公开课--二元一次不等式(组)与平面区域(2)解析

合集下载

课程资料:二元一次不等式(组)表示的平面区域

课程资料:二元一次不等式(组)表示的平面区域
图)分别为65xx++32yy≥≥4300,, x,y∈N.
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y

a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O

x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

1.数学内容:
⑴ 二元一次不等式表示的平面区域 ⑵ 确定二元一次不等式表示的平面区域的方法是“直线定界, 特殊点定域”
⑶ 二元一次不等式组表示的平面区域是各个二元一次不等式所 表示的平面区域的公共部分
2.数学方法:
自主学习
1.巩固练习: 相应的配套作业
2.课外探究: 用计算机绘制二元一次不等式组表示 的平面区域 3.理论迁移:
特殊点定域
拓展1
x 2y 0 画出不等式组 表示的平面区域 2 x y 4 0
各个不等式所表示的平面区域的公共部分
步骤为:①画线;②定域;③求“交”;④表示.
学以致用
x 拓展2 在图中加一条直线: 4 ,用不等式组表 示这三条直线围成的三角形区域。
2x y 4 0
概念生成
1、二元一次不等式和二元一次 不等式组的定义
(1)二元一次不等式:
x y 25 x y 6 x 0 y 0
含有两个未知数,并且未知数的最高次数是1的不等式
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组
(3)二元一次不等式(组)的解集:
结论
不等式x – y < 6表示直 线x – y = 6左上方的平 面区域;
不等式x – y > 6表示直 线x – y = 6右下方的平 面区域;
直线叫做这两个区域的边界。
注意:把直线画成虚线以表示区域不包括边界
知识建构
二元一次不等式Ax + By + C>0的解集表示的图形
从 特 二元一次不等式Ax + By + C>0在平面直角坐标 殊 系中表示直线Ax + By + C = 0某一侧所有点组成 到 一 的平面区域。(虚线表示区域不包括边界直线) 般

数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案

数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案
判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标〔x,y)代入Ax+By+C,所得到实数的符号都相同,因此只需在此直线的某一侧取一特别点〔x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.〔特别地,当C≠0时,常把原点作为此特别点〕。
随堂练习1
1、画出不等式2 +y-6<0表示的平面区域.
2、画出不等式组 表示的平面区域。
2.讲授新课
【应用举例】
例3某人预备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格〔以班级为单位〕:
学段
班级学生人数
配备教师数
硬件建设/万元
教师年薪/万元
初中
45
2
26/班
2/人
高中
课题
§3.3.1二元一次不等式〔组〕与平面区域
第2课时
课型
新授课
课时
备课时间
教学目标
知识与技能
巩固二元一次不等式和二元一次不等式组所表示的平面区域;能依照实际问题中的条件,找出约束条件;
过程与方法
经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
情感态度与价值观
结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
重点
理解二元一次不等式表示平面区域并能把不等式〔组〕所表示的平面区域画出来;
难点
把实际问题抽象化,用二元一次不等式〔组〕表示平面区域
教学方法
教学过程
1.课题导入
[复习引入]
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.〔虚线表示区域不包括边界直线〕

二元一次不等式(组)与平面区域的说课反思

二元一次不等式(组)与平面区域的说课反思

二元一次不等式(组)与平面区域的说课反思作者:周传斌来源:《中学生导报·教学研究》2013年第16期为了响应省委省政府“实现伟大中国梦、建设美丽繁荣和谐四川”的号召,金堂县举行了优质课说课比赛。

我作为一名年轻的数学教师,代表我校参赛,参赛课题为:二元一次不等式(组)与平面区域(第一课时)。

一.教材分析(一)学习重点:会求二元一次不等式(组)表示平面的区域;难点:如何把实际问题转化为线性规划问题。

(二)三维目标:1.使学生了解并会用二元一次不等式(组)表示平面区域,能画出二元一次不等式(组)所表示的平面区域;2.提高学生“建模”和解决实际问题的能力;3.在探究的过程中,培养学生分析问题、解决问题的能力,激励学生勇于创新。

(三)地位作用:这部分选至人教版必修5第三章第三节第一课时的内容。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。

建立不等观念、处理不等关系与处理等量问题是同样重要的。

在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值。

二.学情分析对于进入高一下期的学生而言,他们已经掌握了不等关系的概念,二元一次不等式的解法,学会了不等式一些简单运用。

但是我校的大部分同学在表达上、概括上有所欠缺;知识不成一个体系,不能灵活的运用数形结合、模型转化等数学思想解决相关问题,基础相对较薄弱。

同时作为“95后”的新生代高中生,他们大都有自己独特的学习方法,厌倦教师的单独说教,希望老师能创设情景,便于他们进行思考探索的空间,给他们发表自己见解和表现才华的机会。

三.教学学法分析1.教法:探究式教学法;问题引导式教学法;多媒体辅助教学法。

2.学法:在引导学生分析问题时,留以余地的让学生去联想、探索,鼓励学生大胆猜想,给出证明,并最终得出结论。

四.教学程序:新课导入;自主学习;合作探究,精讲点拨;学以致用,内化提高;随堂巩固,课堂小结。

高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5

高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5
2 + ≤ 9,
则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
典例导悟
类型一 二元一次不等式(组)表示平面区域 [例1] 画出下列不等式(组)表示的平面区域.
变式训练1
如图所示的阴影部分表示的区域用二元一 )
x+y-1≤0 B. x-2y+2≤0 x+y-1≤0 D. x-2y+2≥0
次不等式组表示为(
x+y-1≥0 A. x-2y+2≥0 x+y-1≥0 C. x-2y+2≤0
答案:A
类型二 [例2]
(2)不等式组的解集是x+y≤5 ①,x-2y≥3 集的交集.
②的解
①式表示的区域是直线x+y-5=0左下方平面区域并 且包括直线x+y-5=0. ②式表示的区域是直线x-2y=3右下方平面区域并且 包括直线x-2y-3=0. 所以不等式组表示的区域是图(2)中的阴影部分(包括直 线).
【点评】 画直线时容易虚实不分,若含等号应画成 实线.区域容易弄反,要注意方法.
(1)2x+y-6<0;
x+y≤5 (2) x-2y≥3.
[分析]
解题的关键在于正确地描绘出边界直线,然

高二数学 二元一次不等式(组)与平面区域 知识讲解

高二数学 二元一次不等式(组)与平面区域 知识讲解

二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。

2020版人教A数学必修5 课件:3.3.1 二元一次不等式(组)与平面区域

2020版人教A数学必修5 课件:3.3.1 二元一次不等式(组)与平面区域

即时训练3-1:某家具厂制造甲、乙两种型号的桌子,每张桌子需木工和 漆工两道工序完成.已知木工做一张甲、乙型号的桌子分别需要1 h和 2 h,漆工油漆一张甲、乙型号的桌子分别需要3 h和1 h.又木工、漆工 每天工作分别不得超过8 h和9 h.请列出满足生产条件的数学关系式,并 画出相应的平面区域.
3.3 二元一次不等式(组)与简单的线性规划 问题
3.3.1 二元一次不等式(组)与平面区域
[目标导航]
1.知道什么是二元一次不等式及二元一次不等式组. 2.了解二元一次不等式的几何意义,并会画其表示的平面 课标要求 区域. 3.能从实际情境中抽象出二元一次不等式组,并能用平面 区域表示二元一次不等式组的解.
x y 2 1 0,
x ky k 0
(2)将图中阴影部分表示的平面区域,用不等式表示出来.
(2)解:由图(1)可知,其边界所在的直线在 x 轴和 y 轴上的截距均为 1,故边界所在的直线 方程为 x+y-1=0, 将原点(0,0)代入直线方程 x+y-1=0 的左边,得 0+0-1<0, 故所求的不等式为 x+y-1≤0;
思考1:不等式2x-3y>0是二元一次不等式吗? 答案:是,符合二元一次不等式的两个特征. 2.二元一次不等式表示的平面区域
表示直线 Ax+By+C=0
某一侧
二元一次不等式Ax+By+C>0 所有点组成的平面区域,我们把直线画 成 虚线 ,以表示区域 不包括 边界
表示直线 Ax+By+C=0
某一侧

y
1)

0,
表示的平面区
域的面积等于( )

二元一次不等式(组)所表示的平面区域知识讲解

二元一次不等式(组)所表示的平面区域知识讲解

(2) 2 y 1 ≥ 0
x 3 ≤ 0
y
3
则它们的交集
2
就是已知不等式
1
组所表示的区域。
-1 O 1
2y+1=0 -1
-2
2x-3y+2=0
23 x-3=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
例1.画出下面二元一次不等式表示的平 面区域:
(1)2x-y-3>0; (2)3x+2y-6≤0.
解:(1)所求的平面区 域不包括直线,用虚线 画直线l:2x-y-3=0,
将原点坐标(0,0)代入 2x-y-3,得
y 2x-y-3=0 2
1
-1 O -1
x 12
-2
2×0-0-3=-3<0,
2x-y-3>0
二元一次不等式的一般形式为 Ax+By+C>0 或 Ax+By+C<0,
现在我们来探求二元一次不等式解集 的几何意义。
已知直线l:Ax+By+C=0,它把平面分 为两部分,每个部分叫做开半平面,开半 平面与l的并集叫做闭半平面。
根据直线方程的意义,凡在l上的点的 坐标都满足方程①,而不在直线l上的点 的坐标都不满足方程①。
-1 O -1 -2
x+y-1=0 x 12
这使我们猜想:l同侧的点的坐标是否 使式子x+y-1的值具有相同的符号?要么 都大于零,要么都小于零。

二元一次不等式表示平面区域

二元一次不等式表示平面区域

二元一次不等式的概念
二元一次不等式是形如ax+by+c<0的不等式,其中a,b,c为实数,且a+b≠0。
1 定义
2 特点
形如ax+by+c<0的一次不等 式称为二元一次不等式。
该不等式中包含两个变量 x和y,它们的次数均为1.
3 要点
斜率为-a/b,截距为-c/b.
二元一次不等式的图像表示方法
二元一次不等式可以用平面直角坐标系中的一条直线来表示,直线上的点在不等式的解集内,直线下方的点在 不等式的解集外。
二元一次不等式表示平面区域
欢迎大家来到本次分享。今天我们将学习如何使用二元一次不等式来表示平 面区域。
平面区域的定义
在平面直角坐标系中,如果一个点满足给定的条件,则这个点可以表示为一个解的集合。这个解 的集合称为平面区域。
定义
平面直角坐标系中,一个点满足一定关系的解集合称为平面区域。
关键
解集合的表示方法决定了平面区域的表示方法。
图像与解集的关系
二元一次不等式的图像表示决定了不等式的解集合。直线上方的点不属于解集,直线下方的点属于解集。
要点
直线确定平面直角坐标系,直线两侧分别表示解 集的元素和非元素。
相关知识
一次函数、斜率、截距、方程、不等式。
利用二元一次不等式表示平面区域的例子
我们可以使用不等式,将一个平面区域表示为某个线性不等式的解集。例如下图所示。
图像表示原理
直线上的点满足不等式,下方的点不满足不等式。
应用实例
图中阴影区域是不等式的解集合。
二元一次不等式的解集表示方法
解集合是不等式的所有解的集合,可以用各种方法来表示。
1

“二元一次不等式(组)表示的平面区域”教学实录与反思

“二元一次不等式(组)表示的平面区域”教学实录与反思

探 究特殊二元一次不等式表示 的平 面区域.
3 .教 学难 点
生 :直角坐标系 内点的集合. 师 :我们这节课 要研究 的就是二元一次 不等式 ( 组)表示
≠0 ,B≠0 )
的平 面 区域 .
探 究 一般 二元 一次 不等 式 A +研 +C>0
收 稿 日期 :2 1- 1 2 0 1 l— 5
验班.

生。 :设 和 Y分别表示购买熏鸡 和猪蹄的数量 ,根据题 意 பைடு நூலகம்

教 学 目标 、 教 学 难点 及 教 学 方 法
列 出二元一次方程组 :
Y 一6>0 ) , 4 x+2 y 0 0 O 一2 0≤ 0 ② .
1 教 学 目标 .
( )掌握不等式 区域 的判断方 法 ;能作 出二元 一次 不等式 1

个猪蹄售价 2 0元 ,如果希望所带 的特产 ( 熏鸡或猪蹄二选 一
( 第一课 时).研究 的主题是 通过学生 的 自主探究培 养解 决数学 即可)至 少送 给 6个 以上 的朋友 ,试 问应该 如何 确 定购 买方 ” 问题 的能力 ,授课班 级为锦州市 北宁第一 高级 中学高二 理科试 案 ?
( 师板 书 “ 号 同侧 ? ) 教 同 ”
( 学生在愉快而又紧张的探索之后 ,各小组代表纷纷要求发 言. ) 生 ( 方法 1 :先 画出直线 +Y一6=0 ) ,直线上 的点满足 + Y一6=0 ,直线上方就应该满足大 于 0 ,下方小于 0 .
( 组)表示的平面区域 . () 2 经历 自主探究提高分析 问题和解决问题的能力 ;理解数 学 的转化 、数形结合 以及分类讨论 的思想. () 3 通过主动参与和合作交流 ,培养 团结协作 和勇于探究 的

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域(2课时)主备人:王智喜一、内容及其解析本节课由日常生活中的实际问题来引出二元一次不等式(组)的一些基本概念,由一元一次不等式组的解集可以表示为数轴上的区间,引出问题:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的教学。

教学重点是会求二元一次不等式(组)表示平面的区域.解决重点的关键是将二元一次不等式化为相应的二元一次方程,并画出其对应的直线。

二、目标及其解析1、目标定位:能正确地使用平面区域表示二元一次不等式2、目标解析:将二元一次不等式化为相应的二元一次方程,并画出其对应的直线三、问题诊断分析在本节课的教学中,学生可能遇到的问题是如何将二元一次不等式化为相应的二元一次方程,并画出其对应的直线。

产生这一问题的原因是不清楚二元一次不等式与二元一次方程之间的联系。

要解决这一问题,就要结合图形帮助学生理解,其中关键是训练。

四、教学条件支持条件:在本节课二元一次不等式(组)与平面区域教学中,可以使用几何画板或多媒体。

因为使用几何画板或多媒体,有利于直观形象,增加教学容量。

五、教学过程设计第一部分 自学(见学案)第二部分 互学问题:在现实生活中,存在一些不等关系,我们应该用什么模型来刻画它们呢?【设计意图】点明本节知识,提出问题供学生思考师生活动:前面我们学习了一元二次不等式及其解法,这里我们将学习另一种不等关系的模型。

先看一个实际例子。

问题1:一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔贷 款资金至少可带来30 000元的效益,其中从企业贷款中获益12%,从个人贷款中 获益10%,那么,信贷部应该如何分配资金呢?设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元,得到分配资金应该满足的条件:⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+.0,0,30000001012,25000000y x y x y x我们把含有两个未知数,且未知数的次数是1的不等式(组)称为二元一次不等式(组).满足二元一次不等式(组)的x 和y 的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集问题2:在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合{(x,y)|x+y-1=0}是经过点(0,1)和(1,0)的一条直线l ,那么,以二元一次 不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)x+y-1>0的 解为坐标的点的集合A ={(x,y)|x+y-1>0}是什么图形呢?请同学们猜想一下,这个点集在坐标平面上表示什么呢?问题3: 二元一次不等式a x+b y+c >0和a x+b y+c <0表示的平面区域?(1)结论:二元一次不等式a x+b y+c >0在平面直角坐标系中表示直线a x+b y+c =0 某一侧所有点组成的平面区域。

3.3.1二元一次不等式(组)与平面区域(2)

3.3.1二元一次不等式(组)与平面区域(2)
所以AD=3,AB=2,BC=5 故所求区域的面积为 1 S= 3 5 2 8 2
y
5
C x-y+5=0
D
2A -5
B
2
y=2
o
x
x=2
x-y+5≥0
变式1 若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练 x-y+5≥0
变式: 若二元一次不等式组 y≥a
解:设x , y分别为计划生产甲、乙两种混合肥料的车皮 数,于是满足以下条件
4x+y≤10
18x+15y ≤66 x≥0,X∈N y ≥0,y∈N
y
10
5
4x+y=10
0
1
2 3 4 18x+15y =66
x
x-y+5≥0
例4、 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析: 如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
3.3.1 二元一次不等式 (组)与平面区域(2)
y
o
x
复习
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。画图时
应非常准确,否则将得不到正确结果。
⑵ 判定方法: 直线定界,特殊点定域。
------若不等式中不含有等号时,则边界应画成虚线,
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
例2、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
第一种钢板 第二种钢板

二元一次不等式(组)的解法与平面区域

二元一次不等式(组)的解法与平面区域

2、二元一次不等式(组)的解集表示的图形
(1)复习回顾 一元一次不等式(组)的解集所表示的图形
——数轴上的区间。
如:不等式组 xx
3 4
0 0
的解集为数轴上的一个区间(如图)。
-3≤x≤4
思考:在直角坐标系内,二元一次不等式(组)的解集
表示什么图形?
下面研究一个具体的二元一次不等式
x – y < 6 的解集所表示的图形。 作出x – y = 6的图像—— 一条直线
(注:由斜截式转化为一般式进行研究探讨或由一般式 化归为斜截式进行研究探讨,并作比较)
结论2:当B>0时 Ax+By+C>0表示直线上方区域 Ax+By+C<0表示直线下方区域
口诀:上正下负一般式 (B>0)
强调:若B<0时则恰好结论相反;若B=0则最易判断。
例题2:根据下列各图中的平面区域用不等式 表示出来(图1包含y轴)
结论1:y>kx+b表示直线上方的平面区域 y<kx+b表示直线下方的平面区域
口诀:上大下小斜截式
口诀:上大下小斜截式
• 例题1: 画出下列不等式所表示的平面区域
(1) y 2x 1
(2)x 2
(3) y 2
(4)x y 2 0
(5) 2x y 1 0
拓展引申
共同探讨:对于二元一次不等式Ax+By+C>0(A、B不同时为 0),如何确定其所表示的平面区域?
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点
b)在直线x – y = 6左上方区域内的点
c)在直线x – y = 6右下方区域内

§4 4.1 二元一次不等式(组)与平面区域

§4  4.1 二元一次不等式(组)与平面区域

一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表: 例 4 一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表:
品种 甲 乙 电力/kW·h 电力/kW·h 2 8 煤/t 3 5 工人/ 工人/人 5 2
的用电额度, 该厂有工人 200 人,每天只能保证 160kW ⋅ h 的用电额度,每天用煤 150t,请在直角坐标系中画出每天甲、 不得超过 150t,请在直角坐标系中画出每天甲、乙两种产品允许的 产量范围。 产量范围。
每月用餐费最低标准240元 每月用餐费最低标准240元; 240 其他费用最少支出180元 其他费用最少支出180元. 180 可用来支配的资金为500元 可用来支配的资金为500元, 500 如何使用这些钱呢? 如何使用这些钱呢?
设用餐费为 x 元,其他费用为 y 元, 由题意 x 不小于 240, y 不小于 180, x 与 y 之和不超过 500, , ,
因为对在直线 Ax+By+ 同一侧的所有点( 因为对在直线 Ax+By+C=0 同一侧的所有点( x, y ),把它的坐标 Ax+By+ 所得到实数的符号都相同。 ( x, y ) 代入 Ax+By+C,所得到实数的符号都相同。
所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 所以只需在此直线的某一侧取一特殊点( Ax+By+ (<0)表示直线哪一侧的平面区域 表示直线哪一侧的平面区域. 的正负即可判断 Ax+By+C>0(<0)表示直线哪一侧的平面区域.
l : x + 2y −3 = 0
, 在 l 上方的平面区域内的任一点的坐标( x y )满足不等式

高中数学《3.3.1二元一次不等式(组)与平面区域》教案2 新人教A版必修5

高中数学《3.3.1二元一次不等式(组)与平面区域》教案2 新人教A版必修5

3.3.1二元一次不等式(组)与平面区域(2)
高二数学教·学案
【学习目标】
1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;
2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
3.情感态度与价值观:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。

【学习重点】从实际问题中抽象出二元一次不等式(组),并能用图形表示.
【学习难点】从实际问题中抽象出二元一次不等式(组).
【授课类型】新授课
高二数学教·学案
课后反思:。

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域  课件
[提示] 一一对应.
4.二元一次不等式表示的平面区域及确定 (1)直线 l:ax+by+c=0 把直角坐标平面分成了三个部分: ①直线 l 上的点(x,y)的坐标满足 ax+by+c=0 . ②直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0,另一侧 平面区域内的点(x,y)的坐标满足 ax+by+c<0 .
3.二元一次不等式(组)的解集概念 满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称为 二元一次不等式(组)的一个 解,所有这样的有序数对(x,y)构成的集合称为二 元一次不等式(组)的 解集 . 思考:把二元一次不等式的解看作有序数对,它与平面内的点之间有什 么关系?
同理得 B(-1,1),C(3,-1).
∴|AC|= 22+-42=2 5,
而点
B
到直线
2x+y-5=0
的距离为
d=|-2+51-5|=
6, 5
∴S△ABC=12|AC|·d=12×2 5× 65=6.
x>0 2.若将例题中的条件“y>0
4x+3y≤12
”变为“y|x≤|≤2y≤|x|+1 ”求所
标. (1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直 线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形. (2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠 近直线的点,以免出现错误.
x+y>2, 2.不等式组x-y>0, 表示的区域是什么图形,你能求出它的面积吗?
x<4
该图形若是不规则图形,如何求其面积?
提示:不等式组表示的平面区域如图阴影部分 △ABC,该三角形的面积为 S△ABC=12×6×3=9.若 该图形不是规则的图形.我们可以采取“割补”的 方法,将平面区域分为几个规则图形求解.

二元一次不等式(组)所表示的平面区域教案人教版

二元一次不等式(组)所表示的平面区域教案人教版
5.二元一次不等式(组)的实际应用:
-能够将实际问题转化为二元一次不等式(组)问题。
-学会运用二元一次不等式(组)解决实际问题,如线性规划、区域限制等。
6.二元一次不等式(组)的性质:
-了解二元一次不等式(组)的性质,如传递性、互补性等。
-掌握不等式(组)的解集的性质,如闭合性、连续性等。
作业布置与反馈
1.逻辑推理:通过学习二元一次不等式(组)的表示方法,培养学生运用逻辑推理能力,理解不等式(组)之间的逻辑关系,能够准确判断平面区域内各点是否满足不等式(组)的条件。
2.直观想象:通过在平面直角坐标系中表示二元一次不等式(组)所表示的平面区域,培养学生的直观想象能力,使学生能够直观地认识和理解不等式(组)所表示的区域的形状和位置。
解决方法:通过大量练习,让学生在坐标系中绘制不同类型的不等式(组)所表示的区域,加深对“交集”和“并集”的理解。
(2)将实际问题转化为二元一次不等式(组)问题,并求解。
解决方法:引导学生分析实际问题中的约束条件,将其转化为不等式(组)形式,然后运用所学知识求解。可以结合生活实例进行讲解,让学生感受到数学与生活的联系。
(二)存在主要问题
1.课堂管理:在教学过程中,部分学生在课堂上注意力不集中,影响教学效果。
2.教学方法:在讲解知识点时,有时过于侧重理论,忽视了学生的实际操作能力的培养。
3.作业布置:作业布置有时过于繁琐,导致学生花费大量时间完成,影响学习效果。
(三)改进措施
1.改进课堂管理:通过设置课堂规则,加强课堂管理,提高学生的课堂注意力。
教学难点与重点
1.教学重点:
(1)理解二元一次不等式在平面直角坐标系中的表示方法,掌握“交集”和“并集”的概念。
举例:在坐标系中,不等式x+y<2表示的是直线x+y=2下方的区域,不包括直线上的点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 试确定m的范围,使点(1,t)和 (1,1)在3x-y+1=0的异侧。
变式:若在同侧,m的范围又是什么呢?
解析:解由析于:在由异于侧在,同则侧(,1则,(t)1和,(t)1和,(1)1,t)
代入3代x-入y+3mx-y所+得1 数所值得异数号值,同号, 则有(则3有-1(+t3)-t(+13)-1(+13)-1<+01)> 0 所以(所4以-t)(<4-0t)> 0 即:4即<t:t <4
变1试确定m的范围,使点(1,2)和 (1,1)在3x-y+m=0的异侧。
变式:若在同侧,m的范围又是什么呢?
解析:解由析于:在由异于侧在,同则侧(,1则,(2)1,和2()1和,(1)1,1)
代入3代x-入y+3mx-y所+得m数所值得异数号值,同号, 则有(则3有-2(+m3-)2+(m3)-1(+m3-)1+<m0 )> 0 所以(所m以+(1)m(+m1+)2()m<+02)> 0 即:-2即<:mm<-<1-2或m>-1
x-y+5≥0
例2 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析:如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
所以AD=3,AB=2,BC=5
故所求区域的面积为
S=1 3 5 2 8
2
-5
y
C x-y+5=
D
5
2 A B y=2
o2
x
例2.画出下列不等式组所表示的平面区 域.
x 0
1
2
y x
2x 2y
1 4
变 1 S的面积
2 区域的整点的个数
3 若x=a能够构成三角形,则a 的取值范围?
例3.如图,△ABC三个顶点坐标为A(0,4), B(-2,0),C(2,0),求△ABC内任一点 所满足的条件.
x=2
x-y+5≥0
变式1若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练
x-y+5≥0
变式:若二元一次不等式组 y≥a y
0≤x≤2
7
所表示的平面区域是一个三角形,
求a的取值范围
5D
x-y+5=0
C
y=a7 y=a5
答案:5≤a<7 -5
o2
x
y=a
x=2
练习:
1.(09·安徽)不等式组
xx
0, 3y
4,
所表
3x y 4
示的平面区域的面积等于
( C)
A.3
B.2
C.4
D. 3
2
3
3
4
x 0
例3
求不等式组
y
0
表示的平面
区域内的整点 4x 3y 12 坐标。
二元一次不等式 (组)与平面区域(2)
小结
一般地,直线y=kx+b把平面分成两个区域:
上大 下小
y y=kx+b
y>kx+b y<kx+b x
O
小结
对于Ax+By+C>0(A2+B2≠0)所在的平面区域 y
Ax+By+C=0
(B>0) x O
Ax+By+C>0
B>0 上正 下 负
B<0 上负 下 正
相关文档
最新文档