八年级数学下册 一次函数与实际问题教案
运用一次函数解决实际问题教案
一次函数是初中数学学习的一个主要内容,它在数学中是一个非常基础的知识点,但是在现实生活中却具有重要的应用价值。
一次函数的解法能够帮助我们解决许多实际问题,比如求解直线方程、计算速度、距离等。
如何将一次函数的知识点应用到实际问题中,是初中数学学习最为重要的一环,下面将介绍一些教学案例,帮助学生更好地理解和掌握一次函数的应用。
一、直线方程问题:在解决直线方程问题时,一次函数是非常有用的。
比如说,兔子在跑步时,经过起点时速度是20米每秒,然后随着时间推移速度逐渐增加,最后在10秒钟时超过终点,求兔子的速度公式。
首先我们可以使用速度等于距离除以时间的公式:v=d/t。
因为兔子是在一条直线上跑步,所以可以将问题转化为一个直线方程。
在这个例子中,兔子的起点坐标为(0,0),速度为20米每秒,所以直线方程为y=20x。
这个方程描述的是兔子的速度随着时间而变化的过程。
二、距离问题:距离问题也是一次函数非常有效的应用场景。
比如,一个人从起点出发,以10米每秒的速度向前行走,每40秒钟会有一个休息的时间,休息时不计算时间消耗,请计算出这个人在3分钟内行走的距离。
在这个例子中,我们可以将这个问题转化为一个一次函数的形式。
人的速度为10米每秒,因此他每走1秒的距离就是10米,一段时间内走的距离就是这段时间内的秒数*10米,如果这段时间中有多段时间休息,那么可以将这段时间分成多个小段,然后求各小段内的距离总和即可。
因此,这个问题转化成一次函数的形式为f(x)=10x-40*floor(x/40)。
三、速度问题:速度问题也是一次函数的应用场景之一。
比如,在一辆汽车行驶的过程中,它的速度随时间而变化,如果我们知道汽车在某一时刻的速度,可以计算出汽车行驶的距离、时间和最终速度。
在解决速度问题时,我们需要使用以下公式:v=dx/dt,其中v表示速度,d表示距离,t 表示时间。
因为速度是在一条直线上变化的,所以我们可以使用一次函数来描述速度-时间的关系,将速度公式转化为直线方程。
八年级数学教案: 用一次函数解决问题(全2课时)
三.交流展示
某市出租车收费标准:不超过3千米计费为 7.0元,
3千米后按2.4元/千米计费.
(1)当路程表显7km时,应付费多少元?
(2)写出车费y(元)与路程x(千米)之间的函数表达式;
(3)小亮乘出租车出行,付费19元,计算小亮乘车的路程.
在这里需要说明的是:在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,在这样的情况下,往往根据自变量不同的取值范围,分别列出不同的函数表达式.
课时NO:主备人:审核人用案时间:年月日星期
教学课题
6.4 用一次函数解决问题(1)
教学目标
1.能根据实际问题中变量之间的关系,确定一次函数关系式;
2.能将简单的实际问题转化为数学问题建立一次函数,从而解决实际问题;
3.通过具体问题的分析,发展解决问题的能力,增强应用意识
教学重点
根据实际问题中变量之间的关系,确定一次函数的关系式
2.A、B两家旅行社分别推出家庭旅游优惠活动,两家旅行社的票价均为90元/人,但优惠办法不同.A旅行社的优惠办法是:全家有一人购全票,其余的人半价优惠;B旅行社的优惠办法是:每人均按 票价优惠.你将选择哪家旅行社?
四.小结与反思
布置作业
课外作业:
P159第3、5题.
板书设计
教后札记
四.小结与反思
布置作业
课外作业:
板书设计
教后札记
课时NO:主备人:审核人用案时间:年月日星期
教学课题
6.4 用一次函数解决问题(2)
教学目标
1.能根据实际问题中变量之间的关系,确定一次函数的关系式;
2.能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题;
《一次函数(第2课时)》教案 人教数学八年级下册
19.2.2 一次函数第2课时一、教学目标【知识与技能】使学生理解函数y=kx+b(k≠0)与函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.【过程与方法】通过从具体的一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.【情感态度与价值观】在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】一次函数的图象和性质.【教学难点】一次函数性质的理解.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)教师问:我们最快捷、最正确地画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?学生答:画正比例函数y=kx(k≠0)的图象,一般地,过原点和点(1,k).教师问:你能用这种方法作出一次函数的图象吗?这是今天我们学习的内容!(二)探索新知1.出示课件4-8,探究一次函数的图象教师问:正比例函数与一次函数有何关系?学生回忆并回答:一次函数y=kx+b(k≠0),当b=0时,一次函数则为正比例函数y=kx,因此,正比例函数是当常数项b=0时的一次函数,是特殊的一次函数.教师问:正比例函数的图象是什么图形?如何简便地画出正比例函数的图象?为什么?学生回忆思考并回答:正比例函数的图象是一条经过原点的直线.根据两点确定一条直线,只要确定直线上的两个点即可画出正比例函数的图象.教师问:正比例函数有何性质?这些性质是由什么确定的?师生总结:当k>0时,直线y=kx经过第一、三象限,从左向右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即y随x的增大而减小.教师问:在同一坐标系内,画出函数y=-6x与y=-6x+5的图象.师生一起解答:列表:描点、连线:教师问:比较上面两个函数图象的相同点与不同点.填出你的观察结果并与同伴交流.学生答:这两个函数的图象形状都是一条直线,并且倾斜程度相同.函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点(0,5),即它可以看作由直线y=-6x向上平移5个单位长度得到.教师问:(1)画一次函数 y =2x-3 的图象.学生答:列表:描点、连线:教师问:(2)在同一坐标系内画正比例函数y=2x的图象.学生答:如下图:教师问:比较上面两个函数的图象回答下列问题:教师依次展示问题:(1)这两个函数的图象形状都是______,并且倾斜程度______.学生答:一条直线,相同(2)函数y=2x的图象经过_______,函数y=2x-3的图像与y轴交于点(_______),即它可以看作由直线y=2x向___平移___个单位长度而得到.学生答:原点,(0,-3),下,3(3)在同一直角坐标系中,直线 y=2x -3与y=2x的位置关系是________.学生答:平行.教师总结点拨:(出示课件8)一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移|b|个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).教师问:一次函数y=kx+b(k≠0)与x轴的交点坐标是什么?,0).学生答:(-bk教师问:怎样画一次函数的图象最简单?为什么?学生答:由于两点确定一条直线,画一次函数图象时我们只需描,0)或 (1,k+b),连线即可.点(0,b)和点(-bk考点1:画一次函数的图象用你认为最简单的方法画出下列函数的图象:(1) y=-2x-1;(2) y=0.5x+1.(出示课件9)师生共同讨论解答如下:解:列表:描点、连线:教师强调:也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与y=0.5x+1.出示课件10,学生自主练习后口答,教师订正.2.出示课件11-12,探究一次函数的性质教师问:画出函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.学生答:列表:描点、连线:教师问:观察函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.一次函数y=kx+b(k、b是常数,k≠0)中,k的正、负对函数图象有什么影响?师生总结:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.考点1:利用一次函数的性质比较大小P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象上的两点,下列判断中,正确的是( )(出示课件13)A.y1>y2 C.当x1<x2时,y1<y2B. y1<y2 D.当x1<x2时,y1>y2学生独立思考后,师生共同解答.解析:因为-0.5<0,所以y随x增大而减小.故选:D.教师强调:反过来也成立:y越大,x就越小.出示课件14,学生自主练习后口答,教师订正.3.出示课件15-16,探究一次函数经过象限与字母k,b的关系教师问:根据一次函数的图象判断k,b的正负:教师依次展示学生答案:学生1回答:(1)b>0,k>0.学生2回答:(2)b=0,k>0.学生3回答:(3)b<0,k>0.学生4回答:(4)b>0,k<0.学生5回答:(5)b=0,k<0.学生6回答:(6)b<0,k<0.教师问:根据上面一次函数的图象说出直线经过的象限:教师依次展示学生答案:学生1回答:(1)经过第一、二、三象限.学生2回答:(2)经过第一、三象限.学生3回答:(3)经过第一、三、四象限.学生4回答:(4)经过第一、二、四象限.学生5回答:(5)经过第二、四象限.学生6回答:(6)经过第二、三、四象限.教师问:一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响?教师依次展示学生答案:学生1回答:当k>0时,直线y=kx+b由左到右逐渐上升,y 随x的增大而增大.① b>0时,直线经过第一、二、三象限;② b<0时,直线经过第一、三、四象限.学生2回答:当k<0时,直线y=kx+b由左到右逐渐下降,y 随x的增大而减小.① b>0时,直线经过第一、二、四象限;② b<0时,直线经过第二、三、四象限.考点1:利用一次函数的性质求字母的值已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:(1)函数值y 随x的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过第二、三、四象限.(出示课件17)学生独立思考后,师生共同解答.解:(1)由题意得1-2m>0,解得m<12.(2)由题意得1-2m≠0且m-1<0,即m<1且m≠12(3)由题意得1-2m<0且m-1<0,解得1<m<1.2出示课件18,学生自主练习,教师给出答案.(三)课堂练习(出示课件20-24)练习课件第20-24页题目,约用时20分钟.(四)课堂小结(出示课件25)(五)课前预习预习下节课(19.2.2第3课时)的相关内容. 知道利用待定系数法求一次函数解析式的步骤.七、课后作业1、教材第93页练习第1,2,3题.2、七彩课堂第130-131页第2、4、9题.八、板书设计一次函数第2课时1.一次函数的图象考点12.一次函数的性质考点13.一次函数经过象限与字母k,b的关系考点13.例题讲解九、教学反思成功之处:本课教学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方法.同时在学生了解了正比例函数y=kx的图象和性质的基础上,通过比较一次函数y=kx+b与正比例函数y=kx解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力.不足之处:八年级的学生是好奇、好学、好动的,但因为时间较紧,在教学过程中没有留下更多的时间,通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动的时间也不够充分,学生的主体性没有得到充分发挥,没有最大限度地激发学生的求知欲.补救措施:在小结的设计上给学生一个充分从事数学活动的机会,应充分体现学生是数学学习的主人的理念.学生所发表的见解不一定全都是本节课的重点,只要是学生的观点正确又的确是他的知识收获,教师就应该给予认可和鼓励.。
人教版数学八年级下册19.2《一次函数图象与性质》教案
人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。
本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。
但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。
三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。
2.理解一次函数的性质,能够解释一次函数图象的变换。
3.能够运用一次函数解决实际问题,提高学生的数学应用能力。
四. 教学重难点1.一次函数的图象特征和性质的理解。
2.一次函数图象的实际应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。
六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。
2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。
3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。
七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。
3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。
4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。
5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。
人教版数学八年级下册《一次函数与一元一次方程》教案1
人教版数学八年级下册《一次函数与一元一次方程》教案1一. 教材分析人教版数学八年级下册《一次函数与一元一次方程》是学生在学习了代数和几何基础知识后,进一步深化对函数和方程的理解的重要内容。
本节课通过介绍一次函数和一元一次方程的定义、性质、图像以及解法,使学生能够掌握解决实际问题的方法,提高解决问题的能力。
二. 学情分析学生在之前的学习中已经接触过函数和方程的知识,对一些基本概念和运算规则有一定的了解。
但一部分学生可能对一次函数和一元一次方程的联系和应用还不够清晰,解题时不能灵活运用。
因此,在教学过程中,要关注这部分学生的学习需求,通过具体实例和练习,帮助他们理解和掌握知识。
三. 教学目标1.知识与技能:理解一次函数和一元一次方程的定义,掌握一次函数的性质和图像,学会解一元一次方程。
2.过程与方法:通过观察、分析、归纳、实践等方法,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.一次函数的定义和性质。
2.一元一次方程的解法和应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、讨论和交流,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的一次函数和一元一次方程的案例和练习题。
2.准备多媒体教学设备,如PPT等。
七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数和一元一次方程的概念,激发学生的兴趣。
2.呈现(10分钟)讲解一次函数和一元一次方程的定义、性质和图像,让学生通过观察和分析,理解两者的联系。
3.操练(10分钟)让学生分组讨论和解答一些关于一次函数和一元一次方程的练习题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用一次函数和一元一次方程的知识解决问题,提高学生的应用能力。
5.拓展(5分钟)引导学生思考一次函数和一元一次方程在实际生活中的应用,激发学生的创新意识。
八年级数学下册《一次函数的性质》教案、教学设计
1.请同学们认真完成作业,注意书写的规范性和解答的完整性。
2.对于实践应用题,鼓励同学们积极参与,充分运用所学知识解决实际问题。
3.拓展思考题旨在培养学生的思维品质和探究精神,同学们可以查阅资料,与同学、老师讨论,提高自己的理解深度。
八年级数学下册《一次函数的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握一次函数的定义,能够准确识别并描述一次函数的图像特征;
2.学会运用一次函数的性质解决实际问题,如分析变化规律、预测发展趋势等;
3.掌握一次函数的解析式,能够通过给定的两点或一点和斜率求解一次函数的方程;
4.能够运用一次函数的性质解释生活中的现象,提高数学应用能力。
针对以上学情分析,教师在教学过程中应采用多样化的教学手段,关注学生的个体差异,充分调动学生的积极性,帮助他们克服学习困难,提高数学素养。同时,注重培养学生的探究精神和解决问题的能力,为学生的全面发展奠定基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、性质及解析式的掌握,能够运用一次函数解决实际问题。
1.学生在图像识别和性质分析方面的能力差异,因材施教,针对性地进行指导;
2.学生在解决实际问题时,可能对一次函数的应用感到困惑,需要教师通过实例进行引导;
3.部分学生对数学学习的兴趣和积极性有待提高,教师应注重激发学生的学习兴趣,增强其学习动力;
4.学生在小组讨论和合作学习中,可能存在沟通不畅、协作不紧密等问题,教师需引导学生培养团队协作能力。
4.分析一次函数的性质,如单调性、奇偶性等,并结合图像进行讲解。
(三)学生小组讨论,500字
1.教师提出讨论题目,如:“一次函数的图像与性质之间的关系是什么?”
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
华师大版数学八年级下册17.3《一次函数》(第5课时)教学设计
华师大版数学八年级下册17.3《一次函数》(第5课时)教学设计一. 教材分析《一次函数》是华师大版数学八年级下册第17.3节的内容,本节主要让学生了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的动手操作能力和抽象思维能力。
二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维和抽象思维能力。
但对于一次函数的图像和实际应用,可能还有一定的困惑。
因此,在教学过程中,要注重引导学生通过实例去发现一次函数的规律,提高他们解决实际问题的能力。
三. 教学目标1.了解一次函数的定义、性质及图像;2.学会运用一次函数解决实际问题;3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.一次函数的定义和性质;2.一次函数图像的特点;3.运用一次函数解决实际问题。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受一次函数的图像和性质;2.小组讨论:引导学生分组讨论,发现一次函数的规律,提高学生的合作能力;3.问题驱动:设置问题引导学生思考,培养学生的抽象思维能力;4.实践操作:让学生动手绘制一次函数的图像,提高学生的动手操作能力。
六. 教学准备1.教学PPT:制作包含一次函数定义、性质、图像及实际应用的PPT;2.实例:准备一些与生活息息相关的一次函数实例;3.练习题:准备一些针对一次函数的练习题,以便课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示一次函数的定义、性质和图像,让学生直观地了解一次函数的基本知识。
3.操练(10分钟)让学生动手绘制一次函数的图像,观察图像的特点,加深对一次函数的理解。
同时,引导学生发现一次函数与实际问题的联系。
4.巩固(10分钟)分组讨论一次函数的性质,让学生通过合作交流,进一步掌握一次函数的知识。
人教版数学八年级下册《一次函数实际问题》教案
人教版数学八年级下册《一次函数实际问题》教案一. 教材分析《一次函数实际问题》是人教版数学八年级下册的教学内容,主要让学生了解一次函数在实际问题中的应用。
通过本节课的学习,学生将掌握一次函数的定义、性质和图象,并能解决一些简单的实际问题。
教材通过丰富的实例,引导学生认识一次函数与现实生活的联系,培养学生的数学应用能力。
二. 学情分析学生在八年级上册已经学习了函数的基本概念,对函数有一定的认识。
但实际问题中的函数应用仍然是他们的薄弱环节。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高他们的解决问题的能力。
三. 教学目标1.理解一次函数的定义和性质;2.学会用一次函数解决实际问题;3.培养学生的数学应用能力和团队协作精神。
四. 教学重难点1.一次函数的定义和性质;2.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解一次函数的实际应用;2.小组合作学习:让学生在小组内讨论、探究,提高团队协作能力;3.案例分析法:分析实际问题,培养学生解决问题的能力;4.引导发现法:教师引导学生发现一次函数的规律,提高学生的自主学习能力。
六. 教学准备1.教学PPT;2.实际问题案例;3.whiteboard 和 markers;4.学生分组名单。
七. 教学过程1. 导入(5分钟)教师通过一个简单的实际问题引入本节课的主题,如“某商品打8折后的价格是多少?”让学生尝试解答,激发学生的学习兴趣。
2. 呈现(10分钟)教师展示一次函数的定义和性质,以及一次函数图象的特点。
通过PPT和板书,引导学生理解一次函数的基本概念。
3. 操练(15分钟)教师给出几个实际问题,让学生分组讨论、探究。
学生在小组内合作解决问题,培养团队协作能力。
教师巡回指导,解答学生的问题。
4. 巩固(10分钟)教师挑选几个小组的解题过程和答案,进行讲解和评价。
让学生在评价中巩固知识,提高自己的解题能力。
初二数学教案《一次函数》(优秀10篇)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思
经过前面的学习,学生已经掌握了函数的概念并且具有了一些分析实际问题中量与量之间的关系的能力,所以在这节课中,学生会用到前面所学。
教学过程设计
教师活动
预设学生活动
设计意图
1、提问:1.什么是函数?2.函数有哪几种表示方法?
2、提问:能否说出x的一次式的一般形式是什么样的?
3、思考:k≠0这个条件能否省略不写
4、提问:正比例函数与一次函数有怎样的关系?
1、学生回答并举例子
2、学生讨论回答
3、学生思考后回答
4、思考后回答教师的提问
1、了解函数的概念
2、理解一次函数定义
3、了解k≠0的意义
4、理解正比例函数是一次函数的特例
板书设计
自主探究,做一做:
1.某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.
(1)完成下表:
路程x/km
0
50
100
150
200
300
余油量y/L
(2)你能写出y与x之间的关系吗?
教学反思
我在这节课中通过分析变量间的关系,发展学生的数学思维;经历利用一次函数解决实际问题的过程,发展学生的数学应用能力;通过一次函数概念的引入,使学生进一步认识数学是来源于生活并用于生活,同时渗透热爱自然和生活的教育,在学生掌握了函数的概念的基础上,进一步的分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫,我觉得我对这节课的引入是这节课的亮点,通过举例子让学生更加清楚地学习了一次函数的概念和使用。我这节课值得总结的就是所举的例子回让一些学生觉得抽象,在以后的教学中我会尽量杜绝这种勤快的再次发生的。
《一次函数》教案(共5则)
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
人教版八年级数学下册19.2.2一次函数(教案)
5.一次函数与其他函数的关系:与正比例函数、反比例函数的互化关系。
二、核心素养目标
1.培养学生运用数学符号进行表达和交流的能力,通过一次函数的学习,掌握数学语言表达的精确性和逻辑性;
2.培养学生运用数形结合思想分析问题的能力,通过一次函数图像与性质的探究,提高空间想象力和直观洞察力;
五、教学反思
在这次教学过程中,我发现学生们对一次函数的概念和图像性质的理解程度参差不齐。有些学生能迅速掌握要点,但也有一些学生在这方面存在一定的困难。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,因材施教。
在讲授新课的过程中,我尝试通过生活实例导入,让学生感受到数学与日常生活的紧密联系。从学生的反馈来看,这种导入方式还是起到了一定的效果,他们的学习兴趣和积极性得到了提高。但在讲授过程中,我发现部分学生对斜率和截距的概念仍然感到困惑。因此,我决定在接下来的教学中,增加一些直观的图像和实际案例,帮助学生更好地理解这些概念。
-举例:给出不同的k、b值,让学生绘制图像,分析图像特征。
-一次函数解析式的求解:根据已知条件求解一次函数的解析式。重点在于让学生掌握线性方程组的建立与求解方法。
-举例:给出实际问题,引导学生列出方程组并求解。
-一次函数的实际应用:将一次函数应用于解决实际问题。重点在于培养学生将数学知识应用于实际情境的能力。
-一次函数性质的运用:在解决实际问题时运用一次函数的单调性和奇偶性等性质。
-难点解释:学生可能难以将函数性质与实际问题直接联系起来,需要通过具体案例分析来加强理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量之间存在线性关系的情况?”比如,物品的价格与数量之间的关系。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
人教版数学八年级下册第十九章《数学活动 一次函数的应用问题》教案
人教版数学八年级下册第十九章《数学活动一次函数的应用问题》教案一. 教材分析人教版数学八年级下册第十九章《数学活动一次函数的应用问题》主要让学生通过解决实际问题,进一步理解一次函数的性质和应用。
本章内容主要包括一次函数的图像与实际问题相结合,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了了一次函数的基本性质和图像,能够理解一次函数的斜率和截距。
但部分学生对于如何将一次函数与实际问题相结合,解决实际问题还有一定的困难。
三. 教学目标1.理解一次函数在实际问题中的应用。
2.能够运用一次函数解决实际问题。
3.培养学生的数学思维能力和实际问题解决能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何引导学生将实际问题转化为一次函数问题。
五. 教学方法采用问题驱动法,通过实际问题引导学生思考,运用一次函数的知识解决问题。
同时,采用案例分析法,分析一次函数在不同实际问题中的应用。
六. 教学准备1.准备一些实际问题,如购物问题、行程问题等。
2.准备一次函数的图像资料。
七. 教学过程1.导入(5分钟)通过一个购物问题,引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的图像,让学生观察一次函数的特点。
同时,引导学生思考一次函数与实际问题之间的关系。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数的知识解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取几个小组的解题过程和答案,进行讲解和分析,巩固学生对一次函数应用的理解。
5.拓展(10分钟)引导学生思考一次函数在实际问题中的应用范围,讨论一次函数在其他领域的应用。
6.小结(5分钟)总结本节课的主要内容和解决实际问题的方法。
7.家庭作业(5分钟)布置一些有关一次函数应用的实际问题,让学生课后思考和练习。
8.板书(5分钟)板书本节课的主要内容和解决问题的方法。
教学过程每个环节所用的时间仅供参考,具体时间根据实际教学情况调整。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。
一次函数 初中八年级下册数学教案教学设计课后反思
《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。
重点:理解一次函数的概念以及一次函数图像的性质。
难点:根据一次函数图像解决实际问题。
二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。
一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。
三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。
四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。
五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。
正比例函数的函数解析式为,当时,它的图像为。
(出示课件)。
当时,正比例函数的图像经过一三象限,且y随x的增大而增大。
当时,它的图像为。
(出示课件)当时,正比例函数的图像经过二四象限,且y随x的增大而减小。
(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。
2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化.通过列一次函数解析式归纳出一次函数的概念。
冀教版数学八年级下册21.4《一次函数的应用》说课稿
冀教版数学八年级下册21.4《一次函数的应用》说课稿一. 教材分析冀教版数学八年级下册21.4《一次函数的应用》这一节的内容,是在学生已经掌握了函数的基本概念、一次函数的定义和性质的基础上进行讲授的。
本节内容主要让学生了解一次函数在实际生活中的应用,学会如何利用一次函数解决实际问题。
教材通过生动的实例,使学生感受到数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析八年级的学生已经具备了一定的函数知识基础,对一次函数的概念和性质有一定的了解。
但是,对于如何将一次函数应用到实际问题中,解决实际问题,可能还有一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:使学生了解一次函数在实际生活中的应用,学会如何利用一次函数解决实际问题。
2.过程与方法目标:通过实例分析,培养学生将数学知识应用到实际问题中的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极面对数学问题的态度。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数问题,并利用一次函数解决。
五. 说教学方法与手段1.教学方法:采用实例分析法、问题驱动法、小组合作法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个生活中的实例,引出一次函数在实际中的应用,激发学生的学习兴趣。
2.知识讲解:讲解一次函数的基本概念和性质,让学生明白一次函数的定义和特点。
3.实例分析:分析几个实际问题,引导学生将一次函数应用到问题解决中。
4.小组讨论:让学生分组讨论,尝试解决其他实际问题,培养学生的合作能力和解决问题的能力。
5.总结提升:对本节内容进行总结,强调一次函数在实际生活中的应用。
6.课堂练习:布置一些相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,突出一次函数在实际中的应用。
华师版数学八年级下册17 第2课时 建立一次函数的模型解决实际问题教案与反思
第2课时建立一次函数的模型解决实际问题满招损,谦受益。
《尚书》原创不容易,【关注】,不迷路!工欲善其事,必先利其器。
《论语·卫灵公》原创不容易,【关注】,不迷路!人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】,不迷路!1.根据问题及条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,能够将实际问题转化为一次函数的问题.(重点)一、情境导入某公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B 套餐每月话费为y2(元),月通话时间为x(分钟).(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】利用一次函数解决最值问题某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,列出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千利润为3元,乙种水果每千克利润为4元.设总利润为W,由题可得W=3x+4(140-x)=-x+560.∵该水果店决定乙种水果的进量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35.∵-1<0,∴W随x的增大而减小,则x越小W越大.∴当x=35时,W最大=-35+560=525(元),140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.【类型二】利用一次函数解决有关路程题为倡导低碳生活,绿色出行某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1)与自行车队离开甲地的时间x(///.方法总结:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的关系式的运用,一次函数与一元一次程的运用,解答时求出函数的关系式是关键.【类型三】用一次函数解决方案问题某社区活动中心准备购买10副某种品牌的毛球拍,每副球拍配x(x≥)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打折(按标价的90%)售;B超市:买一副毛球拍送2个羽毛球.在A超市购买羽毛球和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解析:(1)根购买费用=单价×数量建立关系就可以表示出yAyB的关系式;2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解:(1)由题意得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x-20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yA>yB时,27x+270>30x+240,得x<10.∵x≥2,∴2≤x<10;当yA<yB时,27x+270<30x+240,得x>10;∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时,在A超市购买划算;(3)由题意知x=15,15>10,∴只在一家超市购买时,选择A超市划算,yA=27×15+270=675(元).在两家超市购买时,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.方法总结:本题考查了一次函数关系式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的关系式是关键.三、板书设计1.利用一次函数解决最值问题2.利用一次函数解决有关路程问题3.利用一次函数解决方案问题本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性.在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择合适的办法解决问题.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时一次函数与实际问题1.根据问题及条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,能够将实际问题转化为一次函数的问题.(重点)一、情境导入联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x(分钟).(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】利用一次函数解决最值问题广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克) 甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,列出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35.∵-1<0,∴W随x的增大而减小,则x越小W越大.∴当x=35时,W最大=-35+560=525(元),140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.【类型二】利用一次函数解决有关路程问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1h后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2h装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地的时间x (h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多久与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由“速度=路程÷时间”就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追及问题设邮政车出发a h 与自行车队首次相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以求出D 的坐标,由待定系数法求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得自行车队行驶的速度为72÷3=24(km/h).(2)由题意得邮政车的速度为24×2.5=60(km/h).设邮政车出发a h 与自行车队首次相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23h 与自行车队首次相遇;(3)由题意得邮政车到达丙地的时间为135÷60=94(h),∴邮政车从丙地出发返回甲地前共用时为94+2+1=214(h),∴B (214,135),C (7.5,0).自行车队到达丙地的时间为135÷24+0.5=458+0.5=498(h),∴D (498,135).设直线BC 的解析式为y 1=k 1+b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0=7.5k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-60,b 1=450.∴y 1=-60x +450.设ED 的解析式为y 2=k 2x+b 2,由题意得⎩⎪⎨⎪⎧72=3.5k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24x -12.当y 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【类型三】 利用一次函数解决图形面积问题如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)若“几何体”的下方圆柱的底面积为15cm 2,求“几何体”上方圆柱的高和底面积.解析:(1)根据图象,分三个部分:注满“几何体”下方圆柱需18s ;注满“几何体”上方圆柱需24-18=6(s),注满“几何体”上面的空圆柱形容器需42-24=18(s).再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,则18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体”下方圆柱的高为a cm,则a·(30-15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11-6=5(cm).设“几何体”上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.方法总结:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型四】利用一次函数解决销售问题某社区活动中心准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A >y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解:(1)由题意得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x-20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10.∵x≥2,∴2≤x<10;当y A <y B时,27x+270<30x+240,得x>10;∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时,在A超市购买划算;(3)由题意知x=15,15>10,∴只在一家超市购买时,选择A超市划算,y A=27×15+270=675(元).在两家超市购买时,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.方法总结:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.【类型五】利用图表信息解决实际问题某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:产品甲乙原材料数量(吨) 1 2 生产成本(万元) 42若该工厂生产甲种产品m 吨,乙种产品n 吨,共用原材料160吨,销售甲、乙两种产品的利润y (万元)与销售量x (吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.(1)求m 、n 的值;(2)该工厂投入的生产成本是多少万元?解析:(1)求出甲、乙两种产品每吨的利润,然后根据两种原材料的吨数和全部销售后的总利润,列出关于m 、n 的二元一次方程组,求解即可;(2)根据“生产成本=甲的成本+乙的成本”,列式计算即可得解.解:(1)由图可知,销售甲、乙两种产品每吨分别获利6÷2=3(万元)、6÷3=2(万元).根据题意可得⎩⎪⎨⎪⎧m +2n =160,3m+2n =200,解得⎩⎪⎨⎪⎧m =20,n =70; (2)由(1)知,甲、乙两种产品分别生产20吨、70吨,所以投入的生产成本为20×4+70×2=220(万元).答:该工厂投入的生产成本为220万元. 方法总结:本题考查了一次函数的应用,主要利用了列二元一次方程组解决实际问题,根据表格求出两种产品每吨的利润,然后列出方程组是解题的关键.三、板书设计1.利用一次函数解决最值问题 2.利用一次函数解决有关路程问题 3.利用一次函数解决图形面积问题4.利用一次函数解决销售问题 5.利用图表信息解决实际问题本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性.在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择合适的办法解决问题.。