⎩,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;〔2〕设m人清理养鱼网箱,那么〔40﹣m〕人清理捕鱼网箱,根据题意,得:20003000(40)1020040m mm m+-≤⎧⎨-⎩,解得:18≤m<20,∵m为整数,∴m=18或者m=19,那么分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.7.〔2021··10分〕某为改善办学条件,方案采购A.B两种型号的空调,采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.〔1〕求A型空调和B型空调每台各需多少元;〔2〕假设方案采购两种型号空调一共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校一共有哪几种采购方案?〔3〕在〔2〕的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】〔1〕根据题意可以列出相应的方程组,从而可以解答此题;:〔2〕根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;〔3〕根据题意和〔2〕中的结果,可以解答此题.【解答】解:〔1〕设A型空调和B型空调每台各需x元、y元,3239000456000x y x y +=⎧⎨-=⎩,解得,90006000x y =⎧⎨=⎩ ,答:A 型空调和B 型空调每台各需9000元、6000元;〔2〕设购置A 型空调a 台,那么购置B 型空调〔30﹣a 〕台,90006000(30)217001(30)2a a a a +-≤⎧⎪⎨≤-⎪⎩ ,解得,10≤a≤1213,∴a=10.11.12,一共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;〔3〕设总费用为w 元,w=9000a+6000〔30﹣a 〕=3000a+180000,∴当a=10时,w 获得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【点评】此题考察一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.8.〔2021••12分〕准备购进一批甲、乙两种办公桌假设干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,假设购进20张甲种办公桌和15张乙种办公桌一共花费24000元;购置10张甲种办公桌比购置5张乙种办公桌多花费2000元.〔1〕求甲、乙两种办公桌每张各多少元?〔2〕假设购置甲乙两种办公桌一共40张,且甲种办公桌数量不多于乙种办公桌数量的3 倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】〔1〕设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000〞列方程组求解可得;〔2〕设甲种办公桌购置a张,那么购置乙种办公桌〔40﹣a〕张,购置的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数〞得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍〞得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:〔1〕设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:2015700024000 10510002000x yx y++=⎧⎨-+=⎩,解得:400600 xy=⎧⎨=⎩,答:甲种办公桌每张400元,乙种办公桌每张600元;〔2〕设甲种办公桌购置a张,那么购置乙种办公桌〔40﹣a〕张,购置的总费用为y,那么y=400a+600〔40﹣a〕+2×40×100=﹣200a+32000,∵a≤3〔40﹣a〕,∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y获得最小值,最小值为26000元.。
2013届中考数学试题分类汇编:基本作图(含解析)
(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.(2013•乐山)如图9,已知线段AB.(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方).连结AM、AN、BM、BN.求证:∠MAN=∠MBN.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C 为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2013•青岛)已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等(在题目的原图中完成作图)结论:解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.点E即为所求.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.(2013兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.(2013,河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对。
2013届中考数学试题分类汇编:无理数和实数(含解析)
(2013•郴州)计算:|﹣|+(2013﹣)0﹣()﹣1﹣2sin60°.+1﹣2³+1﹣(2013,娄底)计算:(1124sin 603-⎛⎫--︒+= ⎪⎝⎭_______________(2013•湘西州)计算:()﹣1﹣﹣sin30°.﹣(2013()12013112-⎛⎫+- ⎪⎝⎭2013•株洲)计算:.﹣2³(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 5 .,==(2013•巴中)计算:.﹣(2013•达州)计算:2 01tan603-⎛⎫+-︒+ ⎪⎝⎭解析:原式=1+9=10(2013•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.﹣﹣2³=3(2013•乐山)计算:∣-2∣- 4sin45º + (-1)2013 + 8 . (2013凉山州)下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.3考点:算术平方根;点的坐标;对顶角、邻补角;中位数;众数.分析:根据邻补角、算术平方根、中位数及众数的定义、点的坐标的知识,分别进行各项的判断即可.解答:解:①邻补角是互补的角,说法正确;②数据7、1、3、5、6、3的中位数是5,众数是3,原说法错误; ③|﹣5|的算术平方根是,原说法错误;④点P (1,﹣2)在第四象限,说法正确; 综上可得①④正确,共2个. 故选C .点评:本题考查了邻补角、中位数、众数及算术平方根的知识,掌握基础知识是解答此类(2013凉山州)计算:.考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:原式第一项表示2平方的相反数,第二项利用特殊角的三角函数值化简,第三项先计算绝对值里边的式子,再利用绝对值的代数意义化简,第四项利用零指数幂法则计算,即可得到结果.解答:解:原式=﹣4﹣+3+1+=0.点评:此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.题目的关键.(2013•泸州)计算:11()2(3.14)sin 303π-O O --⨯ (2013•眉山)计算:010)3.14()41(1645cos 2-+-+--π(2013•绵阳)计算:)21212sin 45-︒-+-⨯;(2013•内江)下列四个实数中,绝对值最小的数是( )|=,(2013•内江)计算:.﹣(2013•遂宁)下列计算错误的是()=2,本选项正确.(2013•遂宁)计算:|﹣3|+.³﹣(2013•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣解:(1)原式=8+2﹣4³﹣=8+2﹣2﹣3=7﹣2;(2013宜宾)(1)计算:|﹣2|+﹣4sin45°﹣1﹣2原式=2+2﹣4³﹣1=2+2﹣2﹣1=1;将括号内的部分通分,将分子、分母因式分解,然后将除法转化为乘法解答即可.(2013•资阳)16的平方根是A.4 B.±4C.8 D.±8(2013•自贡)计算:= 1 .﹣2³﹣()﹣2+ (2013鞍山)3﹣1等于( ) A .3B .﹣C .﹣3D .考点:负整数指数幂. 专题:计算题.分析:根据负整数指数幂:a ﹣p=(a≠0,p 为正整数),进行运算即可.解答:解:3﹣1=. 故选D .点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.(2013•大连)计算:(2013•沈阳)如果1m =,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m <<(2013•沈阳)计算:216sin 3022-⎛⎫-︒++ ⎪⎝⎭(-2)(2013•铁岭)﹣的绝对值是( ) ﹣﹣.(2013•恩施州)25的平方根是 ±5 .(2013•黄石)计算: 013tan 30(2013)()3π--+--+解析:原式3213=--+ ²²²²²²²²²²²²²²²²²²² (5分) 4= ²²²²²²²²²²²²²²²²²²²²²²²²² (2分) (2013•荆门)(1)计算:(1)分别根据0指数幂、有理数乘方的法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;:(1)原式=1+2﹣1﹣³=-1.(2013•潜江)若平行四边形的一边长为2,面积为64,则此边上的高介于 A.3与4之间B. 4与5之间C. 5与6之间D. 6与7之间(2013•潜江)计算:9)1(42013+-+- (2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..(2013•襄阳)计算:|﹣3|+= 4 .(2013•宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( ) A. a +b =0 B. b <a C. a b >0 D. b <a(2013•宜昌)计算:()200092120++⎪⎪⎭⎫⎝⎛-⨯-.(2013•张家界)计算:|13|60sin 2)21()2013(20-++--- π 解:原式=1-4-3+3+1 =-402013(3)(1)|2π-+-+;解:原式=21(1)2-+-+= 2(2013•莆田)计算:+|﹣3|﹣(π﹣2013)0.(2013•三明)计算:(﹣2)2+﹣2sin30°;解:(1)原式=4+3﹣2³=4+3﹣1=6;(2013•漳州)计算:|-2|+(-1)2013-(π-4)0.(2013•白银)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,﹣(﹣﹣(﹣﹣﹣.(2013•宁夏)计算:.(2013•宿迁)计算:1011)2cos 602-⎛⎫-+ ⎪⎝⎭.(2013•常州)在下列实数中,无理数是( )是有理数,故本选项错误;是无理数,故本选项正确. (2013•常州)化简:0060cos 2)2013(4+-- . 原式=2﹣1+2³=2.(2013•淮安)如图,数轴上A 、B 两点表示的数分别为和5.1,则A 、B 两点之间表示整数的点共有( )比1(2013•淮安)计算:(1)(π﹣5)0+﹣|﹣3|解:(1)原式=1+2﹣3=0;(2013•南京)设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③ 3<a<4;④a是18的算术平方根。
2013年山西省中考数学试卷(含解析版)
2013年山西省中考数学试卷一、选择题(共12小题,每小题2分,共24分。
在每个小题给出的四个选项中,只有一项是符合要求的。
)1.(2分)(2013•山西)计算:2×(﹣3)的结果是()A.6B.﹣6 C.﹣1 D.52.(2分)(2013•山西)不等式组的解集在数轴上表示为()A.B.C.D.3.(2分)(2013•山西)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.4.(2分)(2013•山西)某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是=36,=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定5.(2分)(2013•山西)下列算式计算错误的是()A.x3+x3=2x3B.a6÷a3=a2C.=2D.=36.(2分)(2013•山西)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)7.(2分)(2013•山西)如表是我省11个地市5月份某日最高气温(℃)的统计结果:太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城27 27 28 28 27 29 28 28 30 30 31该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃8.(2分)(2013•山西)如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条9.(2分)(2013•山西)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=3382510.(2分)(2013•山西)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100m B.50m C.50m D.m11.(2分)(2013•山西)起重机将质量为6.5t的货物沿竖直方向提升了2m,则起重机提升货物所做的功用科学记数法表示为(g=10N/kg)()A.1.3×106J B.13×105J C.13×104J D.1.3×105J12.(2分)(2013•山西)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣二、填空题(共6小题,每小题3分,满分18分。
重庆市2013年中考数学试卷(解析版)
∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是
.
考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为
.
考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为
.
考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2
2013年杭州市中考数学试题及答案(解析版)
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
江苏省盐城市2013年中考数学试卷(解析版)(含解析)
江苏省盐城市2013年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填涂在答题卡相应位置上)1.(3分)(2013•盐城)﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2B.0C.1D.﹣3考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.解答:解:﹣2、0、1、﹣3四个数中,最小的数是﹣3;故选D.点评:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2013•盐城)如果收入50元,记作+50元,那么支出30元记作()A.+30B.﹣30C.+80D.﹣80考点:正数和负数分析:收入为“+”,则支出为“﹣”,由此可得出答案.解答:解:∵收入50元,记作+50元,∴支出30元记作﹣30元.故选B.点评:本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)(2013•盐城)下面的几何体中,主视图不是矩形的是()A.B.C.D.考点:简单几何体的三视图分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,考查了学生细心观察能力,属于基础题.4.(3分)(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:二次根式有意义的条件分析: 根据被开方数大于等于0列式进行计算即可得解. 解答: 解:根据题意得,x ﹣3≥0,解得x ≥3. 故选A .点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)(2013•盐城)下列运算中,正确的是( ) A . 2a 2+3a 2=a 4 B . 5a 2﹣2a 2=3 C . a 3×2a 2=2a 6 D . 3a 6÷a 2=3a 4考点: 整式的除法;合并同类项;单项式乘单项式 分析:根据合并同类项、单项式乘单项式、单项式除以单项式的法则,对各选项分析判断后利用排除法求解.解答: 解:A 、2a 2+3a 2=5a 2,故本选项错误;B 、5a 2﹣2a 2=3a 2,故本选项错误;C 、a 3×2a 2=2a 5,故本选项错误;D 、3a 6÷a 2=3a 4,故本选项正确. 故选D .点评:本题考查合并同类项、单项式乘单项式、单项式除以单项式,记准法则是解题的关键.6.(3分)(2013•盐城)某公司10名职工月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600 人数(人) 1 3 4 2A . 2400元、2400元B . 2400元、2300元C . 2200元、2200元D . 2200元、2300元考点:众数;中位数 分析:根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.解答: 解:∵2400出现了4次,出现的次数最多,∴众数是2400; ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400; 故选A .点评:此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.7.(3分)(2013•盐城)如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°考点:平行线的性质专题:计算题.分析:由a∥b,根据平行线的性质得∠1=∠4=120°,再根据三角形外角性质得∠4=∠2+∠3,所以∠3=∠4﹣∠2=80°.解答:解:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.点评:本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质.8.(3分)(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种考点:利用旋转设计图案;利用轴对称设计图案分析:根据轴对称的定义,及题意要求画出所有图案后即可得出答案.解答:解:得到的不同图案有:,共6种.故选C.点评:本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.二、填空题(本大题共10小题,每小题3分,共30分。
2013年青岛中考数学试题及答案解析(word版)
2013年山东青岛市初级中学学业水平考试数学试题一、选择题1、-6的相反数是( )A 、—6B 、6C 、61-D 、61答案:B解析:-6的相反数为6,简单题。
2、下列四个图形中,是中心对称图形的是( )A B C D 答案:D解析:A 、B 、C 都是轴对称图形,只有D 为中心对称图形。
3、如图所示的几何体的俯视图是( )A B C D 答案:B解析:该几何体上面是圆锥,下面为圆柱,圆锥的俯视图是一个圆和圆心,圆锥顶点投影为一个点(圆心)。
4、“十二五”以来,我国积极推进国家创新体系建设,国家统计局《2012年国民经济和社会发展统计公报》指出,截止2012年底,国内有效专利达8750000件,将8750000件用科学计数法表示为( )件A 、410875⨯B 、5105.87⨯C 、61075.8⨯D 、710875.0⨯答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 8750000=61075.8⨯5、一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个第3题A 、45B 、48C 、50D 、55 答案:A解析:摸到白球的概率为P =10110010=,设口袋里共有n 个球,则 5110n =,得n =50,所以,红球数为:50-5=45,选A 。
6、已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是( )A B C D 答案:A解析:因为xy =36,即36(0)y x x=>,是一个反比例函数,故选A 。
2013全国中考数学试题分类汇编----轴对称
(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(2)根据平移的性质结合图形解答.解答:解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中, ∠2+∠3=90°, ∵∠3=30°, ∴∠2=60°, ∴∠1=60°. 故选C .点评:本题是考查图形的对称、旋转、分割以及分类的数学思想. (2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()(2013•潜江)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为 A .4cmB .3cmC .2cmD .1cmA .(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为().B.C.D.点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M的坐标是( , ) .(1,3)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.那么这个图形叫做轴对称图形.解答: 解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处. 故答案为:3.(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3),点C 的坐标为(,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为A .B .1222CD.(2013•宿迁)在平面直角坐标系xOy中,已知点(01)A,,(1,2)B,点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是▲.(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B 的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()A.B.C.D.2CD,即可得出答案.解答:解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=,∴AD=2×=3,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=,由勾股定理得:DN=,∵C(,0),∴CN=3﹣﹣=1,在Rt△DNC中,由勾股定理得:DC==,即PA+PC的最小值是,故选B.(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.【答案】:6.(2013•日照)下面所给的交通标志图中是轴对称图形的是答案:A解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
2013全国中考数学试题分类汇编 勾股定理
(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.==10ADB=AB×点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.DAO=BAD=AD=×=×,×=CE==.(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5.解:∵==线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .5 答案:B解析:由勾股定理,得AC =5,因为平行边形的对角线互相平分,所以,DE 一定经过AC 中点O ,当DE ⊥BC 时,DE 最小,此时OD =32,所以最小值DE =3 (2013•达州)如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。
设AE=x ,则x 的取值范围是 . 答案:2≤x ≤6解析:如图,设AG =y ,则BG =6-y ,在Rt △GAE 中,x 2+y 2=(6-y )2,即x =8(0)3y ≤≤,当y =0时,x 取最大值为6;当y =83时,x 取最小值2,故有2≤x ≤62013•雅安)在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) . ﹣ABC 的面积是 CA .48B .60C .76D .80(2013鞍山)△ABC 中,∠C=90°,AB=8,cosA=,则BC 的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC 的长,然后利用勾股定理即可求得BC 的长.解答:解:∵cosA=,∴AC=AB •cosA=8×=6, ∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. (2013鞍山)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .图1考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=(),BE=,B==8却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)x∴x=(﹣(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.=,AB=2CD=2,EF==3,或.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .(2013•包头)如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE=1,BE=2,CE=3,则∠BE ′C= 135 度.______________.【答案】(2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁..离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁..的点..,离容器上沿0.3m与蚊子相对A处,则壁虎捕捉蚊子的最短距离为1.3 m(容器厚度忽略不计).2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.上的点的横坐标是=2(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为A、5B C D、5(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD 的长为()...×5=×××,h=×=•BD=。
2013届中考数学试题分类汇编:分式与分式方程(含解析)
(2013•郴州)函数y=中自变量x的取值范围是()(2013•郴州)化简的结果为()﹣2013•郴州)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.)•(2013•衡阳)计算:= a﹣1 .(2013•湘西州)吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.,﹣=(2013•益阳)化简:= 1 .(2013,永州)已知0a b a b +=,则abab的值为(2013•株洲)计算:= 2 .=(2013•巴中)先化简,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.×++=(2013,成都)要使分式1-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1(2013,成都)化简112)(22-+-÷-a a a a a a(2013•达州)如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_ _. 答案:5解析:由知,得22x x +=3,原式=2222(1)221x x x x x x ++⨯+=+++=5。
(2013•德州)先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中12-=a . (2013•德州)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? (2013•广安)解方程:﹣1=,则方程的解是 x=﹣ .,(2013•广安)先化简,再求值:(﹣)÷,其中x=4.﹣)÷×,﹣. (2013•乐山)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米。
中考数学真题分类汇编及解析(三十六)平移、旋转及轴对称
(2022•连云港中考)下列图案中,是轴对称图形的是()A. B. C. D.【解析】选A.A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意.(2022•遂宁中考)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.阿基米德螺旋线 D.赵爽弦图【解析】选A.A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.(2022•自贡中考)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是() A.B.C.D.【解析】选A.根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.(2022•自贡中考)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B. C. D.【解析】选D.选项A,B,C都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.A. B. C. D.【解析】选D.A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.(2022•重庆中考B卷)下列北京冬奥会运动标识图案是轴对称图形的是()A. B. C. D.【解析】选C.A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.(2022•怀化中考)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.4【解析】选C.点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3(2022•扬州中考)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC 边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③【解析】选D.∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠F AE,∵△AFE∽△DFC,∴∠F AE=∠CDF,∴∠BAD=∠CDF,∴③符合题意(2022•泰安中考)下列图形:其中轴对称图形的个数是()(2022•达州中考)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.【解析】选A.A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意(2022•德阳中考)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解析】选A.A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;(2022•南充中考)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【解析】选B.∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°A .M 1B .M 2C .M 3D .M 4【解析】选B .∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC =2√3,∴B (2,2+2√3),设直线PB 的解析式为:y =kx +b ,则{2k +b =2+2√3b =2,∴{k =√3b =2, ∴直线PB 的解析式为:y =√3x +2,当y =0时,√3x +2=0,x =−2√33,∴点M 1(−√33,0)不在直线PB 上, 当x =−√3时,y =﹣3+2=1,∴M 2(−√3,﹣1)在直线PB 上,当x =1时,y =√3+2,∴M 3(1,4)不在直线PB 上,当x =2时,y =2√3+2,∴M 4(2,112)不在直线PB 上 (2022•湖州中考)如图,将△ABC 沿BC 方向平移1cm 得到对应的△A 'B 'C '.若B 'C =2cm ,则BC ′的长是( )A .2cmB .3cmC .4cmD .5cm【解析】选C .∵将△ABC 沿BC 方向平移1cm 得到对应的△A 'B 'C ',∴BB ′=CC ′=1(cm ),∵B 'C =2(cm ),∴BC ′=BB ′+B ′C +CC ′=1+2+1=4(cm )(2022•山西中考)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B. C.D.【解析】选B.A、C、D.均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,∴不是中心对称图形,B.能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,∴是中心对称图形. (2022•宜昌中考)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A. B. C. D.【解析】选D.中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,D选项符合题意. (2022•武汉中考)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【解析】选D.A、B、C.不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,∴不是轴对称图形,D.能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,∴是轴对称图形.(2022•娄底中考)下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【解析】选D.A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.是中心对称图形,故此选项符合题意(2022•嘉兴中考)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(√2−1)cm D.(2√2−1)cm(2022•常德中考)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C.D.【解析】选B.∵将图形绕着一点旋转180°后能和它本身重合的图形是中心对称图形,∴选项B符合上述特征.(2022•常德中考)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DE C.∠DFC=90°D.DG=3GF【解析】选D.A、由旋转的性质可知,CB=CE,∠BCE=60°,∴△BCE为等边三角形,∴BE=BC,本选项结论正确,不符合题意;B、在Rt△ABC中,∠ABC=90°,∠ACB=30°,点F是边AC的中点,∴AB=12AC=CF=BF,由旋转的性质可知,CA=CD,∠ACD=60°,∴∠A=∠ACD,在△ABC和△CFD中,{AB=CF∠A=∠FCD CA=CD,∴△ABC≌△CFD(SAS),∴DF=BC=BE,∵DE=AB=BF,∴四边形EBFD为平行四边形,∴BF∥DE,BF=DE,本选项结论正确,不符合题意;C、∵△ABC≌△CFD,∴∠DFC=∠ABC=90°,本选项结论正确,不符合题意;D、在Rt△GFC中,∠GCF=30°,∴GF=√33CF,(2022•苏州中考)如图,点A 的坐标为(0,2),点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(m ,3),则m 的值为( )A .4√33B .2√213C .5√33D .4√213【解析】选C .过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图:∵CD ⊥x 轴,CE ⊥y 轴,∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE ﹣OA =CD ﹣OA =1,∴AC =√AE 2+CE 2=√m 2+1=BC =AB ,在Rt △BCD 中,BD =√BC 2−CD 2=√m 2−8,在Rt △AOB 中,OB =√AB 2−OA 2=√m 2−3,∵OB +BD =OD =m ,3(2022•乐山中考)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【解析】选D.选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形(2022•天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解析】选D.选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形(2022•天津中考)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC【解析】选C.A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,(2022•衡阳中考)下列选项中的垃圾分类图标,既是中心对称图形,又是轴对称图形的是()A.可回收物 B.其他垃圾 C.有害垃圾 D.厨余垃圾【解析】选C.A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意(2022•桂林中考)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形【解析】选B.选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.(2022•福建中考)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.【解析】选A.选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.0,则四边形ACC′A′的面积是()A.96B.96√3C.192D.160√3【解析】选B.在Rt△ABC中,∠CAB=60°,AB=8,则BC=AB•tan∠CAB=8√3,由平移的性质可知:AC=A′C′,AC∥A′C′,∴四边形ACC′A′为平行四边形,∵点A对应直尺的刻度为12,点A′对应直尺的刻度为0,∴AA′=12,∴S四边形ACC′A′=12×8√3=96√3.(2022•河南中考)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(√3,﹣1) B.(﹣1,−√3) C.(−√3,﹣1) D.(1,√3)【解析】选B.∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=√3,∴A(1,√3),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,−√3),∴第2022次旋转结束时,点A的坐标为(﹣1,−√3).A.①②③B.①②④C.①③④D.②③④【解析】选A.①是中心对称图形,故本选项符合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不符合题意;④是中心对称图形,故本选项符合题意;故是中心对称图形的有①②③.(2022•北部湾中考)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【解析】选D.根据平移的性质可知:能由如图经过平移得到的是D.(2022•毕节中考)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解析】选A.A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意.(2022•哈尔滨中考)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.(2022•齐齐哈尔中考)下面四个交通标志中,是中心对称图形的是()A.B.C.D.【解析】选A.选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.(2022•鄂州中考)孙权于公元221年4月自公安“都鄂”,在西山东麓营建吴王城,并取“以武而昌”之意,改鄂县为武昌.下面四个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解析】选D.选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.(2022•鄂州中考)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE =4,DF=8,AD=24√3,当线段BC在平移过程中,AB+CD的最小值为()A.24√13B.24√15C.12√13D.12√15【解析】选C.如图,作DL⊥PQ于L,过点A作PQ的垂线,过点D作PQ的平行线,它们交于点R,延长DF至T,使DT=BC =12,连接AT,AT交MN于B′,作B′C′∥BC,交PQ于C′,则当BC在B′C′时,AB+CD最小,(2022•大庆中考)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•龙东中考)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解析】选C.A.既是中心对称图形,也是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形但不是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意.(2022•绥化中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•包头中考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3√3B.2√3C.3D.2【解析】选C.连接AA′,如图,∵∠ACB=90°,∠BAC=30°,BC=2,∴AC=√3BC=2√3,∠B=60°,∵将△ABC绕点C顺时针旋转得到△A'B'C,∴CA=CA′,CB=CB′,∠ACA′=∠BCB′,∵CB=CB′,∠B=60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A作AD⊥A'C于点D,∴CD=12AC=√3,∴AD=√3CD=√3×√3=3,∴点A到直线A'C的距离为3.(2022•赤峰中考)下列图案中,不是轴对称图形的是()A.B.C.D.【解析】选A.选项B、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项A不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.(2022·牡丹江中考)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.【解析】选B.A、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,不是轴对称图形,此选项错误.(2022·恩施州中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选B.选项A中的图形是轴对称图形,不是中心对称图形,故选项A不符合题意;选项B中的图形既是轴对称图形又是中心对称图形,故选项B符合题意;选项C中的图形是轴对称图形,不是中心对称图形,故选项C不符合题意;选项D中的图形是中心对称图形,不是轴对称图形,故选项D不符合题意.(2022•抚顺中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.是中心对称图形,也是轴对称图形,故此选项符合题意.(2022•临沂中考)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•内江中考)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选C.0根据轴对称图形和中心对称图形的定义可知,C选项既是轴对称图形,又是中心对称图形.A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解析】选D.根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.(2022•金华中考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为8+2√3cm.【解析】∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4,∴AC=√AB2−BC2=2√3,∵把△ABC沿AB方向平移1cm,得到△A'B'C',∴B′C′=BC=2,AA′=CC′=1,A′B′=AB=4,∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2√3=(8+2√3)cm.答案 :8+2√3.(2022•丽水中考)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是(3√3−3)cm.【解析】如图,设EF与BC交于点H,∵O是边BC(DF)的中点,BC=12cm.如图2,∴OD=OF=OB=OC=6cm.∵将△ABC绕点O顺时针旋转60°,∴∠BOD=∠FOH=60°,OF=3cm,∵∠F=30°,∴∠FHO=90°,∴OH=12∴CH=OC﹣OH=3cm,FH=√3OH=3√3cm,∵∠C=45°,∴CH=GH=3cm,∴FG=FH﹣GH=(3√3−3)cm.答案:(3√3−3).(2022•台州中考)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为8 cm2.【解析】由平移可知,阴影部分的面积等于四边形BB'CC'的面积为BC×BB'=4×2=8(cm2),答案:8(2022•永州中考)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为(2,﹣2).【解析】线段OA绕原点O顺时针旋转90°如图所示,则A'(2,﹣2),则旋转后A点坐标变为:(2,﹣2),答案:(2,﹣2).(2022•贺州中考)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为(﹣4,8).【解析】过点B作BN⊥x轴,过点B′作B′M⊥y轴,∴∠B′MO=∠BNO=90°,∵OA=AB=5,点B到x轴的距离为4,∴AN=3,∴ON=8,∵将△OAB绕点O逆时针旋转90°,得到△OA′B′,∴∠BOB′=90°,OB=OB′,∴∠BOA′+∠B′OA′=∠BOA+∠BOA′,∴∠BOA=∠B′OA′,∴△AOB≌△A′OB′(AAS),∴OM=ON=8,B′M=BN=4,∴B′(﹣4,8),答案:(﹣4,8).(2022•吉林中考)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为72(答案不唯一).度.(写出一个即可)【解析】360°÷5=72°,则这个图案绕着它的中心旋转72°后能够与它本身重合.答案:72(答案不唯一)(2022·安徽中考)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格【解析】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.(2022•温州中考)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.【解析】(1)如图1中△ABC即为所求(答案不唯一);(2)如图2中△ABC即为所求(答案不唯一).(2022•武汉中考)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.【解析】(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.(2022•陕西中考)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是 4 ;(2)请在图中画出△A'B'C'.【解析】(1)∵A(﹣2,3),A'(2,3),∴点A、A'之间的距离是2﹣(﹣2)=4,答案:4;(2)如图所示,△A'B'C'即为所求.【解析】(1)如图1,(2)如图2,(3)图1是W,图2是X.【解析】(1)如图1中,在Rt △AOB 中,∠OAB =90°,OA =6,OB =10,∴AB =√OB 2−OA 2=√102−62=8,∴B (8,6);(2)如图1中,过点P 作PH ⊥OB 于点H .∵∠POH =45°,∴PH =OH ,设PH =OH =x ,∵∠B =∠B ,∠BHP =∠BAO =90°,∴△BHP ∽△BAO ,∴PHAO =BHBA =PBOB ,∴x 6=BH 8=PB 10, ∴PH =43x ,PB =53x ,∴x +43x =10,∴x =307,∴PB =53×307=507, ∴P A =AB =PB =8−507=67, ∴P (67,6); (3)如图2中,设P A ′交OB 于点T .∵∠OAB =90°,OE =EB ,∴EA =EO =EB =5,∴∠EAB =∠B ,由翻折的性质可知∠EAB =∠A ′,∴∠A ′=∠B ,∵A ′P ⊥OB ,∴∠ETA ′=∠BAO =90°,∴△A ′TE ∽△BAO ,∴A′EOB =ETAO,∴510=ET 6,∴ET =3,BT =5﹣3=2, ∵cos B =BT PB =AB OB ,∴2PB =810,∴PB =52, ∴AP =AB =PB =8−52=112, ∴P (112,6);(4)如图3中,以AF 为边向右作等边△AFK ,连接KG ,延长KG 交x 轴于点R ,过点K 作KJ ⊥AF 于点J .KQ ⊥OR 于点Q ,过点O 作OW ⊥KR 于W .∵∠AFK =∠PFG =60°,∴∠AFP =∠KFG ,∵F A =FK ,FP =FG ,∴△AFP ≌△KFG (SAS ),∴∠P AF =∠GKF =90°,∴点G 在直线KR 上运动,当点G 与W 重合时,OG 的值最小,∵KJ ⊥OA ,KQ ⊥OR ,∴∠KJO =∠JOQ =∠OQK =90°,∴四边形JOQK 是矩形,∴OJ =KQ ,JK =OQ ,∵KA =KF ,KJ ⊥AF ,∴AJ =JF =1,KJ =√3,∴KQ =OJ =5,∵∠KRQ =360°﹣90°﹣90°﹣120°=60°,∴QR =√33KQ =5√33,∴OQ =√3+5√33=8√33,∴OW =OR •sin60°=4,∴OG 的最小值为4,∵OF =OW =4,∠FOW =60°,∴△FOW 是等边三角形,∴FW =4,即FG =4,∴线段FP 扫过的面积=60⋅π×42360=8π3. (2022•龙东中考)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,【解析】(1)如图,△A1B1C1即为所求,点A1的坐标(﹣5,,3);(2)如图,△A2B2C1即为所求,点A2的坐标(2,4);(3)∵A1C1=√32+42=5,∴点A1旋转到点A2的过程中所经过的路径长=90π×5180=5π2.(2022·牡丹江中考)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.【解析】(1)如图所示,点O为所求.(2)如图所示,△A1B1C1为所求.(3)如图所示,点M为所求.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.【解析】(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点D,连接ABCD,AD∥BC且AD=BC,∴四边形ABCD为矩形,符合题意.。
初三数学15 图形变换(平移、旋转、对称)-2024年中考数学真题分项汇编(全国通用)(解析版)
专题15 图形变换(平移、旋转、对称)一.选择题1.(2022·山东威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点【答案】B【分析】根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.【详解】连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:∠为入射角由图可得MN是法线,PNM因为入射角等于反射角,且关于MN对称∠由此可得反射角为MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.【点睛】本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.2.(2022·湖南永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A .①②③B .①②④C .①③④D .②③④【答案】A【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键.3.(2022·江苏无锡)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A .扇形B .平行四边形C .等边三角形D .矩形【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B 、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C 、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D 、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B .【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.4.(2022·贵州遵义)在平面直角坐标系中,点(),1A a 与点()2,B b -关于原点成中心对称,则a b +的值为( )A .3-B .1-C .1D .3【答案】C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,a b 的值即可求解.【详解】解:∵点(),1A a 与点()2,B b -关于原点成中心对称,∴2,1a b ==-211a b ∴+=-=,故选C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5.(2022·内蒙古赤峰)下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】A 不是轴对称图形;B 、C 、D 都是轴对称图形;故选:A .【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''' ,则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--【答案】C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',由图像可知A'(-1,-3),故选:C.【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7.(2022·四川内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【答案】D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.(2022·广西)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,-3)B.(3,3)C.(-1,1)D.(-1,3)【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.9.(2022·湖南郴州)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.10.(2022·广西贵港)若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A .1-B .3-C .1D .2【答案】A【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【详解】∵点(,1)A a -与点(2,)B b 关于y 轴对称,∴a =-2,b =-1,∴a -b =-1,故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y 轴对称的点纵坐标相等,横坐标互为相反数.11.(2022·江苏常州)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)--【答案】D【分析】直接利用关于x ,y 轴对称点的性质分别得出A ,2A 点坐标,即可得出答案.【详解】解:∵点1A 的坐标为(1,2),点A 与点1A 关于x 轴对称,∴点A 的坐标为(1,-2),∵点A 与点2A 关于y 轴对称,∴点2A 的坐标是(-1,﹣2).故选:D .【点睛】此题主要考查了关于x ,y 轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.12.(2022·北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .5【答案】D 【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.13.(2022·山东临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念进行判断即可.【详解】A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.既是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.14.(2022·山东聊城)如图,在直角坐标系中,线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,则点C 的对应点1C 的坐标是( )A .(-2,3)B .(-3,2)C .(-2,4)D .(-3,3)【答案】A 【分析】根据旋转的性质解答即可.【详解】解:∵线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,∴A 的对应点为1A ,∴190APA ∠=︒,∴旋转角为90°,∴点C 绕点P 逆时针旋转90°得到的1C 点的坐标为(-2,3),故选:A .【点睛】本题主要考查了旋转的性质,练掌握对应点与旋转中心的连线是旋转角和旋转角相等是解答本题的关键.15.(2022·湖南)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,OC =AOB ∆与BOC ∆的面积之和为( )AB C D 【答案】C【分析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,得到BOD 是等边三角形,再利用勾股定理的逆定理可得90COD ∠=︒,从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,OB OD ∴=,60BOD ∠=︒,2CD OA ==,BOD ∴∆是等边三角形,1OD OB ∴==,∵222214OD OC +=+=,2224CD ==,222OD OC CD ∴+=,90DOC ∴∠=︒,AOB ∴∆与BOC ∆的面积之和为21112BOC BCD BOD COD S S S S +=+=+⨯= C .【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将AOB ∆与BOC ∆的面积之和转化为BOC BCD S S + ,是解题的关键.16.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α【答案】C【分析】根据旋转的性质可得,BC =DC ,∠ACE =α,∠A =∠E ,则∠B =∠BDC ,利用三角形内角和可求得∠B ,进而可求得∠E ,则可求得答案.【详解】解:∵将ABC 绕点C 顺时针旋转得到EDC △,且BCD α∠=∴BC =DC ,∠ACE =α,∠A =∠E ,∴∠B =∠BDC ,∴1809022B BDC αα︒-∠=∠==︒-,∴90909022A E B αα∠=∠=︒-∠=︒-︒+=,∴2A E α∠=∠=,318018018022EFC ACE E ααα∴∠=︒-∠-∠=︒--=︒-,故选:C .【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.17.(2022·内蒙古赤峰)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-【答案】C 【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-【答案】A 【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.19.(2022·海南)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABC BC AB ∠=︒=,则点的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)【答案】D 【分析】先过点C 做出x 轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作x 轴垂线,垂足为点E ,∵90ABC ∠=︒∴90ABO CBE ∠+∠=︒∵90CBE BCE +=︒∠∴ABO BCE Ð=Ð在ABO ∆和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ ,∴ABO BCE ∆∆∽,∴12AB AO OB BC BE EC === ,则26BE AO == ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D【点睛】本题考查了图像的平移、相似三角形的判定与性质,利用相似三角形的判定与性质找出图像左右、上下平移的距离是解题的关键.20.(2022·广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )A .B .C .D .【答案】D【分析】根据平移的特点分析判断即可.【详解】根据题意,得不能由平移得到,故A 不符合题意;不能由平移得到,故B 不符合题意;不能由平移得到,故C 不符合题意;能由平移得到,故D 符合题意;故选D .【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.21.(2022·广西)如图,在ABC 中,4,CA CB BAC α==∠=,将ABC 绕点A 逆时针旋转2α,得到AB C '' ,连接B C '并延长交AB 于点D ,当B D AB '⊥时, 'BB的长是( )A B C D 【答案】B【分析】先证'60B AD ∠=︒,再求出AB 的长,最后根据弧长公式求得 'BB.【详解】解:,'CA CB B D AB =⊥ ,12AD DB AB ∴==,AB C '' 是ABC 绕点A 逆时针旋转2α得到,'AB AB ∴=,1'2AD AB =,在'Rt AB D ∆中,1cos ''2AD B AD AB ∠==,'60B AD ∴∠=︒,,'2CAB B AB αα∠=∠= ,11'603022CAB B AB ∴∠=∠=⨯︒=︒,4AC BC == ,cos304AD AC ∴=︒==2AB AD ∴==BB ∴'的长=60180AB π=,故选:B .【点睛】本题考查了图形的旋转变换,等腰三角形的性质,三角函数定义,弧长公式,正确运算三角函数定义求线段的长度是解本题的关键.22.(2022·内蒙古包头)如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C '' ,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A .B .C .3D .2【答案】C【分析】如图,过A 作AQ A C '⊥于,Q 求解4,AB AC == 结合旋转:证明60,,90,B A B C BC B C A CB '''''∠=∠=︒=∠=︒ 可得BB C '△为等边三角形,求解60,A CA '∠=︒ 再应用锐角三角函数可得答案.【详解】解:如图,过A 作AQ A C '⊥于,Q由90,30,2ACB A BC ∠=︒∠=︒=,4,AB AC ∴===结合旋转:60,,90,B A B C BC B C A CB '''''∴∠=∠=︒=∠=︒BB C '∴ 为等边三角形,60,30,BCB ACB ''∴∠=︒∠=︒60,A CA '∴∠=︒sin 60 3.AQ AC ∴=︒== ∴A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质,含30︒的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.23.(2022·内蒙古通辽)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )A .B .C .D .【答案】A【分析】根据轴对称图形的定义,即可求解.【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.24.(2022·四川内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故A 错误;B.不是轴对称图形,也不是中心对称图形,故B 错误;C.既是轴对称图形,也是中心对称图形,故C 正确;D.不是轴对称图形,也不是中心对称图形,故D 错误.故选:C .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.25.(2022·广西河池)如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A .25π+24B .5π+24C .25πD .5π【答案】A 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ==,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+.故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.26.(2022·上海)有一个正n 边形旋转90 后与自身重合,则n 为( )A .6B .9C .12D .15【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A. B. C. D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.27.(2022·贵州毕节)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .185【答案】D 【分析】连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利用勾股定理求出AE ,再利用三角函数(或相似)求出BF ,则根据FC =【详解】连接BF ,与AE 相交于点G ,如图,∵将ABE △沿AE 折叠得到AFE △∴ABE △与AFE △关于AE 对称∴AE 垂直平分BF ,BE =FE ,BG =FG =12BF∵点E 是BC 中点∴BE =CE =DF =132BC =∴5AE ===∵sin BE BG BAE AE AB ∠==∴341255BE AB BG AE ⋅⨯===∴12242225BF BG ==⨯=∵BE =CE =DF ∴∠EBF =∠EFB ,∠EFC =∠ECF∴∠BFC =∠EFB +∠EFC =180902︒=︒∴185FC ==故选 D 【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.二.填空题28.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''' ,若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.【答案】()1,3-【分析】根据点A 坐标及其对应点A '的坐标的变化规律可得平移后对应点的横坐标减小1,纵坐标减小2,即可得到答案.【详解】 平移ABC 得到A B C ''' ,点()0,2A 的对应点A '的坐标为()1,0-,∴ABC 向左平移了1个单位长度,向下平移了2个单位长度,即平移后对应点的横坐标减小1,纵坐标减小2,∴()2,1B -的对应点B '的坐标是()1,3-,故答案为:()1,3-.【点睛】本题考查了平移坐标的变化规律,即左减右加,上加下减,熟练掌握知识点是解题的关键.29.(2022·广西贵港)如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.【答案】50︒【分析】先求出65ADE ∠=︒,由旋转的性质,得到65∠=∠=︒B ADE ,AB AD =,则65ADB ∠=︒,即可求出旋转角α的度数.【详解】解:根据题意,∵,25DE AC CAD ⊥∠=︒,∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =,∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒;∴旋转角α的度数是50°;故答案为:50°.【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.30.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.【答案】(4,8)-【分析】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,构建OB D OBC '∆≅∆,即可得出答案.【详解】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,∴90B DO BCO '∠=∠=︒,∴2390∠+∠= ,由旋转可知90BOB '∠=︒,OB OB '=,∴1290∠+∠=︒,∴13∠=∠,∵OB OB '=,13∠=∠,B DO BCO '∠=∠,∴OB D OBC '∆≅∆,∴B D OC '=,4OD BC ==,∵5AB AO ==,∴3AC ===,∴8OC =,∴8B D '=,∴(4,8)B '-.故答案为:(4,8)-.【点睛】本题考查了旋转的性质以及如何构造全等三角形求得线段的长度,准确构造全等三角形求得线段长度是解题的关键.31.(2022·四川泸州)点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).32.(2022·吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为__________度.(写出一个即可)【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒,0360α︒<<︒ ,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键.33.(2022·贵州铜仁)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≤MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE∵12CE×DO=12CD×DE,∴DO∴EO∵MF⊥CD,∠EDC=90°,∴DE ∥MF ,∴∠EDO =∠GMO ,∵CE 为线段DM 的垂直平分线,∴DO =OM ,∠DOE =∠MOG =90°,∴△DOE ≌△MOG ,∴DE =GM ,∴四边形DEMG 为平行四边形,∵∠MOG =90°,∴四边形DEMG 为菱形,∴EG =2OE GM = DE =1,∴CG ,∵DE ∥MF ,即DE ∥GF ,∴△CFG ∽△CDE ,∴FG CG DE CE =,即1FG , ∴FG =35,∴MF =1+35=85,∴MN +NP 的最小值为85.故答案为:85.【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.34.(2022·山东潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ,又由操作二可知:AB ′=AB ,=AB ,∴AB AD ,∴A 4纸的长AB 与宽AD 1:1.【点睛】本题主要考查了矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.35.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.【答案】(1)+【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=∵绕原点O逆时针旋转75︒∴∠BOB'=75°∴∠COB'=30°∵OB'=OB=∴MB'MO∴B'(∵沿y轴方向向上平移1个单位长度∴B''(1)故答案为:(1)【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.36.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.【答案】()2,2-【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.三.解答题37.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母);(2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.【答案】(1)见解析(2)见解析(3)52π【分析】(1)利用平移变换的性质分别作出A ,O ,B 的对应点1A ,1O ,1B 即可;(2)利用旋转变换的性质分别作出A ,O ,B 的对应点2A ,2O ,2B 即可;(3)利用弧长公式求解即可.(1)解:如图,111A O B ∆即为所求;(2)解:如图,222A O B ∆(即△A 2OB 2)即为所求;(3)解:在Rt AOB ∆中,5OB ==,905253602l ππ∴=⨯⨯=.【点睛】本题考查作图-旋转变换,平移变换,勾股定理、弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质.38.(2022·湖北荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【答案】(1)见解析(2)见解析【分析】对于(1),以AC为公共边的有2个,以AB为公共边的有2个,以BC为公共边的有1个,一共有5个,作出图形即可;对于(2),△ABC是等腰直角三角形,以BC为对角线的菱形只有1个,作出图形即可.(1)如图所示.。
吉林省长春市名校调研系列卷(市命题)2024届中考三模数学试题含解析
吉林省长春市名校调研系列卷(市命题)2024届中考三模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山3.下列运算不正确的是A.B.C.D.4.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A .B .C .D .6.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A .(2,2)B .(2,﹣2)C .(2,5)D .(﹣2,5)7.下列运算中,正确的是 ( )A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =8.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3π C .3π或π D .4π或3πA .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 10.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.22 11.如下图所示,该几何体的俯视图是 ( )A .B .C .D .12.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,数轴上不同三点、、A B C 对应的数分别为a b c 、、,其中4, 3,||||a =AB =b =c -,则点C 表示的数是__________.14.二次函数y =ax 2+bx+c 的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a+b >0;④其顶点坐标为(12,﹣2);⑤当x <12时,y 随x 的增大而减小;⑥a+b+c >0中,正确的有______.(只填序号)15.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.16.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.位,得到点A 2 ,则点A 2 的坐标是_________.18.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.20.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.21.(6分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.22.(8分)如图,在等腰直角△ABC 中,∠C 是直角,点A 在直线MN 上,过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .(1)如图1,当C ,B 两点均在直线MN 的上方时,①直接写出线段AE ,BF 与CE 的数量关系.②猜测线段AF ,BF 与CE 的数量关系,不必写出证明过程.(2)将等腰直角△ABC 绕着点A 顺时针旋转至图2位置时,线段AF ,BF 与CE 又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC 绕着点A 继续旋转至图3位置时,BF 与AC 交于点G ,若AF=3,BF=7,直接写出FG 的长度.23.(8分)计算﹣14﹣23116()|3|2÷-+-24.(10分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:25.(10分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.26.(12分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由;(2)若16AC =,3tan 4A =,求⊙O 的半径.27.(12分)已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解题分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【题目详解】该几何体的俯视图是:.故选A.【题目点拨】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.2、D【解题分析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.3、B【解题分析】,B是错的,A、C、D运算是正确的,故选B4、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解题分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短,就用到两点间线段最短定理.【题目详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A 和B 错误,又因为蜗牛从p 点出发,绕圆锥侧面爬行后,又回到起始点P 处,那么如果将选项C 、D 的圆锥侧面展开图还原成圆锥后,位于母线OM 上的点P 应该能够与母线OM′上的点(P′)重合,而选项C 还原后两个点不能够重合. 故选D .点评:本题考核立意相对较新,考核了学生的空间想象能力.6、A【解题分析】分析:依据四边形ABCD 是平行四边形,即可得到BD 经过点O ,依据B 的坐标为(﹣2,﹣2),即可得出D 的坐标为(2,2).详解:∵点A ,C 的坐标分别为(﹣5,2),(5,﹣2),∴点O 是AC 的中点,∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选A .点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.7、C【解题分析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则. 8、A【解题分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【题目详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM , ∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆,∵2EF =∴以EF 为直径的圆的半径为1∴点M 运动的路径长为1801=180ππ 当1'3CM CD = 时,同理可得点M 运动的路径长为12π 故选:A .【题目点拨】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.9、C【解题分析】【题目详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.10、A【解题分析】根据绝对值的性质进行解答即可.【题目详解】实数﹣5.1的绝对值是5.1.故选A.【题目点拨】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.11、B【解题分析】根据俯视图是从上面看到的图形解答即可.【题目详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.12、A【解题分析】把x=﹣1代入方程计算即可求出k的值.【题目详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.【题目详解】∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【题目点拨】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.14、①②③⑤【解题分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【题目详解】由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=1 , 2∴abc>0,4ac<b2,当12x<时,y随x的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.15、50°【解题分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.∵AB ∥CD ,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【题目点拨】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.16、-9.【解题分析】根据题中给出的运算法则按照顺序求解即可.【题目详解】解:根据题意,得:2131x,2(1)79y .故答案为:-9.【题目点拨】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.17、(-1, -6)【解题分析】直接利用关于x 轴对称点的性质得出点A 1坐标,再利用平移的性质得出答案.【题目详解】∵点A 的坐标是(-1,2),作点A 关于x 轴的对称点,得到点A 1,∴A 1(-1,-2),∵将点A 1向下平移4个单位,得到点A 2,∴点A 2的坐标是:(-1,-6).故答案为:(-1, -6).【题目点拨】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、40°【解题分析】由∠A =30°,∠APD =70°,利用三角形外角的性质,即可求得∠C 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B 的度数.解:∵∠A =30°,∠APD =70°,∴∠C =∠APD ﹣∠A =40°,∵∠B 与∠C 是AD 对的圆周角,∴∠B =∠C =40°.故答案为40°.【题目点拨】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1a b -=【解题分析】过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,由后坡度AB 与前坡度AC 相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【题目详解】解:过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,∵房子后坡度AB 与前坡度AC 相等,∴∠BAD=∠CAE ,∵∠BAC=120°,∴∠BAD=∠CAE=30°,在直角△ABD 中,AB=4米,∴BD=2米,在直角△ACE 中,AC=6米,∴CE=3米,∴a-b=1米.【题目点拨】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.20、(1)24.2米(2) 超速,理由见解析【解题分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长.(2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【题目详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.21、(1)ab ﹣4x 1(1【解题分析】(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.【题目详解】解:(1)ab ﹣4x 1.(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.解得x 1,x 1=.22、(1)①AE+BF =EC ;②AF+BF=2CE ;(2)AF ﹣BF=2CE ,证明见解析;(3)FG=65.【解题分析】(1)①只要证明△ACE ≌△BCD (AAS ),推出AE=BD ,CE=CD ,推出四边形CEFD 为正方形,即可解决问题; ②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE .由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG ∥EC ,可知FG AF EC AE=,由此即可解决问题;【题目详解】解:(1)证明:①如图1,过点C 做CD ⊥BF ,交FB 的延长线于点D ,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=, ∴325FG =, ∴FG=65. 【题目点拨】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、1【解题分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【题目详解】原式=﹣1﹣4÷14+27=﹣1﹣16+27=1.【题目点拨】本题考查了实数的运算,解题的关键是熟练掌握运算顺序.24、(1)1502AOD α∠=︒-;(2)AD =;(3)1122or 【解题分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【题目详解】(1)如图1:连接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等边三角形∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1 ∴31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即)2222331x x -=-- 解得:331x +=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1 ∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=- 即()2222331x x -=- 解得:331x 4= ∴AE=3312AF -=【题目点拨】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.25、x≤1,解集表示在数轴上见解析【解题分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【题目详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【题目点拨】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.26、(1)DE与⊙O相切,详见解析;(2)5【解题分析】(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE=90°,说明相切的位置关系。
中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对称变换
中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对
称变换
为您整理“中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对称变换”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.)。
中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对称变换
点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。
关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。
关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。
2013届中考数学试题分类汇编:坐标变换(含解析)
(2013•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).(2013•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()(2013•绵阳)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是 。
(2013•遂宁)将点A (3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )(2013•沈阳)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________. (2013•晋江)如图7,在方格纸中(小正方形的边长为1),ABC ∆的三个顶点均为格点,将ABC ∆沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画.出平移后的'''C B A ∆,并直接写.出点'A 、'B 、'C 的坐标; (2)求出在整个平移过程中,ABC ∆扫过的面积.解:(1)平移后的'C B A ''∆如图所示;…………………2分 点'A 、'B 、'C 的坐标分别为)5,1(-、)0,4(-、)0,1(-; …………………………………………………………5分15题图yO xBC A(2)由平移的性质可知,四边形B B AA ''是平行四边形,∴ABC ∆扫过的面积ABC B B AA S S ∆+=''四边形AC BC AC B B ⋅+⋅=21' 265532155=⨯⨯+⨯=. (2013•漳州)如图,方格纸中的每个小方格是边长为1个单位长度的正方形. (1)画出将Rt△ABC 向右平移5个单位长度后的Rt△A 1B 1C 1;(2)再将Rt△A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt△A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).(2013•厦门)在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 D A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4). (2013•常州)已知点P (3,2),则点P 关于y 轴的对称点P 1的坐标是 (﹣3,2) ,点P 关于原点O 的对称点P 2的坐标是 (﹣3,﹣2) .(2013•淮安)点A (﹣3,0)关于y 轴的对称点的坐标是 (3,0) .第20题图(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.(2013•南通)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为▲.(2013•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.(2013•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25 .(2013泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A .(1.4,﹣1)B .(1.5,2)C .(1.6,1)D .(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC 的平移方向以及平移距离,即可得出P 1坐标,进而利用中心对称图形的性质得出P 2点的坐标.解答:解:∵A 点坐标为:(2,4),A 1(﹣2,1), ∴点P (2.4,2)平移后的对应点P 1为:(﹣1.6,﹣1), ∵点P 1绕点O 逆时针旋转180°,得到对应点P 2, ∴P 2点的坐标为:(1.6,1). 故选:C .点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键. (2013• 台州)设点M (1,2)关于原点的对称点为M ′,则M ′的坐标为(2013•温州)如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________(2013•珠海)点(3,2)关于x 轴的对称点为( )(2013•牡丹江)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()OB=,=,,﹣(2013•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3米.∴AC=DCtan60°=3×=3(米).(2013•铜仁)点P(2, -1)关于x轴对称的点P′的坐标是 . (2013•红河)在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)。
2013届中考数学试题分类汇编:位似(含解析)
(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.(2013•泰州)如图,平面直角坐标系xOy中,点A, B的坐标分别为(3, 0),(2,-3),则△AB' O'是△ABO关于点A的位似图形,且O'的坐标为(一1, 0),则点B' 的坐标为___________.【答案】:5(,4) 3.(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.,)(2013•青岛)如图,△ABO 缩小后变为O B A ''△,其中A 、B 的对应点分别为''B A 、,''B A 、均在图中格点上,若线段AB 上有一点),(n m P ,则点P 在''B A 上的对应点'P 的坐标为( )A 、),2(n m B 、),(n m C 、)2,(n m D 、)2,2(n m 答案:D解析:因为AB =''A B =''12A B AB =,所以点P (m ,n )经过缩小变换后点'P 的坐标为。
2013届中考数学试题分类汇编:中心对称(含解析)
B(2013,娄底)下列图形中是中心对称图形的是()A. B. C. D.(2013•达州)下列图形中,既是轴对称图形,又是中心对称图形的是()答案:D解析:A、C只是轴对称图形,不是中心对称图形;B是中心对称图形,不是轴对称轴图形,只有D符合。
(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是(2013凉山州)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.A .B .C .D . 考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念,结合选项所给图形进行判断即可. 解答:解:A .是轴对称图形,不是中心对称图形,不符合题意;B .是轴对称图形,也是中心对称图形,符合题意;C .是中心对称图形,不是轴对称图形,不符合题意;D .不是轴对称图形,是中心对称图形,不符合题意.故选B .点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. (2013•眉山)下列图形是中心对称图形的是B..D . A C D(2013•黄冈)随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )(2013•龙岩)下列图形,既是中心对称图形,又是轴对称图形的是DA .等边三角形B .平行四边形C .正五边形D .正六边形(2013•厦门)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上画出△ABC ,并画出与△ABC 关于原点O 对称的图形;解: 正确画出△ABC正确画出△DEF(2013•白银)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图B C DA B C D(2013•宿迁)下列三个函数:①1y x =+;②y x=;③21y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有A .0B .1C .2D .3(2013•泰州)下列标志图中,既是轴对称图形,又是中心对称图形的是( )【答案】:B .(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有( )(2013•毕节)在下列图形中既是轴对称图形又是中心对称图形的是( D)①线段②角③等边三角形④圆⑤平行四边形⑥矩形A. ③④⑥B.①③⑥ D.④⑤⑥ D. ①④⑥(2013•北京)下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2013•郴州)在图示的方格纸中
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
(2013•株洲)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()
(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()
A.30° B.45° C.60° D.75°
考点:生活中的轴对称现象;平行线的性质.
分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.
解答:解:要使白球反弹后能将黑球直接撞入袋中,
∠2+∠3=90°,
∵∠3=30°,
∴∠2=60°,
∴∠1=60°.
故选C.
点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.
(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()
(2013•潜江)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 A.4cm B.3cm C.2cm D.1cm
(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC 的周长为17cm,则BC的长为()
(2013•三明)下列图形中,不是轴对称图形的是()
(2013•厦门)如图5,在平面直角坐标系中,点O是原点,点B(0,3),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M
在线段AB上.若点B和点E关于直线OM对称,且则点M
的坐标是 ( , ) .(1,3)
(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.
(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B
的坐标为(3C 的坐标为(
12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为
A B
C D .
(2013•宿迁)在平面直角坐标系xOy 中,已知点(01)A ,,(1,2)B ,点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 ▲ .
(2013•苏州)如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,
),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )
,
,OB=2
×OA×AB=×OB×AM,,
∴AD=2×
AD=,由勾股定理得:,
,
∴CN=3﹣﹣
DC=
(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD 的周长为___________cm.
【答案】:6.
(2013•日照)下面所给的交通标志图中是轴对称图形的是
答案:A
解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
(2013泰安)下列图形:其中所有轴对称图形的对称轴条数之和为()
A.13 B.11 C.10 D.8
考点:轴对称图形.
分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;
第二个图形是轴对称图形,有2条对称轴;
第三个图形是轴对称图形,有2条对称轴;
第四个图形是轴对称图形,有6条对称轴;
则所有轴对称图形的对称轴条数之和为11.
故选B.
点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
(2013杭州)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
考点:轴对称图形.
分析:根据轴对称的定义,结合各选项进行判断即可.
解答:解:A.不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.不是轴对称图形,故本选项错误;
D.是轴对称图形,故本选项正确;
故选D.
点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.
(2013•台州)下列四个艺术字中,不是轴对称的是()
(2013•广东)下列图形中,不是
..轴对称图形的是 C
(2013•广州)点P在线段AB的垂直平分线上,PA=7,则PB=______________ . (2013•哈尔滨)如图。
在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)请直接写出四边形ABCD的周长.
(2013•邵阳)下列四个图形中,不是轴对称图形的是()
(2013•柳州)如图是经过轴对称变换后所得的图形,与原图形相比()
(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()
,
- 11 -。