八年级下学期压轴题

合集下载

专题01 二次根式选填题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)

专题01 二次根式选填题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)

专题01 二次根式选填题压轴训练(时间:60分钟总分:120)班级姓名得分选择题解题策略:(1)注意审题。

把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。

可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。

若有时间,再去拼那些把握不大或无从下手的题目。

这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错、易混点。

(5)方法多样,不择手段。

中考试题凸显能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。

不要在一两道小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”,也有25%的正确率。

(6)控制时间。

一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

填空题解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

中学数学八年级下册 期末压轴题(含答案)

中学数学八年级下册  期末压轴题(含答案)

八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。

八年级下册数学难题压轴题

八年级下册数学难题压轴题

八年级下册数学难题压轴题一、选择题(每题3分,共30分)1. 若关于x的分式方程(m)/(x - 1)+(3)/(1 - x)=1的解为正数,则m的取值范围是()- A. m>2- B. m<2- C. m>2且m≠3- D. m<2且m≠ - 3解析:首先将分式方程(m)/(x - 1)+(3)/(1 - x)=1化简,方程变形为(m)/(x - 1)-(3)/(x - 1)=1。

两边同乘以(x - 1)得:m-3=x - 1,解得x=m - 2。

因为方程的解为正数,所以x=m - 2>0,即m>2。

又因为分母不能为0,即x-1≠0,m - 2-1≠0,m≠3。

所以m的取值范围是m>2且m≠3,答案为C。

2. 已知四边形ABCD是平行四边形,下列结论中不正确的是()- A. 当AB = BC时,四边形ABCD是菱形。

- B. 当AC⊥BD时,四边形ABCD是菱形。

- C. 当∠ ABC = 90^∘时,四边形ABCD是矩形。

- D. 当AC = BD时,四边形ABCD是正方形。

解析:- 选项A:一组邻边相等的平行四边形是菱形,当AB = BC时,四边形ABCD 是菱形,该选项正确。

- 选项B:对角线互相垂直的平行四边形是菱形,当AC⊥BD时,四边形ABCD是菱形,该选项正确。

- 选项C:一个角是直角的平行四边形是矩形,当∠ ABC=90^∘时,四边形ABCD是矩形,该选项正确。

- 选项D:对角线相等的平行四边形是矩形,当AC = BD时,四边形ABCD是矩形,而不是正方形,该选项错误。

答案为D。

二、填空题(每题3分,共15分)1. 化简frac{x^2-1}{x^2+2x + 1}的结果是______。

解析:先对分子分母进行因式分解,分子x^2-1=(x + 1)(x - 1),分母x^2+2x + 1=(x + 1)^2。

所以frac{x^2-1}{x^2+2x + 1}=((x + 1)(x - 1))/((x + 1)^2)=(x - 1)/(x + 1)。

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。

八年级数学下册压轴题培优专题06 矩形的判定和性质

八年级数学下册压轴题培优专题06 矩形的判定和性质

2022-2023学年苏科版八年级数学下册精选压轴题培优卷专题06 矩形的判定和性质姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•平山县期末)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.42.(2分)(2022春•朝天区期末)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,过点P作PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值是()A.1.2 B.1.5 C.2 D.2.43.(2分)(2022春•八公山区期末)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2 B.2.4 C.2.5 D.4.84.(2分)(2022春•桂平市期末)如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4 B.1.4 C.1.3 D.1.25.(2分)(2022春•新邵县期中)如图,四边形ABCD的对角线互相平分,若∠ABC=90°,则四边形ABCD 为()A.菱形B.矩形C.菱形或矩形D.无法判断6.(2分)(2022•科左中旗二模)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC =12,BD=16,则OE的长为()A.8 B.9 C.10 D.127.(2分)(2022•巨野县模拟)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=6,BC=8,当点P在AC上运动时,则BO的最小值是()A.1.5 B.2 C.2.4 D.2.58.(2分)(2021春•梁山县期中)如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B,C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是()A.AM<6 B.AM<12 C.AM<12 D.AM<69.(2分)(2021春•罗平县期中)下列说法正确的有几个()①两组对角分别相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③对角线相等的平行四边形是矩形;④矩形的四个角是直角;⑤对角线互相垂直的四边形是菱形;⑥对角线互相垂直的平行四边形是菱形;⑦四条边相等的四边形是菱形.A.6个B.5个C.4个D.7个10.(2分)(2021春•林州市期末)如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC 上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为()A.B.C.D.评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•岱岳区期中)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和1cm/s,则最快s后,四边ABPQ成为矩形.12.(2分)(2015春•滨湖区校级月考)如图,矩形ABCD中,AB=12cm,BC=4cm,点P从A开始沿折线A ﹣B﹣A以4cm/s的速度运动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD也为矩形.13.(2分)(2022春•本溪期末)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,点P为斜边AB 上的一个动点(点P不与点A,B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.14.(2分)(2022春•临汾期末)如图,四边形ABCD是个活动框架,对角线AC、BD是两根皮筋.如果扭动这个框架(BC位置不变),当扭动到∠A'BC=90°时四边形A'BCD'是个矩形,A'C和BD'相交于点O.如果四边形OD'DC为菱形,则∠A'CB=°.15.(2分)(2021秋•三水区期末)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为.16.(2分)(2022春•白河县期末)如图,在矩形ABCD中,AD=1,AB=2,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,则PQ的最小值为.17.(2分)(2022春•昭化区期末)如图,P是Rt△ABC的斜边AC(不与点A,C重合)上一动点,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连接MN.若AB=6,BC=8,当点P在AC上运动时,MN的最小值是.18.(2分)(2022春•南平期末)如图,在矩形ABCD中,E,F分别是边AB,AD上的动点,P是线段EF的中点,PG⊥BC,PH⊥CD,G,H为垂足,连接GH.若AB=4,AD=3,EF=3,则线段GH长度的最小值是.19.(2分)(2022春•淅川县期末)如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.20.(2分)(2019秋•雁塔区校级期末)如图,若将四根木条钉成的矩形木框ABCD变形为平行四边形A′BCD′,并使其面积为矩形ABCD面积的一半,若A′D′与CD交于点E,且AB=2,则△ECD′的面积是.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022春•留坝县期末)如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=6,DF=10,求BF的长.22.(6分)(2022春•曲阳县期末)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,求证四边形MNQP是菱形.23.(6分)(2022春•杨浦区校级期中)已知,如图,BE,BD是△ABC中∠ABC的内、外角平分线,AD⊥BD 于D,AE⊥BE于点E,延长AE交BC的延长线于点N.求证:DE=BN.24.(8分)(2022春•洪泽区期末)在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G、H分别是AD、BC的中点,则下列关于四边形EGFH(E、F相遇时除外)的判断:①一定是平行四边形;②一定是矩形;③一定是菱形,正确的是;(直接填序号,不用说理)(2)在(1)的条件下,若四边形EGFH为矩形,求t的值.25.(8分)(2022春•碑林区校级期末)如图,AC为平行四边形ABCD的对角线,将△ABC沿对角线翻折,得到△AB′C,B′C与AD边交于点E,连接B′D,(1)当△CDE为等边三角形时,证明:四边形ACDB′为矩形:(2)在(1)的条件下,当AB=3时,求S△AEC.26.(8分)(2022春•扶沟县期末)如图,▱ABCD中,G是CD的中点,E是边长AD上的动点,EG的延长线与BC的延长线相交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)填空:若AB=3cm,BC=5cm,∠B=60°,则①当AE=时,四边形CEDF是矩形;②当AE=时,四边形CEDF是菱形.27.(9分)(2020春•定远县期末)如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.28.(9分)(2022春•三台县期中)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•平山县期末)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.4解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.2.(2分)(2022春•朝天区期末)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,过点P作PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值是()A.1.2 B.1.5 C.2 D.2.4解:连接AP,如图:∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=90°,∵∠BAC=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,当AP⊥BC时,AP最短,∵∠BAC=90°,AB=3,AC=4,∴BC===5,∵△ABC的面积=×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:D.3.(2分)(2022春•八公山区期末)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2 B.2.4 C.2.5 D.4.8解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:D.4.(2分)(2022春•桂平市期末)如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4 B.1.4 C.1.3 D.1.2解:连接PA,如图所示:∵AC=3、AB=4、BC=5,∴AC2+AB2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵PG⊥AC于点G,PH⊥AB于点H,∴∠PGA=∠PHA=90°,∴四边形AGPH为矩形,∴AP与GH互相平分且相等,∵M是GH的中点,∴M是AP的中点,当AP⊥BC时,AP最小,此时,△ABC的面积BC×AP=AC×AB,则AP===2.4,∴PM=AP=1.2,即PM的最小值为1.2,故选:D.5.(2分)(2022春•新邵县期中)如图,四边形ABCD的对角线互相平分,若∠ABC=90°,则四边形ABCD 为()A.菱形B.矩形C.菱形或矩形D.无法判断解:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形,故选:B.6.(2分)(2022•科左中旗二模)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC =12,BD=16,则OE的长为()A.8 B.9 C.10 D.12解:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,OA=OC=AC=6,OB=OD=BD=8,∴∠DOC=90°,CD===10,∴平行四边形OCED为矩形,∴OE=CD=10,故选:C.7.(2分)(2022•巨野县模拟)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=6,BC=8,当点P在AC上运动时,则BO的最小值是()A.1.5 B.2 C.2.4 D.2.5解:连接BP,如图所示:∵∠ABC=90°,PM⊥AB于点M,作PN⊥BC于点N,∴四边形BMPN是矩形,AC===10,∴BP=MN,BP与MN互相平分,∵点O是MN的中点,∴BO=MN,当BP⊥AC时,BP最小===4.8,∴MN=4.8,∴BO=MN=2.4,故选:C.8.(2分)(2021春•梁山县期中)如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B,C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是()A.AM<6 B.AM<12 C.AM<12 D.AM<6解:如图,连接PA,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,∴BC===13,∵PE⊥AB于E,PF⊥AC于F,∴∠PEA=∠PFA=∠EAF=90°,∴四边形AEPF是矩形,∴EF=AP,∵M为EF中点,∴AM=EF=PA,当PA⊥CB时,PA===,∴AM的最小值为,∵PA<AC,∴PA<12,∴AM<6,∴≤AM<6,故选:D.9.(2分)(2021春•罗平县期中)下列说法正确的有几个()①两组对角分别相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③对角线相等的平行四边形是矩形;④矩形的四个角是直角;⑤对角线互相垂直的四边形是菱形;⑥对角线互相垂直的平行四边形是菱形;⑦四条边相等的四边形是菱形.A.6个B.5个C.4个D.7个解:①两组对角分别相等的四边形是平行四边形,故①正确;②对角线互相平分的四边形是平行四边形,故②正确;③对角线相等的平行四边形是矩形,故③正确;④矩形的四个角是直角,故④正确;⑤对角线互相垂直的平行四边形是菱形,故⑤错误;⑥对角线互相垂直的平行四边形是菱形,故⑥正确;⑦四条边相等的四边形是菱形,故⑦正确;正确的说法有6个,故选:A.10.(2分)(2021春•林州市期末)如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC 上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为()A.B.C.D.解:连接AD、EF,∵∠BAC=90°,且BA=9,AC=12,∴BC==15,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DFA=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD===,∴EF的最小值为,∵点G为四边形DEAF对角线交点,∴GF=EF=;故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•岱岳区期中)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和1cm/s,则最快 5 s后,四边ABPQ成为矩形.解:∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC=20cm,设最快x秒,四边形ABPQ成为矩形,∵四边形ABPQ是矩形∴AQ=BP∴3x=20﹣x∴x=5故答案为:512.(2分)(2015春•滨湖区校级月考)如图,矩形ABCD中,AB=12cm,BC=4cm,点P从A开始沿折线A ﹣B﹣A以4cm/s的速度运动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=2s时,四边形APQD也为矩形.解:根据题意得:CQ=2t,AP=4t,则DQ=12﹣2t,∵四边形ABCD是矩形,∴∠A=∠D=90°,CD∥AB,∴当AP=DQ时,四边形APQD是矩形,即4t=12﹣2t,解得:t=2,∴当t=2s时,四边形APQD是矩形;故答案为:2s.13.(2分)(2022春•本溪期末)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,点P为斜边AB 上的一个动点(点P不与点A,B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是6或4.解:∵∠ACB=90°,∠B=60°,BC=4,∴∠BAC=30°,∴AB=8,AC=4,∵PD⊥AC,PE⊥BC,∠ACB=90°,∴四边形PECD是矩形,∴CQ=PQ,当∠APQ=90°时,则AB⊥CP,∵S△ABC=×AC×BC=×AB×CP,∴4×4=8CP,∴CP=2,∴AP===6,当∠AQP=90°时,则AQ⊥CP,又∵CQ=QP,∴AC=AP=4,综上所述:AP的长为6或4,故答案为:6或4.14.(2分)(2022春•临汾期末)如图,四边形ABCD是个活动框架,对角线AC、BD是两根皮筋.如果扭动这个框架(BC位置不变),当扭动到∠A'BC=90°时四边形A'BCD'是个矩形,A'C和BD'相交于点O.如果四边形OD'DC为菱形,则∠A'CB=30 °.解:由题意得,CD′=CD,∵四边形OD'DC为菱形,∴DD′=CD,∴CD′=DD′=CD,∴△CDD′是等边三角形,∴∠DCD′=60°,∴∠D′CO=60°,∵四边形A'BCD'是个矩形,∴∠BCD′=90°,∴∠A'CB=30°,故答案为:30.15.(2分)(2021秋•三水区期末)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为10 .解:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=6,OB=OD=BD=8,∴∠DOC=90°,CD===10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.16.(2分)(2022春•白河县期末)如图,在矩形ABCD中,AD=1,AB=2,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,则PQ的最小值为.解:如图,连接CM,∵MP⊥CD于点P,MQ⊥BC于点Q,∴∠CPM=∠CQM=90°,∵四边形ABCD是矩形,∴BC=AD=1,CD=AB=2,∠BCD=90°,∴四边形PCQM是矩形,∴PQ=CM,由勾股定理得:BD===3,当CM⊥BD时,CM最小,则PQ最小,此时,S△BCD=BD•CM=BC•CD,即×3×CM=×1×2,∴CM=,∴PQ的最小值为,故答案为:.17.(2分)(2022春•昭化区期末)如图,P是Rt△ABC的斜边AC(不与点A,C重合)上一动点,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连接MN.若AB=6,BC=8,当点P在AC上运动时,MN的最小值是4.8 .解:如图,连接BP,∵∠ABC=90°,AB=6,BC=8,∴AC===10,∵PM⊥AB,PN⊥BC,∴∠PMB=∠PNB=90°,∴四边形BNPM是矩形,∴MN=BP,由垂线段最短可得BP⊥AC时,线段MN的值最小,此时,S△ABC=BC•AB=AC•BP,即×8×6=×10•BP,解得:BP=4.8,即MN的最小值是4.8,故答案为:4.8.18.(2分)(2022春•南平期末)如图,在矩形ABCD中,E,F分别是边AB,AD上的动点,P是线段EF的中点,PG⊥BC,PH⊥CD,G,H为垂足,连接GH.若AB=4,AD=3,EF=3,则线段GH长度的最小值是.解:连接AC、AP、CP,如图所示:∵四边形ABCD是矩形,∴BC=AD=3,∠BAD=∠B=∠C=90°,∴AC===5,∵P是线段EF的中点,∴AP=EF=,∵PG⊥BC,PH⊥CD,∴∠PGC=∠PHC=90°,∴四边形PGCH是矩形,∴GH=CP,当A、P、C三点共线时,CP最小=AC﹣AP=5﹣=,∴GH的最小值是,故答案为:.19.(2分)(2022春•淅川县期末)如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S△ABO=OA•OB=AB•OP,∴OP==,∴EF的最小值为,故答案为:.20.(2分)(2019秋•雁塔区校级期末)如图,若将四根木条钉成的矩形木框ABCD变形为平行四边形A′BCD′,并使其面积为矩形ABCD面积的一半,若A′D′与CD交于点E,且AB=2,则△ECD′的面积是.解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=1,∴∠D'=∠A'BF=30°,∴BF=A'F=,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=1,A'E=CF,∴D'E=BF=,∴△ECD'的面积=D'E×CE=××1=;故答案为:.三.解答题(共8小题,满分60分)21.(6分)(2022春•留坝县期末)如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=6,DF=10,求BF的长.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵FC=AE,∴DC﹣FC=AB﹣AE,即DF=BE,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB,∴∠DAF=∠BAF,∵DC∥AB,∴∠DFA=∠BAF,∴∠DFA=∠DAF,∴AD=DF=10,在Rt△AED中,由勾股定理得:DE===8,由(1)得:四边形DEBF是矩形,∴BF=DE=8.22.(6分)(2022春•曲阳县期末)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,求证四边形MNQP是菱形.证明:(1)∵EH平分∠BEF,FH平分∠DFE,∴∠FEH=∠BEF,∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∵EH平分∠BEF,∴∠GEF=∠AEF,∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)∵MN∥EF∥PQ,MP∥NQ,∴四边形MNQP为平行四边形.如图,延长EH交CD于点O,∵∠PEO=∠FEO,∠PEO=∠FOE,∴∠FOE=∠FEO,∴EF=FD,∵FH⊥EO,∴HE=HO,∵∠EHP=∠OHQ,∠EPH=∠OQH,∴△EHP≌△OHQ(AAS),∴HP=HQ,同理可得GM=GN,∵MN=PQ,∴MG=HP,∴四边形MGHP为平行四边形,∴GH=MP,∵MN∥EF,ME∥NF,∴四边形MEFN为平行四边形,∴MN=EF,∵四边形EGFH是矩形,∴GH=EF,∴MN=MP,∴平行四边形MNQP为菱形.23.(6分)(2022春•杨浦区校级期中)已知,如图,BE,BD是△ABC中∠ABC的内、外角平分线,AD⊥BD 于D,AE⊥BE于点E,延长AE交BC的延长线于点N.求证:DE=BN.证明:∵BE、BD是△ABC中∠ABC的内、外角平分线,∴∠DBE=×180°=90°,∵AD⊥BD于D,AE⊥BE于E,∴∠ADB=∠AEB=90°,则∠DBE=∠ADB=∠AEB=90°,在△ABE和△NBE中,,∴△ABE≌△NBE(ASA),∴AB=BN,∵四边形ADBE是矩形,∴DE=AB,∴DE=BN.24.(8分)(2022春•洪泽区期末)在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G、H分别是AD、BC的中点,则下列关于四边形EGFH(E、F相遇时除外)的判断:①一定是平行四边形;②一定是矩形;③一定是菱形,正确的是①;(直接填序号,不用说理)(2)在(1)的条件下,若四边形EGFH为矩形,求t的值.解:(1)连接HG交AC于点O,在矩形ABCD中,有AD∥CD,AD=CD,∴∠DAC=∠ACB,∠AGH=∠CHG,∵G、H分别是AD、BC的中点,∴AG=AD,CH=BC,∴AG=CH,∴△AOG≌△COH(ASA),∴OG=OH,OA=OC,由题意得:AE=CF,∴OE=OF,∴四边形EGFH是平行四边形,故①是正确得;随着t的增加,∠EGF由大变小,不一定是直角,故②不一定正确;∵G平分AD,O平分AC,∴OG∥CD,∴OG不是AC的垂直平分线,∴EG与GF不一定相等,故③不一定正确;故答案为:①.(2)(2)如图1,连接GH,由(1)得AG=BH,AG∥BH,∠B=90°,∴四边形ABHG是矩形,∴GH=AB=6,①如图1,当四边形EGFH是矩形时,∴EF=GH=6,∵AE=CF=t,∴EF=10﹣2t=6,∴t=2;②如图2,当四边形EGFH是矩形时,∵EF=GH=6,AE=CF=t,∴EF=t+t﹣10=2t﹣10=6,∴t=8;综上,四边形EGFH为矩形时t=2或t=8;25.(8分)(2022春•碑林区校级期末)如图,AC为平行四边形ABCD的对角线,将△ABC沿对角线翻折,得到△AB′C,B′C与AD边交于点E,连接B′D,(1)当△CDE为等边三角形时,证明:四边形ACDB′为矩形:(2)在(1)的条件下,当AB=3时,求S△AEC.(1)证明:∵△CDE是等边三角形,∴DE=DC=EC,∠ADC=∠CED=60°,根据折叠的性质可知:∠BCA=∠B′CA,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∴∠EAC=∠ECA,∴EA=EC,∴∠DAC=∠ECA=30°,∴∠ACD=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∴AC⊥AB,由折叠可知:∠B′AC=∠BAC=90°,∴B,A,B′三点在同一条直线上,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,由折叠可知:AB=AB′,∴AB′∥CD,AB'=CD,∴四边形ACDB′为平行四边形,∵∠ACD=90°,∴四边形ACDB′为矩形;(2)解:在Rt△ACB′中,∠CAB′=90°,∵∠ACB′=30°,AB′=AB=3,∴AC=AB′=3,∴S△AEC=S△ACB′=AC•AB′=×3×3=.26.(8分)(2022春•扶沟县期末)如图,▱ABCD中,G是CD的中点,E是边长AD上的动点,EG的延长线与BC的延长线相交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)填空:若AB=3cm,BC=5cm,∠B=60°,则①当AE=时,四边形CEDF是矩形;②当AE=2 时,四边形CEDF是菱形.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FCG=∠EDG,∠CFG=∠DEG,又CG=DG.∴△FCG≌△EDG,∴FG=EG.∴四边形CEDF是平行四边形.(2)①如图四边形CEDF是矩形时,在Rt△CDF中,CD=AB=3,∠DCF=60°,∠CFD=90°,∴CF=CD=.∵ED=CF=,∴AE=AD﹣DE=②如图四边形CEDF是菱形时,易知△CDF,△CDE都是等边三角形,∴DE=CD=AB=3,∴AE=AD﹣ED=5﹣3=2.故答案为,2.27.(9分)(2020春•定远县期末)如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.(1)证明:如图1中,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD是矩形.(2)①如图2中,延长CM、BA交于点E.∵AN=BN=2,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,,∴△AME≌△DMC,∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.②如图3中,延长CM、BA交于点E.由①可知,△EAM≌△CDM,EN=CN,∴EM=CM=3,EN=CN=4,设BN=x,则BC2=CN2﹣BN2=CE2﹣EB2,∴42﹣x2=62﹣(x+4)2,∴x=,∴BC===.28.(9分)(2022春•三台县期中)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?解:(1)当DE=CF时,四边形EFCD为矩形,则有6﹣t=10﹣2t,解得t=4,答:t=4s时,四边形EFCD为矩形.(2)①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4﹣2t,解得t=,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t﹣4,解得t=4,综上所述,t=4或s时,以A、M、E、F为顶点的四边形是平行四边形.。

(压轴题)初中物理八年级下册期末测试(有答案解析)

(压轴题)初中物理八年级下册期末测试(有答案解析)

一、选择题1.如图,O为拉杆式旅行箱的轮轴,OA为拉杆.现在拉杆端点A处施加力F,使箱体从图示位置绕O点缓慢逆时针转至竖直位置.若力F的大小保持不变,则力F的方向应()A.垂直于OA向上B.竖直向上C.沿OA向上D.水平向左2.如图,用同一滑轮组分别将物体A和物体B匀速提升相同的高度。

与提升B相比,提升A的过程滑轮组的机械效率较大。

若不计绳重与摩擦的影响,则提升A的过程中,下列说法()①额外功较小②额外功相同③总功较小④总功较大A.只有①③正确B.只有②④正确C.只有①④正确D.只有②③正确3.如图甲所示的装置来探究滑轮组的机械效率η与物重G物的关系,改变G物竖直向上匀速拉动弹簧测力计,计算并绘出η与G物关系如图乙所示,若不计绳重和摩擦,则下列说法正确的是()A.当G物=6N时,机械效率η=40%B.此滑轮组动滑轮的重力为2NC.当G物=15N时,弹簧测力计的示数为6ND.同一滑轮组机械效率η随G物的增大面增大,最终将超过100%4.小明站在地面用力竖直下抛乒乓球,球碰地后会弹跳到高于原抛球的位置。

下列有关说法中正确的是()A.球开始下落时动能最大B.球离地后的上升过程中势能转化为动能C.球在整个运动过程中机械能不变D.球弹跳到原抛球位置时仍具有动能5.甲乙二人同时开始登山,甲先到达山顶,甲的质量小于乙,下列判断正确的是()A.甲做的功比乙多B.甲的功率比乙大C.甲的功率比乙小D.甲做的功比乙少6.如图所示。

甲和乙是叠放在水平桌面上的两个物块,它们在丙的作用下一起向右做匀速直线运动()A.乙所受摩擦力的方向向右B.甲可能不受摩擦力C.甲和丙所受的重力都不做功D.将乙拿掉后,甲的运动状态一定会发生改变7.一个物体恰好悬浮在水中,若将其分成大小不等的两块(质量分布均匀),则()A.大块下沉,小块上浮B.大块悬浮、小块漂浮C.大块、小块都漂浮D.大块、小块仍悬浮8.弹簧测力计下挂一长方体物体,将物体从盛有适量水的烧杯上方离水面某一高度处缓缓下降,然后将其逐渐浸入水中如图甲,图乙是弹簧测力计示数F拉与物体下降高度h变化关系的图象,则下列说法中错误的是()A .物体的质量是900gB .物体受到的最大浮力是4NC .物体的密度是332.2510kg/mD .物体的底面积是250cm9.将重为6N ,体积为6×10-4m 3的物体投入一装有适量水的溢水杯中,溢出水300g .若不计水的阻力,当物体静止时,下列判断正确的是 ( )A .物体上浮,F 浮=3NB .物体悬浮,F 浮=6NC .物体漂浮,F 浮=6ND .物体沉在水底,F 浮=3N10.下列关于科学方法的说法中,错误的是( )A .托里拆利实验中,把大气压强大小转换成水银柱产生的压强来计算,这是等效法B .为研究光现象,引入“光线”描述光的传播路径和方向,这是模型法C .根据加快蒸发的方法,想到减慢蒸发的方法,这是逆向思考法D .将电流比作水流来研究,这是类比法11.如图所示,木块A 下面是一长木板B 。

八年级下期数学期中考试压轴题训练

八年级下期数学期中考试压轴题训练

八年级下期数学期中考试压轴题训练一.选择题(共14小题)1.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.2.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个3.如图,矩形ABCD中,,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是()A.12.5B.12C.10D.10.54.菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.3C.D.+15.如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=,则B′F的值为()A.3B.2﹣1C.3﹣D.6.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.B.C.2D.37.如图,已知矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则DF的长为()A.B.C.D.8.若关于x的不等式组无解,则a的取值范围是()A.a>1B.a≥1C.a<1D.a≤19.有依次排列的2个整式:x,x+2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x,2,x+2,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过实际操作,四个同学分别得出一个结论:小琴:第二次操作后整式串为:x,2﹣x,2,x,x+2;小棋:第二次操作后,当|x|<2时,所有整式的积为正数;小书:第三次操作后整式串中共有8个整式;小画:第2022次操作后,所有的整式的和为2x+4046;四个结论正确的有()个.A.1B.2C.3D.410.如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A的路径匀速运动到点A 处停止.设点P运动的路程为x,△P AB的面积为y,表示y与x的函数关系的图象如图2所示,则下列结论:①a=4;②b=20;③当x=9时,点P运动到点D处;④当y=9时,点P在线段BC或DA上,其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①③11.如图①,在平面直角坐标系中,矩形ABCD在第一象限,且AB∥y轴.直线M:y=﹣x沿x轴正方向平移,被矩形ABCD截得的线段EF的长度l与平移的距离a之间的函数图象如图②,那么矩形ABCD的面积为()A.10B.12C.15D.1812.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若,PB=10,下列结论:①△APD≌△AEB;②∠AEB=135°;③;④S△APD+S△APB=33;⑤CD=11.其中正确结论的序号是()A.①②③④B.①④⑤C.①②④D.③④⑤13.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A、C,点B 是y轴正半轴上的一点,且位于C点下方,当∠CAB=∠BAO时,则点B的纵坐标是()A.B.C.D.14.如图所示,在平面直角坐标系中,函数y=|x﹣1|的图象由一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成.根据前面所讲内容,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二.填空题(共19小题)15.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.16.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6,BD=6,点P 是AC上一动点,点E是AB的中点,则PD+PE的最小值为.17.如图,正方形ABCD和正方形CGEF的边长分别是4和6,且点B,C,G在同一直线上,M是线段AE的中点,连接MF,则MF的长为.18.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的结论有.19.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,则线段EF的长为.20.如图,在平行四边形ABCD中,AO=,∠ACB=30°,AC⊥AB,点E在AC上,CE =1,点P是BC边上的一动点,连接PE、P A,则PE+P A的最小值是.21.如图,已知等腰Rt△ABC的直角边长为1,以它的斜边AC为直角边画第二个等腰Rt △ACD,再以斜边AD为直角边画第三个等腰Rt△ADE,…,依此类推,AC长为,AD长为2,第3个等腰直角三角形斜边AE长为,第4个等腰三角形斜边AF 长为,则第n个等腰直角三角形斜边长为.22.如图,在边长为4的正方形ABCD中,E为BC上一点,EF⊥AC于点F,EG⊥BD于点G,那么EF+EG=.23.如图,在正方形ABCD中,AB=2,延长AD到点E,使得DE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为.24.已知关于x的不等式组只有3个整数解,则a的取值范围是.25.某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B 类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C 与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为盒.26.已知四边形ABCD为菱形,∠BAD=60°,AB=4cm,P为AC上任一点,则的最小值是cm.27.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为.28.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.29.如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则P A+PD的最小值为.30.如图,已知菱形ABCD的边长为,点M是对角线AC上的一动点,且∠ABC=120°,则∠DAC=°,MA+MB+MD的最小值是.31.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、1、,则正方形ABCD的面积为.32.如图,菱形ABCD的面积为,∠A=120°,点M,N,P分别为线段BC,CD,BD上的任意一点,则PM+PN的最小值为.33.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.三.解答题(共16小题)34.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF;(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,(1)中的结论是否仍然成立?;(填“成立”或“不成立”);(3)如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.35.如(图1),矩形OABC的边OA、OC在坐标轴上,点A坐标为(5,0),点C坐标为(0,3)点P是射线BA上的一动点,把矩形OABC沿着CP折叠,点B落在点D处.(1)填空:点B坐标为;(2)如图1,当点C、D、A共线时,AD=;(3)如(图2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC 于点F,请判断四边形CEAF的形状,并说明理由.36.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OP A的面积是3时,请求出点P的坐标;(2)如图2,坐标系xOy内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值.37.平面直角坐标系中有正方形AOBC,O为坐标原点,点A、B分别在y轴、x轴正半轴上,点P、E、F分别为边BC、AC、OB上的点,EF⊥OP于M.(1)如图1,若点E与点A重合,点A坐标为(0,8),OF=3,求P点坐标;(2)如图2,若点E与点A重合,且P为边BC的中点,求证:CM=2CP;(3)如图3,若点M为线段OP的中点,连接AB交EF于点N,连接NP,试探究线段OP与NP的数量关系,并证明你的结论.38.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b(其中a<b)是方程x2﹣6x+8=0的两个根.(1)求直线AB的解析式;(2)若点M为直线y=mx在第一象限上一点,当以AB为直角边△ABM是等腰直角三角形时,求m的值;(3)如图3,过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过N 点的直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.39.如图,平行四边形ABCD中,BC=BD.点F是线段AB的中点.过点C作CG⊥DB交BD于点G,CG延长线交DF于点H.且CH=DB.(1)如图1,若DH=1.①求证:△DFB≌△CDH②求FH的值;(2)如图2,连接FG.求证:DB=FG+HG.40.如图1所示,在平面直角坐标系中,动点A(0,a),B(b,0)分别在y轴、x轴的正半轴上,射线AC、BC是△OAB的两条外角平分线,且它们相交于定点C(3,3).(1)若点A的坐标为(0,2),求直线AC的解析式;(2)求证:a2+b2=(6﹣a﹣b)2;(3)在图1中,延长CA、CB分别交x轴、y轴于点D,E,得到的图形如图2所示.试探究△ODE的面积是否为定值?若是定值,求出该定值;若不是定值,请说明理由.41.平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0)、A(a,0)、C(0,b),且a、b满足b2﹣8b+16+2=0;(1)矩形的顶点B的坐标是(,);(2)若D是OC中点,沿AD折叠矩形OABC使O点落在E处,折痕为DA,连CE并延长交AB于F,求直线CE的解析式;(3)在(2)的条件下,平面内是否存在一点P,使得△OFP是以OF为直角边的等腰直角三角形.若存在,请写出点P的坐标;若不存在,请说明理由.42.直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.(1)请直接写出点C,点D的坐标,并求出m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M,交CE于N.当四边形NEDM是平行四边形时,求点P的坐标;(3)点P(0,t)是y轴正半轴上的一个动点,Q是平面内任意一点,t为何值时,以点C、D、P、Q为顶点的四边形是菱形?43.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=4,则BD=;(2)如图2,正方形ABCD中,点E,F分别是边AD,AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)如图3,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,AC=DC,求这个准矩形的面积.44.在平面直角坐标系中,A(0,8),点B是直线y=x﹣8与x轴的交点.(1)写出点B的坐标(,);(2)点C是x轴正半轴上一动点,且不与点B重合,∠ACD=90°,且CD交直线y=x﹣8于D点,求证:AC=CD;(3)在第(2)问的条件下,连接AD,点E是AD的中点,当点C在x轴正半轴上运动时,点E随之而运动,点E到BD的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.45.在平面直角坐标系xOy中,对于M、N两点给出如下定义:若点M到x,y轴的距离之和等于点N到x,y轴的距离之和,则称M、N两点为“平等点”,例如:M(1,2)、N (﹣2,﹣1)两点即为“平等点”.(1)已知点A的坐标为(4,2),①在点J(﹣2,﹣4)K(3,﹣4)L(3,﹣3)中,为点A的“平等点”的是.(填字母)②若点B在y轴上,且A、B两点为“平等点”,则点B的坐标为.(2)已知直线y=x+4与x轴、y轴分别交于C、D两点,E为线段CD上一点,F是直线y=3x上的点,若E、F两点为“平等点”,求点F的坐标.(3)如图,点P(m,n)位于第一象限,且m+n=6,第二象限的点Q为P的“平等点”,且∠POQ=90°,过P、Q两点作x轴的垂线,垂足分别为R、S.若直线y=﹣2x平分四边形PQSR的面积,求直线PQ的解析式.46.如图,在边长为4的正方形ABCD中,点E,F分别是边BC,CD上的点,且BE=DF =t,连接EF,AC,相交于点O,G为对角线AC延长线上一点.(1)求证:△AEF是等腰三角形.(2)当t为何值时,△AEF的周长比△EFC的周长大8.(3)当四边形AEGF为菱形时,设△AEF的面积为S1,△GFC的面积为S2,求S1﹣S2关于t的函数解析式,并写出当∠EAF=60°时,S1﹣S2的值.47.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA=45°,求满足条件的点Q的坐标;(3)如图2,在x轴的负半轴上是否存在点Q,使得以BQ为边作正方形BQMN时,点M恰好落在直线l上,且正方形BQMN的面积被x轴分成了1:2的两部分?若存在,请求出点Q的坐标,若不存在,请说明理由.48.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形、正方形”中,一定是“十字形”的有;②若凸四边形ABCD是“十字形”,AC=a,BD=b,则该四边形的面积为;(2)如图1,以等腰Rt△ABC的底边AC为边作等边三角形△ACD,连接BD,交AC 于点O,当﹣1≤S四边形ABCD≤2﹣2时,求BD的取值范围;(3)如图2,以“十字形”ABCD的对角线AC与BD为坐标轴,建立如图所示的平面直角坐标系xOy,若计“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC 的面积分别为:S1,S2,S3,S4,且同时满足四个条件:①=+;②=+;③“十字形”ABCD的周长为32;④∠ABC=60°;若E为OA的中点,F 为线段BO上一动点,连接EF,动点P从点E出发,以1cm/s的速度沿线段EF匀速运动到点F,再以2cm/s的速度沿线段FB匀速运动到点B,到达点B后停止运动,当点P 沿上述路线运动到点B所需要的时间最短时,求点P走完全程所需的时间及直线EF的解析式.49.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.。

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。

压轴题04:因式分解综合专练20题(解析版)-八年级数学下学期期末精选题汇编(北师大版)

压轴题04:因式分解综合专练20题(解析版)-八年级数学下学期期末精选题汇编(北师大版)

压轴题04:因式分解综合专练20题(解析版)一、单选题1.若x﹣2y﹣2=0,x2﹣4y2+4m=0(0<m<1),则多项式2mx﹣x2﹣4my﹣4y2﹣4xy的值可能为()A.﹣1B.0C.716D.167【答案】C【分析】根据因式分解将多项式分解,利用0<m<1即可得0<﹣(2m﹣1)2+1<1,进而可得结果.【详解】解:∵x﹣2y﹣2=0,x2﹣4y2+4m=0(0<m<1),∵x﹣2y=2,∵4m=4y2﹣x2=(2y+x)(2y﹣x),∵x+2y=﹣2m,∵2mx﹣x2﹣4my﹣4y2﹣4xy=(2mx﹣4my)﹣(x2+4y2+4xy)=2m(x﹣2y)﹣(x2+4y2+4xy)=2m(x﹣2y)﹣(x+2y)2=4m﹣4m2=﹣(2m﹣1)2+1,∵0<m<1,∵0<2m<2,∵﹣1<2m﹣1<1,∵0<(2m﹣1)2<1,∵0<﹣(2m﹣1)2+1<1.故选:C.【点睛】本题考查了因式分解,不等式的性质等知识,能将已知条件变形和将多项式因式分解是解题关键.2.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262 【答案】B【分析】根据“和谐数”的概念找出公式:(2k +1)3﹣(2k ﹣1)3=2(12k 2+1)(其中k 为非负整数),然后再分析计算即可.【详解】解:(2k +1)3﹣(2k ﹣1)3=[(2k +1)﹣(2k ﹣1)][(2k +1)2+(2k +1)(2k ﹣1)+(2k ﹣1)2]=2(12 k 2+1)(其中 k 为非负整数),由2(12k 2+1)≤2019得,k ≤9,∵k =0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B .【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.3.已知三个实数a ,b ,c 满足20a b c -+=,20a b c ++<,下列结论正确的是( )A .0b <,20b ac -≥B .0b <,20b ac -≤C .0b >,20b ac -≥D .0b >,20b ac -≤【答案】A【分析】先把20a b c -+=变形为2b a c =+,然后整体代入20a b c ++<即可求出0b <,把2a cb +=代入2b ac -进行化简成21()4a c -,即可判断2b ac -0≥.【详解】解:∵20a b c -+=,∵2b a c =+,又20a b c ++<,∵40b <,∵0b <,∵2b a c =+, ∵2a c b +=,∵22222221()()024244244a c a ac c a ac c b ac ac ac a c +-=-=++-=-+=-≥ . 故选:A.【点睛】 此题考查了不等式的性质,完全平方公式等知识点,把2a cb +=代入20a b c ++<化简是解题的关键. 4.下列四种说法中正确的有( )∵关于x 、y 的方程26199x y +=存在整数解.∵若两个不等实数a 、b 满足442222()()a b a b +=+,则a 、b 互为相反数.∵若2()4()()0a c a b b c ---=-,则2b a c =+.∵若222x yz y xz z xy ---==,则x y z ==.A .∵∵B .∵∵C .∵∵∵D .∵∵∵ 【答案】B【分析】将26x y +提公因式2得2(3)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为199为奇数,即原等式不成立,即可判断∵;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断∵;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断∵;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断∵. 【详解】∵262(3)x y x y +=+,∵如果x 、y 为整数,那么2(3)x y +为偶数,∵199为奇数,∵26199x y +=不存在整数解,故∵错误;442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=∵22a b =,∵实数a 、b 不相等,∵a 、b 互为相反数,故∵正确;2()4()()0a c a b b c ---=-222244440a ac c ab ac b bc -+-++-=()()22440a c b a c b +-++=2(2)0a c b +-=∵20a c b +-=,即2a c b +=,故∵正确;∵222x yz y xz z xy ---==∵2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩, ∵2222222211441144x xz z y yz z y xy x z xz x ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩, ∵11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩, ∵x y z ==或0x y z ++=,故∵不一定正确.综上可知正确的有∵∵.故选B .【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.5.若实数a 、b 满足221a b +=,则3ab a b ++的最小值为( )A .3-B .2-C .1D .3【答案】A【分析】将3ab a b ++化为(a +3)(b +1)-3的的形式,由221a b +=求得(a +3)(b +1)≥0,进而解答即可;【详解】解:由221a b +=,可得a 2≤1,b 2≤1,∵﹣1≤a ≤1,﹣1≤b ≤1,3ab a b ++=a (b +1)+3(b +1)-3=(a +3)(b +1)-3,∵a +3>0,b +1≥0,∵(a +3)(b +1)≥0,当b =-1时,3ab a b ++有最小值﹣3,故选:A ;【点睛】本题考查了等式的变形,不等式的性质;通过变形来判断代数式(a +3)(b +1)的取值范围是解题关键. 6.已知多项式22A x y m =++和22B y x n =-+(m ,n 为常数),以下结论中正确的是( ) ∵当2x =且1m n +=时,无论y 取何值,都有0A B +≥;∵当0m n ==时,A B ⨯所得的结果中不含一次项;∵当x y =时,一定有A B ≥;∵若2m n +=且0A B +=,则x y =;∵若m n =,1-=-A B 且x ,y 为整数,则1x y +=.A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】∵当2x =且1m n +=时,A +B =()222424211y m y n y y y +++-+=++=+,∵无论y 取何值,总有()201y +≥,∵无论y 取何值,都有0A B +≥,故∵正确;∵当0m n ==时,()()22223322224A B x y y x x y x y xy ⨯=+-=-+-, ∵A B ⨯所得的结果中不含一次项;故∵正确;∵当x y =时,()222222224A B x y m y x n x x m x x n x m n -=++--+=++-+-=+-,其结果与0无法比较大小,故∵错误;∵若2m n +=且0A B +=,则2222222220A B x y m y x n x y y x +=+++-+=++-+=,变形得:()()22110x y -++=,∵x =1,y =-1,∵x =-y ,故∵错误;∵若m n =,1-=-A B 且x ,y 为整数,则()222222221A B x y m y x n x y y x -=++--+=+-+=- 222210x y x y -+++=变形得:()()22111x y +--=-,因式分解得:()()21x y x y +-+=-,∵x ,y 为整数,则必有1x y +=.故∵正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.7.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此 4,12,20 都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .60C .62D .88【答案】B【分析】设这两个连续偶数分别2m 、2m+2(m 为自然数),则“神秘数”=(2m+2)2-(2m )2=(2m+2+2m )(2m+2-2m )=4(2m+1),因为m 是自然数,要判断一个数是否是“神秘数”,只需根据该数=4(2m+1)列方程求解即可,若解出m 是自然数就符合,否则不符合.【详解】解:设这两个连续偶数分别2m 、2m+2(m 为自然数),∵“神秘数”=(2m+2)2-(2m )2=(2m+2+2m )(2m+2-2m )=4(2m+1),A 、若4(2m+1)=56,解得m=132,错误;B 、若4(2m+1)=60,解得m=7,正确;C 、若4(2m+1)=62,解得m=294,错误; D 、若4(2m+1)=88,解得m=212,错误; 故选:B .【点睛】此题考查了利用平方差公式进行因式分解,熟练掌握平方差公式以及对题中新定义的理解是解题的关键.8.如图,ABC ∆中,,2,90AB a BC a B ==∠=,将ABC ∆沿BC 方向平移b 个单位得DEF ∆(其中,,A B C 的对应点分别是,,D E F ),设DE 交AC 于点G ,若ADG ∆的面积比CEG ∆的大8,则代数式()a a b -的值为( )A .8B .8-C .16D .16-【答案】B【分析】 根据平移的性质可得,AD=b ,则ABED S ab =长方形,由,2,90AB a BC a B ==∠=,可得2122ABC S a a a =⨯⨯=,根据题意可得,ADG ABC CEG ABED S S S S =-+长方形,再结合8ADG CEG S S =+即可求出()a a b -的值.【详解】∵,2,90AB a BC a B ==∠=, ∵2122ABC S a a a =⨯⨯=, 由平移可知,AD=b ,∵ABED S ab =长方形,∵ADG ∆的面积比CEG ∆的大8,∵8ADG CEG SS =+, ∵ADG ABC CEG ABED S S S S =-+长方形,∵8CEG ABC CEG ABED S S S S +=-+长方形,∵28ab a -=,∵()8a a b --=,∵()8a a b -=-.故选B.【点睛】本题考查列代数式,平移的性质,因式分解的应用,解题的关键是根据题目中的条件得到ADG ABC CEG ABED S S S S =-+长方形.二、填空题9.某商场为了促销准备开展两轮抽奖活动.第一轮的奖品有A 、B 、C .奖品A 、B 、C 的数量比是1:2:3,B 与C 的单价之和是A 的单价的三分之一,A 、B 、C 的单价之和超过25元且不超过50元.第二轮的奖品有D 、E 、F .奖品E 的数量比B 的数量少20%,F 的数量也比D 的数量少20%,D 的单价比A 的单价多三分之一,E 的单价是B 的单价的两倍,F 的单价与C 单价相同.已知第二轮奖品D 和F 的总价比第一轮三种奖品总价少407元,第一轮和第二轮奖品数量总和超过260件且不超过360件,若所有奖品的单价和数量都是整数,则奖品A 的总价为________元.【答案】735【分析】设奖品A 、B 、C 分别有5,10,15n n n 个,单价分别为3,,a b c 元,且,,a b c 都是整数,根据第二轮奖品D 和F 的总价比第一轮三种奖品总价少407元,第一轮和第二轮奖品数量总和超过260件且不超过360件,列出方程和不等式组,进而根据题意因式分解得到,()()554407a c n m +-=,分类讨论求得,m n 的值,进而根据不等式求得a 的值,代入15an 即可求解.【详解】 解:奖品A 、B 、C 的数量比是1:2:3,设奖品A 、B 、C 分别有5,10,15n n n 个,单价分别为3,,a b c 元,且,,a b c 都是整数 则13325350b c a a b c ⎧+=⨯⎪⎨⎪<++≤⎩,25450a ∴<≤ 解得1161242a <≤, 设奖品D 的数量为5m 个,奖品E 的数量比B 的数量少20%,则E 的数量为()10120%8n n -=个,F 的数量也比D 的数量少20%,则F 的数量为4m 个,D 的单价比A 的单价多三分之一,E 的单价是B 的单价的两倍,F 的单价与C 单价相同.D ∴的单价为4a ,E 的单价为2b ,F 的单价为c ,第二轮奖品D 和F 的总价比第一轮三种奖品总价少407元,∴204407151015am cm an bn cn ++=++即()()151015204407n a b c m a c ++-+=b c a +=255204407an nc am cm ∴+--=()()55454407a n m c n m -+-=()()554407a c n m +-=4071137=⨯ ∵1161242a <≤, ∵125125542a <≤即113156242a <≤ 0c >,113156242a c ∴<+≤ ∵537a c +=,5411n m -=时 即4115m n += , 第一轮和第二轮奖品数量总和超过260件且不超过360件,26030584360n m n m ∴<+++≤即130********n m <+≤4115m n += 即94347197197m <≤ 当m =5时,451131,55n ⨯+==n 不是整数,不符合题意,舍去, 当m =6时,46117,5n ⨯+==n 是整数,符合题意, 当m =7时,471139,55n ⨯+==n 不是整数,不符合题意,舍去,即6,7,m n == 1131562,537,42a a c <≤+= ∵a 为正整数,∵5a 为5的倍数,∵只有5a =35,c =2符合题意,∵a =7,c =2,∵奖品A 的总价为5n ×3a =5×7×3×7=735,故答案为∵735.【点睛】本题考查了整除,三元一次方程组的应用,一元一次不等式组的应用,因式分解的应用,根据题意列出方程组和不等式组是解题的关键.10.若多项式429n n k ++可化为()2a b +的形式,则单项式k 可以是__________. 【答案】36n 或36n -或814或636n 【分析】根据完全平方公式展开式的首、末两项是平方项,并且首末两项的符号相同;中间项是首末两项的底数的积的2倍,对多项式进行分类讨论,分别求出k 即可.【详解】解:∵当4n 和29n 作为平方项,k 作为乘积项,则多项式429n n k ++可化为:()223±n n ,即42224329(3)69++=±=±+n n k n n n n n , ∵36=±k n ;∵当4n 和k 作为平方项,29n 作为乘积项,则多项式429n n k ++可化为:(22n ,即4222429(++==++n n k n n k ,∵229=n ,解得:814=k ; ∵当29n 和k 作为平方项,4n 作为乘积项,则多项式429n n k ++可化为:(23n ,即42229(39++==++n n k n n k ,∵4=n ,解得:636=n k ; 故答案为:36n 或36n -或814或636n . 【点睛】此题考查了运用完全平方公式分解因式.掌握完全平方公式()2222a b a ab b ±=±+和分类讨论是解此题的关键.11.某水果店售卖A ,B ,C ,D 四种水果套餐,其中A ,B 两种水果的单价相同,D 种水果的单价是C 种水果单价的7倍,第一天,A ,C 两种水果的销量相同,B 种水果的销量是D 种水果销量的7倍,结果第一天A ,B 两种水果的总销售额比C 、D 两种水果的总销售额多126元,且四种水果第一天的单价与销量均为正整数,到了第二天的时候,由于D 种水果不易保存,摊主便将D 种水果打八折售卖,其他三种水果单价不变,结果第二天除了B 种水果销量下降了20%,其他几种水果的销量跟第一天一样,若A 种水果与C 种水果的单价之差超过6元但不超过13元,B 种水果和D 种水果第一天的单价之和不超过35元,则第二天四种水果总销售额最多为____元.【答案】215.8##42155##10795【分析】首先设A 、B 的单价为y 元,C 的单价为x 元,A 的销量为a ,D 的销量为b ,可得D 的单价为7x 元,C 的销量为a ,B 的销量为7b ,根据题意列出不等式,由第一天的单价与销量均为正整数确定出各参数的值,再代入第二天的总销售额确定出最大值即可.【详解】解:设A 、B 的单价为y 元,C 的单价为x 元,A 的销量为a ,D 的销量为b ,则D 的单价为7x 元,C 的销量为a ,B 的销量为7b ; 根据题意可得613735y x y x <-≤⎧⎨+≤⎩, 由第一天A 、B 两种水果的总销售额比C 、D 两种水果的总销售额多126元,得到(a +7b )y ﹣(a +7b )x =126,∵(a +7b )(y ﹣x )=126,∵单价与销量均为正整数,∵y ﹣x =7或y ﹣x =9;a +7b =18或a +7b =14;再由613735y x y x <-≤⎧⎨+≤⎩,可得x 的取值为3或2或1; 当y ﹣x =7时,a +7b =18,此时x +y 的取值可以为13,11,9;a =11,b =1或a =4,b =2;当y ﹣x =9时,a +7b =14,此时x +y 的取值可以为15,13,11;a =7,b =1;第二天四种水果的总销售额为a (x +y )+5.6b (x +y )=(x +y )(a +5.6b ),若总销售额最多,则a =11,b =1,x +y =13,∵销售额=13×16.6=215.8元,故答案为:215.8.【点睛】本题考查了因式分解及根据不等式确定方程整数解的应用,解题关键是:(1)理清各数量间的关系,正确列出方程及不等式;(2)确定出方程的整数解.12.某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树。

八年级数学下册专题04勾股定理常考压轴题汇总(原卷版)

八年级数学下册专题04勾股定理常考压轴题汇总(原卷版)

专题04 勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。

2024八年级下册期末压轴题集训(原卷版)

2024八年级下册期末压轴题集训(原卷版)

2024八年级下册期末压轴题集训一(原卷版)1、我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微”.请你利用“数形结合”的思想解决以下问题.如图1,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达);(2)请依据(1)得到的公式计算:(2+1)(22+1)(24+1)(28+1)+1;(3)请用(1)中的公式证明任意两个相邻奇数的平方差必是8的倍数.2、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AC,AB上,AD=AE,连接DE,BD,点F,P,G别为DE,BD,BC的中点.(1)线段PF与PG的数量关系是,位置关系是;(2)把△ADE绕点A顺时针方向旋转到图2的位置,连接PF,PG,FG,判断△FPG的形状,并说明理由;(3)若AD=3,AB=7,△ADE绕点A在平面内旋转过程中,请直接写出△FPG的面积取得最大值时BD的长.3、经调研发现,目前市场上有A,B两种类型的笔记本比较畅销.某超市计划最多投入6900元购进A,B两种类型的笔记本共500本,其中B型笔记本的进货单价比A型笔记本的进货单价多3元;用2400元购进A型笔记本与用3000元购进B型笔记本的数量相同.(1)求A,B两种类型笔记本的进货单价;(2)若A型笔记本每本的售价定为16元,B型笔记本每本的售价定为20元,该超市计划购进A型笔记本m本,两种类型的笔记本全部销售后可获利润为y元.①请直接写出y与m之间的函数关系式为:;②该超市如何进货才能获得最大利润?最大利润是多少元?4、在等边△ABC中,AB=6,点D是射线CB上一点,连接AD.(1)如图1,当点D在线段CB上时,在线段AC上取一点E,使得CE=BD,求证:AD=BE;(2)如图2,当点D在CB延长线上时,将线段AD绕点A逆时针旋转角度θ(0°<θ<180°)得到线段AF,连接BF,CF.①当AF位于∠BAC内部,且∠DAF恰好被AB平分时,若BD=2,求CF的长度;②如图3,当θ=120°时,记线段BF与线段AC的交点为G,猜想DC与AG的数量关系,并说明理由.5、如图,已知函数y1=﹣x+b,y2=mx﹣1,其中y1的图象经过点(3,0).(1)当y1>0时,x的取值范围是;(2)当x>2时,对于x的每一个值,都有y1<y2,求m的取值范围;(3)若m=1,,求A、B的值.6、如图,△ABC是等边三角形,,点F是∠BAC的平分线上一动点,将线段AF绕点A顺时针方向旋转60°得到AE,连接CF、EF.(1)尺规作图:在AF的上方找点D,使得DE⊥AF且DE=AC;(2)在(1)的条件下,连接CD、DF.①求证:AE+CD>AC;②求证:△CDF是等边三角形;③当△DEF是等腰三角形时,求AF的长度?7、【探索发现】“旋转”是一种重要的图形变换,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决几何问题的常用方法.如图1,在正方形ABCD中,点E在AD上,点F在CD上,∠EBF=45°.某同学进行如下探索:第一步:将△ABE绕点B顺时针旋转90°,得到△CBG,且F、C、G三点共线;第二步:证明△BEF≌△BGF;第三步:得到∠AEB和∠FEB的大小关系,以及AE、CF、EF之间的数量关系;请完成第二步的证明,并写出第三步的结论.【问题解决】如图2,在正方形ABCD中,点P在AD上,且不与A、D重合,将△ABP绕点B顺时针旋转,旋转角度小于90°,得到△A'BP',当P、A′、P′三点共线时,这三点所在直线与CD交于点Q,要求使用无刻度的直尺与圆规找到Q点位置,某同学做法如下:连接AC,与BP交于点O,以O为圆心,OB为半径画圆弧,与CD相交于一点,该点即为所求的点Q.请证明该同学的做法.(前面【探索发现】中的结论可直接使用,无需再次证明)【拓展运用】如图3,在边长为2的正方形ABCD中,点P在AD上,BP与AC交于点O,过点O作BP的垂线,交AB于点M,交CD于点N,设AP+AB=x(2≤x≤4),AM=y,直接写出y关于x的函数表达式.8、如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.9、【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.10、阅读材料:在数轴上,x=2表示一个点;在平面直角坐标系中,x=2表示一条直线;以二元一次方程x+y=2的所有解为坐标的点组成的图形就是一次函数y=﹣x+2的图象,它也是一条直线.如图1,在平面直角坐标系中,不等式x≤2表示一个平面区域,即直线x=2及其左侧的部分;如图2,不等式y≤﹣x+2也表示一个平面区域,即直线y=﹣x+2及其下方的部分.请根据以上材料回答问题:(1)图3阴影部分(含边界)表示的是(填写不等式)表示的平面区域;(2)如图4,请求出表示阴影部分平面区域(含边界)的不等式组;(3)如图5,点A在x轴上,点B的坐标为(0,1),且∠ABO=60°,点P为△ABO内部一点(含边界),过点P分别作PC⊥OA,PD⊥AB,PE⊥BO,垂足分别为C,D,E,若PC≤PE≤PD,则所有点P组成的平面区域的面积为.11、【课本重现】已知:如图1,D,E分别是等边△ABC的两边AB,AC上的点,且AD=CE.若BE,CD交于点F,则∠EFD=°;【迁移拓展】如图2,已知点D是等边△ABC的AB边上一点,点E是AC延长线上一点,若AD=CE,连接ED,EB.求证:ED=EB;【拓展延伸】如图3,若点D,E分别是等边三角形ABC的边BA,AC延长线上一点,且连接DE,以DE为边向右侧作等边△DEF,连接AF,求△ADF的面积.12、【综合与实践】生活中,我们所见到的地面、墙面、服装面料等,上面的图案常常是由一种或几种形状相同的图形拼接而成的.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌.(1)如图1,在▱ABCD中,AB=2,AD=3,∠BAD=60°,图2右侧的阴影部分可以看成是左侧阴影部分沿射线AD方向平移而成,其中,平移的距离是.同理,再进行一次切割平移,可得图3,即图4可以看成由平行四边形经过两次切割平移而成.我们可以用若干个如图4所示的图形,平面镶嵌成如图5的图形,则图5的面积是.(2)小明家浴室装修,在墙中央留下了如图6所示的空白,经测量可以按图7所示,全部用边长为1的正三角形瓷砖镶嵌.小明调查后发现:一块边长为1的正三角形瓷砖比一块边长为1的正六边形瓷砖便宜40元;用500元购买正三角形瓷砖与用2500元购买正六边形瓷砖的数量相等.①请问两种瓷砖每块各多少元?②小明对比两种瓷砖的价格后发现:用若干块边长为1的正三角形瓷砖和边长为1的正六边形瓷砖一起镶嵌总费用会更少,按小明的想法,将空白处全部镶嵌完,购买瓷砖最少需要元.13、在等腰Rt△ABC中,∠ABC=90°,点D是射线AB上的动点,AE垂直于直线CD于点E,交直线BC于点F.(1)【探索发现】如图①,若点D在AB的延长线上,点E在线段CD上时,请猜想CF,BD,AB之间的数量关系为;(2)【拓展提升】如图②,若点D在线段AB上(不与点A,B重合),试猜想CF,BD,AB之间的数量关系,并说明理由;(3)【灵活应用】当AB=3,时,直接写出线段BD的长为.14、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(﹣2,﹣1).(1)将△ABC向上平移6个单位得到△A1B1C1,画出△A1B1C1;(2)以(0,﹣1)为对称中心,画出△ABC关于该点对称的△A2B2C2;(3)经探究发现,△A1B1C1和△A2B2C2成中心对称,则对称中心坐标为;(4)已知点P为x轴上不同于O、D的动点,当P A+PC=时,∠OPC=∠DP A.15、问题情境:在学习《图形的平移和旋转》时,数学兴趣小组遇到这样一个问题:如图1,点D为等边△ABC的边BC上一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE.(1)【猜想证明】试猜想BD与CE的数量关系,并加以证明;(2)【探究应用】如图2,点D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE,若B、D、E三点共线,求证:EB平分∠AEC;(3)【拓展提升】如图3,若△ABC是边长为2的等边三角形,点D是线段BC上的动点,将线段AD绕点D顺时针旋转60°得到线段DE,连接CE.点D在运动过程中,△DEC的周长最小值=(直接写答案).。

(压轴题)初中物理八年级下册期末测试卷(包含答案解析)

(压轴题)初中物理八年级下册期末测试卷(包含答案解析)

一、选择题1.如图所示,斜面长3m,高0.6m,建筑工人用绳子在6s内将重500N的物体从其底端沿斜面向上匀速拉到顶端,拉力是150N.则下列说法正确的是A.拉力做的额外功是150JB.拉力的功率是50WC.拉力所做的总功是300JD.斜面的机械效率是80%2.有一根一端粗一端细的木棒,用绳子栓住木棒的O点,将它悬挂起来,恰好在水平位置平衡,如图所示,若把木棒从绳子悬挂处锯开,则被锯开的木棒()A.粗细两端一样重B.粗端较重C.细端较重D.无法判断3.如图所示甲、乙两套装置将相同木块G1和G2,匀速上提相同高度。

所用滑轮质量相等,竖直向上的拉力分别为F1和F2,两装置的机械效率分别为η1和η2(忽略绳重和摩擦)。

则下列选项正确的是()A.F1>F2 ,η1<η2B.F1>F2 ,η1=η2C.F1<F2 ,η1<η2D.F1<F2 ,η1>η24.如图所示,运动员在进行蹦床比赛。

不计空气阻力,运动员比赛过程中,下列说法正确的是()A.到达最高点时运动员的速度为零受力平衡B.运动员弹离蹦床以后,蹦床对运动员做了功C.在下落过程中,运动员所受到的重力做了功D.在下落过程中,运动员所受的重力做功先快后慢5.小明爸爸的质量为50kg,小明的质量为60kg,父子俩一起从一楼并肩走上三楼。

在此过程中,下列相关说法()①小明爸爸做功多②小明做功多③小明爸爸做功的功率大④小明做功的功率大A.只有①②正确B.只有③④正确C.只有①③正确D.只有②④正确6.如图所示是台球比赛中的情景,运动员手推球杆撞击静止在水平球台上的白球,白球运动后再撞击黑球。

以下说法中正确的是()A.白球撞击黑球后,白球的运动状态不变B.运动员手推动球杆前进时,手对球杆做了功C.白球撞击黑球后逐渐停下来,是因为白球受惯性作用D.白球撞击黑球时,它对黑球的作用力与黑球对它的作用力为一对平衡力7.我国沉船打捞人员在南海打捞宋朝的商船。

(压轴题)初中物理八年级下册期末检测题(含答案解析)(4)

(压轴题)初中物理八年级下册期末检测题(含答案解析)(4)

一、选择题1.如图所示,杠杆在水平位置平衡.在其他条件不变的情况下,下列操作一定能使弹簧测力计示数增大的是A.将钩码悬挂点向右移B.将钩码和弹簧测力计的悬挂点均向左移C.增加钩码的个数并将钩码悬挂点向右移D.将弹簧测力计悬挂点向右移2.用如图所示的滑轮组(甲)和(乙)将重物匀速提升相同高度.滑轮组的机械效率分别为η甲、η乙,重物的重力大小分别为G甲、G乙;不计绳重和摩擦,下列说法正确的是A.若滑轮重力和绳端拉力相同,则η甲=η乙B.若钩码重力和滑轮重力相同,则η甲=η乙C.若钩码重力和绳端拉力相同,则η甲<η乙D.若G甲>G乙,η甲<η乙,甲乙的动滑轮重力无法比较3.骑单车是一种既健身又低碳的出行方式,“共享单车”的投放,极大地便利了民众的出行。

下列有关“共享单车”的说法中,正确的是()A.停在路边的“共享单车”对地面的压力和所受的重力是一对平衡力B.当“共享单车”匀速转弯时,其运动状态没有发生变化C.单车刹车的车闸装置相当于一个费力杠杆D.单车轮胎上的花纹是为了增大摩擦4.如图是足球运动员踢足球时的情景,下列说法正确的是()A.球被脚踢出去,说明只有球才受到力的作用B.脚踢球使球飞出去,说明力是物体运动的原因C.足球在空中飞行过程中,运动状态一定发生改变D.空中飞行的足球,动能越来越小,势能越来越大5.小刚在班级打扫卫生时,想将讲桌移动一下位置,他用了30N的力去推讲桌,结果没有推动。

下列关于这一过程中的描述正确的是()A.小刚的推力小于讲桌与地面间的摩擦力,同时他没有对讲桌做功B.小刚的推力等于讲桌与地面间的摩擦力,同时他没有对讲桌做功C.小刚的推力小于讲桌与地面间的摩擦力,但是他对讲桌做了功D.小刚的推力大于讲桌与地面间的摩擦力,同时他没有对讲桌做功6.下列过程,做功约150J的是()A.小明从一楼到二楼B.将两个鸡蛋举高1mC.将10kg的大米打上肩D.将一瓶矿泉水从地面拿起7.小芳同学做“探究浮力的大小“实验时,为使误差尽量减小,最佳的操作顺序应该是()A.甲、乙、丙、丁B.丙、丁、甲、乙C.丁、甲、乙、丙D.丙、甲、乙、丁8.玻璃杯中装有适量的水,底部沉有边长为6cm的正方体物块,现用弹簧测力计竖直向上将其匀速提起,从物块脱离杯底开始直至物块底部刚好离开水面的过程中,物块所受的浮力F浮、弹簧测力计的拉力F、水对杯底的压强p1、水对物块下底面的压强p2随物块下底面距容器底部的距离h变化的图像描绘正确的是()A.B.C.D.9.质量相同的A、B两个正方体,在水中静止时如图所示。

吉林省吉林市第二十三中学2022-2023学年八年级下学期数学 复习 期末压轴题

吉林省吉林市第二十三中学2022-2023学年八年级下学期数学 复习 期末压轴题

八下期末压轴题A组训练题1(上海奉贤期末)如图,在平面直角坐标系中,直线y=-3x+15处x轴干点A,交y轴干点B,点C在直线AB上,点D与点C关于原点对称,连接AD,过点C 作CE∥AD交x轴干点E.(1)求点A、B的坐标;(2)当点C的横坐标为2时,求点E的坐标;(3)过点B作BF∥AD交直线DE于点F,如果四边形ABFD是矩形,求点C 的坐标.2(安徽芜湖无为期末)如图1,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)证明:平行四边形ECFG是菱形;(2)如图2,若∠ABC=120°,连接BG、CG、DG.①求证:△DGC≌△BGE;②求∠BDG的度数;(3)如图3,若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM 的长.3(河南郑州期末)探究:如图1和图2,在四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)如图1.若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;(2)如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2√2.点D、E均在边BC上,且∠DAE=45°,若BD=1,求DE的长.4(北京朝阳期末)如图,在平面直角坐标系中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的解析式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发,过点M、N作x轴的垂线分别交直线OC、AC于点P、Q,猜想四边形PMNQ的形状(点M、N重合时除外);(3)在(2)的条件下,当点M运动____秒时,四边形PMNQ是正方形(直接写出结论).5(广西贵港期末)如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B(4,-3),把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为点D、F、E.(1)线段AC=____;(2)求点D的坐标及折痕DE的长;(3)若点P在x轴上,在平面内是否存在点Q,使以点P、D、E、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.6(辽宁大连甘井子期末)如图,在平面直角坐标系中,直线y=-x+3与x轴交于点A,与y轴交于点B,与直线y=kx(k≠0)交于点C.(1)当点C为AB的中点时,k的值为_____;(2)当△AOC的面积是△AOB的面积的2倍时,求k的值:(3)若某菱形的三个顶点是点O、B、C,称此菱形为“亲情菱形”,则“亲情菱形”第四个顶点的坐标为B 组训练题1(云南曲期末)如图,在平面直角坐标系中,直线y =34x +3与x 轴、y 轴分别交于点A 、C.(1)求出点A 、C 的坐标;(2)已知点B (-1,0),将直线AC 沿着直线AB 平移,使得点A 落在点B 处,此时点C 的对应点为点D ,求出点D 的坐标,判断四边形ABDC 的形状,并说明理由;(3)点M 为x 轴上一点,点N 为坐标平面内一点,若以点A 、C 、M 、N 为顶点的四边形为菱形,请求出所有符合条件的点N 的坐标.2(山西期末)如图,在平面直角坐标系中,直线l 与y 轴、x 轴分别相交于点A (0,4)、B (6,0),直线y =2x −92与y 轴相交于点C ,点B 关于直线y =2x −92的对称点落在y 轴上的点D 处.(1)求直线l 的函数解析式;(2)求点D 的坐标;(3)若点P 从点B 出发沿射线BA 运动,连接OP ,当△DPB 与△DPO 面积相等时,求点P 的坐标.x+9分别交x轴,y轴于点A、B.∠ABO的平分线交x轴于点C.3如图,直线y=34(1)求点A、B、C的坐标:(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.4(广东东莞期末)已知在平行四边形ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE!BD于点F.(1)如图1,若点E与点C重合,且AF=2√5,求AD的长;(2)如图2.当点E在BC边上时,过点D作DG⊥AE于点G,延长DG交BC于点H,连接FH,求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于点G,点M为AG 的中点,点N在BC边上且BN=1,已知AB=4√2,请直接写出MN的最小值.5(四川绵阳涪城期末)如图1,将正方形ABCD放置在平面直角坐标系中的第一x+4.象限,点A、点B分别在y轴、x轴的正半轴上,AB所在的直线方程为y=−43(1)求点C和点D的坐标;(2)如图2,连接BD,将线段BD绕点B顺时针方向旋转至BE的位置,交线段CD于点F,若DE=DF,求直线CE的解析式.6(湖北黄石期末)如图1,直线y=−√3x+3√3分别与y轴、x轴交于点A、点B,点C的坐标是(-3,0),D为直线AB上一动点,连接CD交y轴于点E.(1)点B的坐标为____;不等式−√3x+3√3>0的解集为____;=S(△ADE),求点D的坐标.(2)若S(△COE)(3)如图2,以CD为边作菱形CDFG,且∠CDF=60°,当点D运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.。

八年级下压轴 50题(含答案及解析)

八年级下压轴 50题(含答案及解析)
②当AB=AE=2,∠B=60°时,将四边形ABCE向右平移a(a>0)个单位后,恰有两个顶点落在反比例函数y= 的图象上,求k的值.
29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.

(压轴题)初中物理八年级下册期末检测(答案解析)

(压轴题)初中物理八年级下册期末检测(答案解析)

一、选择题1.如图所示,在探究杠杆平衡条件的实验中,杠杆正处于水平平衡状态.若在两侧钩码下分别再加挂一块完全相同的橡皮,则下列判断正确的是()A.杠杆仍能处于水平平衡状态B.杠杆不能处于水平平衡状态,左端上升C.杠杆不能处于水平平衡状态,右端上升D.上述情况均有可能发生2.工人利用滑轮组吊起重为2400N的路灯杆(质量分布均匀)。

如图所示,这是路灯杆一端刚被匀速拉起的示意图。

路灯杆离地后2s被匀速提升1m,绳端拉力F=1000 N。

下列说法正确的是()A.路灯杆一端刚被匀速拉起比路灯杆离地后匀速提升时滑动组的机械效率更大B.路灯杆离地后,绳端拉力F做的功为1000 JC.路灯杆离地后,绳端拉力F做功的功率为500WD.路灯杆离地后,滑轮组的机械效率为80%3.如图所示甲、乙两种方式匀速提升重为100N的物体,已知滑轮重20N,绳重和摩擦力不计。

则()A.机械效率:η甲>η乙B.机械效率:η甲<η乙C.手的拉力:F甲<F乙D.手的拉力:F甲=F乙4.2014年12月7日“长征四号乙”运载火箭在太原卫星发射中心执行中巴地球资源卫星04星的发射任务,关于卫星加速上升的过程中,下列说法正确的是()A.动能变小,势能变大,机械能保持不变B.动能变大,势能变小,机械能保持不变C.动能变小,势能变大,机械能变大,内能转化为机械能D.动能变大,势能变大,机械能变大,内能转化为机械能5.如图所示,2017年5月5日,我国自行研制生产的大型客机C919实现首飞。

下列有关飞机的说法中正确的是()A.起飞时,飞机的机械能变大B.起飞时,飞机的重力势能不变C.降落时,飞机相对于地面是静止的D.着陆后,飞机的惯性消失6.如图,粗糙的弧形轨道固定在地面上,轨道平面竖直,一小球由A点以一定的速度沿轨道滚下,经另一侧与A等高点B后到达最高点C,下列分析正确的是()A.小球在A点的动能比在B点的动能大B.小球在A点的重力势能比在B点的重力势能大C.小球在A点具有的机械能等于它在B点具有的机械能D.小球在A点具有的机械能等于它在C点具有的机械能7.如图甲所示,某科技小组的同学用弹簧测力计悬挂一实心圆柱形金属块,使其缓慢匀速下降,并将其浸入平静的游泳池水中,弹簧测力计的示数F与金属块下表面下降高度h的变化关系如图乙所示,忽略金属块浸入水中时池水液面高度的变化,已知池水的密度为1.0×103kg/m3,g取10N/kg,则下列说法中错误的是()A.金属块所受重力大小为46NB.金属块的密度为2.3×103kg/m3C.金属块完全浸没在水中时所受浮力的大小为20ND.金属块恰好完全浸没时,金属块下表面所受水的压强为5×103Pa8.放在同一水平桌面上的甲、乙两个相同的容器盛有不同的液体,现将两个相同的物块分别放入两容器中。

(压轴题)初中物理八年级下册期末检测(包含答案解析)(3)

(压轴题)初中物理八年级下册期末检测(包含答案解析)(3)

一、选择题1.如图所示,杠杆在水平位置平衡.在其他条件不变的情况下,下列操作一定能使弹簧测力计示数增大的是A.将钩码悬挂点向右移B.将钩码和弹簧测力计的悬挂点均向左移C.增加钩码的个数并将钩码悬挂点向右移D.将弹簧测力计悬挂点向右移2.建筑工人用如图所示的滑轮组,在4s内将重为1500N的物体沿水平方向匀速移动2m 的过程中,所用的拉力大小为375N,物体受到水平地面的摩擦力为物重的0.4倍,在此过程中下列说法正确的是()A.做的有用功为1000JB.拉力F的功率为750WC.重力做的功为3000JD.该装置的机械效率为80%3.小明在探究影响滑轮组机械效率的因素时,猜想滑轮组机械效率与下列因素有关:①被提升的物体的重力;②物体被提升的高度;③动滑轮的重力;④承重绳子的段数。

他用相同的滑轮设计了如图所示的两个滑轮组,将重物提升相同高度做对比实验来验证猜想,该实验验证的猜想是()A.①B.①②C.①②③D.①②③④4.嫦娥五号是中国探月工程三期发射的月球探测器,也是中国首个实施无人月面取样返回的探测器。

2020年12月17日凌晨,嫦娥五号返回器成功携带月球样品着陆地球。

为避免着陆速度过大,嫦娥五号返回器采用了半弹道跳跃式再入返回技术方案(如图)就是用类似“打水漂”的方式两度进人大气层最终降落在内蒙古四子王旗地区。

返回器从首度进人大气层到最终落地的过程中,下列说法正确的是()A.嫦娥五号返回器的动能越来越大B.嫦娥五号返回器的势能先减小后增大再减小C.嫦娥五号返回器的势能不断减小D.嫦娥五号返回器的机械能始终不变5.雨滴从高空由静止开始下落,由于空气阻力的影响,最终会以恒定的速度匀速下降。

雨滴在空中下落的整个过程中(不计雨滴质量变化)()A.动能一直增大,机械能一直减小B.重力势能一直减小,机械能不变C.动能先增大后不变,机械能不变D.动能先增大后不变,机械能一直减小6.如图所示是跳伞运动员在空中匀速下落的过程,从能量角度分析,跳伞运动员的()A.动能增大,势能不变,机械能减小B.动能不变,势能减小,机械能不变C.动能增大,势能减小,机械能不变D.动能不变,势能减小,机械能减小7.如图所示,A是立方体木块、B是立方体铁块,在物块A下用一段细线于杯底相连,现向容器内缓慢加水(加水后A、B能够漂浮起来),若细线的拉力用F表示,烧杯中水的深度用h表示,那么在图中可以正确描述拉力F随深度h的变化关系的图像是()A.B.C.D.8.如图所示,放在水平桌面上的三个完全相同的容器内,装有适量的水,将A、B、C三个体积相同的正方体分别放入容器内,待正方体静止后,三个容器内水面高度相同.下列说法正确的是()A.物体受到的浮力大小关系为F A>F B>F CB.三个物体的密度大小关系是ρA>ρB>ρCC.容器对桌面的压力大小关系为F甲=F乙=F丙D.容器底部受到水的压强大小关系为P甲>P乙>P丙9.用细绳拴着一长方体石块,依次做图中a、b、c、d四种操作,石块保持如图所示的位置静止不动,则四种情况中细绳受到石块的拉力最小的是()A.(a)B.(b)C.(c)D.(d)10.下列古诗词中,运用了物理中“压强”知识的是()A.种豆南山下,草盛豆苗稀B.日照香炉生紫烟,遥看瀑布挂前川C.绳锯木断,水滴石穿D.树欲静而风不止11.在“研究同一直线上二力合成”的实验中,使两个力的共同作用效果与一个力的作用效果相同,采用的科学方法是()A.控制变量法B.等效替代法C.建立模型法D.转换法12.下列作图不正确的是()A.静置在桌子上的书B.压在竖直墙面上的物块C.球静止在墙角处D.自由下滑的物体二、填空题13.如图所示,质地均匀的直尺AC放在水平桌面上,尺子总长度为18厘米,伸出桌面的部分CB是全尺长的三分之一。

人教版八年级下册专题16.4 二次根式(压轴题综合测试卷)(人教版)(解析版)

人教版八年级下册专题16.4 二次根式(压轴题综合测试卷)(人教版)(解析版)

专题16.4二次根式(满分100)学校:姓名:班级:考号:一.选择题(本大题共10小题,每小题3分,满分30分)1. (2021秋•麦积区期末)下列各式中,一定是二次根式的是( )A.B.C. Va 2 - 1D. Va 2 + 2【思路点拨】 根据形如VH («>o )的式子叫做二次根式判断即可.【解题过程】解:A 、当。

+1V0时,不是二次根式,故此选项不符合题意;B 、当。

-ivo 时,不是二次根式,故此选项不符合题意;。

、当。

=0时' a 2 - \ = - KO, 7a 2 - 1不是二次根式,故此选项不符合题意;D. -.^2>0, .,.672+2>O,是二次根式,故此选项符合题意;故选:D.2. (2021秋•龙泉驿区期末)下列计算正确的是()A. V3 + V3 = V6B. 2^2 - V2 = V2C. 〃 + 鱼=2D. V6 x V3 = V9【思路点拨】利用二次根式的加减法的法则,二次根式的乘法与除法的法则对各项进行运算即可. 【解题过程】解:A 、V3 + V3 = 2A /3,故A 不符合题意;B 、2V2-V2 = V2,故B 符合题意; C> V4 -r V2 = V2,故C 不符合题意;D 、V6X V3 = 3A /2,故。

不符合题意;故选:B.3. (2021秋•徐汇区期末)下列二次根式中,是最简二次根式的是()A.B. 7WC. Vx 2 - 2% + 1D. y/13ab【思路点拨】根据最简二次根式的定义判断即可. 【解题过程】解:A. 铝,故A 不符合题意;yj p-lp —1历=2回,故B 不符合题意;C.V%2 - 2% 4- 1 =|x - 1|,故 C 不符合题意;是最简二次根式,故。

符合题意;故选:D.4. (2021秋•鼓楼区校级期末)下列二次根式中,化简后可以合并的是()A.y 和后B. da2b 和前C.率万和VL +炉D.后和巡【思路点拨】先把每一个二次根式化成最简二次根式,然后再看被开方数是否相同即可判断. 【解题过程】解:A.正和后不能合并,故4不符合题意;B.a7b =|c/|Vb, ,“a2b 与仍能合并,故B 符合题意;与后不能合并,故C 不符合题意;D. VV25 =5,・・・库与遥不能合并, 故。

因式分解压轴题(20题)-【常考压轴题】2023-2024学年八年级数学下册压轴题攻略(原卷版)

因式分解压轴题(20题)-【常考压轴题】2023-2024学年八年级数学下册压轴题攻略(原卷版)

原创精品资源学科网独家享有版权,侵权必究!1第四章因式分解压轴题1.若a =a 的说法正确的是().A .是正整数,而且是偶数B .是正整数,而且是奇数C .不是正整数,而是无理数D .无法确定2.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M 的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.3.如果一个三位正整数M 可以表示为()3m m +的形式,其中m 为正整数,则称M 为“幸运数”.例如:三位数270,()27015153=⨯+ ,∴270是“幸运数”;又如:三位数102,1021102251334617=⨯=⨯=⨯=⨯ ,∴102不是“幸运数”、根据题意,最大的“幸运数”为;若M 与N 都是“幸运数”,且350M N -=,则所有满足条件的N 的和为.4.一个四位正整数m ,如果m 满足各个数位上的数字均不为0,千位数字与个位数字相等,百位数字与十位数字相等,则称m 为“对称数”,将m 的千位数字与百位数字对调,十位数字与个位数字对调得到一个新数m ',记()81m m F m '-=.例如:对称数7337m =时,3373m '=,则()7337377373374481F -==.已知s 、t 都是“对称数”,记s 的千位数字与百位数字分别为a ,b ,t 的千位数字与百位数字分别为x ,y ,其中19b a ≤<≤,1x ≤,9y ≤,a ,b ,x ,y 均为整数.若()F s 能被8整除,则a b -=;同时,若()F s 、()F t 还满足()()64138F s F t a b x y xy +=++-+,则()F t 所有可能值的和为.5.“回文诗”即正念倒念都有意思,均成文章的诗,如:“秋江楚雁宿沙洲,雁宿沙洲浅水流.流水浅洲沙宿雁,洲沙宿雁楚江秋.”其意境与韵味读起来都是一种美的享受.在数学中也有这样一类数有这样的特征,即正读倒读都一样的自然数,我们称之为“回文数”,例如11,343等.下列几个命题中:(1)2222是“回文数”;(2)所有两位数中,有9个“回文数”;所有三位数中,有81个“回文数”;(3)任意四位数的“回文数”是11的倍数;(4)如果一个“回文数”m 是另外一个正整数n 的平方,则称m 为“平方回数”.若t 是一个千位数字为1的四位数的“回文数”,若11s t =,且s 是一个“平方回数”,则1331t =.其中,真命题有.(填序号)6.定义:任意两个数a ,b ,按规则()()11c a b =++运算得到一个新数c ,称所得的新数c 为a ,b 的“和积数”.(1)若4a =,2b =-,求a ,b 的“和积数”c ;(2)若12ab =,228a b +=,求a ,b 的“和积数”c ;(3)已知1a x =+,且a ,b 的“和积数”32452c x x x =+++,求b (用含x 的式子表示)并计算a b +的最小值.7.若一个四位数M 的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M 称作“星耀重外数”.例如:2456M =,∵()42265-=⨯-,∴2456是“星耀重外数”;又如4325M =,∵()34252-≠⨯-,∴4325不是“星耀重外数”.(1)判断2023,5522是否是“星耀重外数”,并说明理由;(2)一个“星耀重外数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,且满足29a b c d ≤≤<≤≤,记()492223624ac a d b G M -++-=,当()G M 是整数时,求出所有满足条件的M .8.已知一个各个数位上的数字均不为0的四位正整数()M abcd a c =>,以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s ,若s 等于M 的千位数字与十位数字的平方差,则称这个数M 为“平方差数”,将它的百位数字和千位数字组成两位数ba ,个位数字和十位数字组成两位数dc ,并记()T M ba dc =+.例如:6237是“平方差数”,因为226327-=,所以6237是“平方差数”;此时()6237267399T =+=.又如:5135不是“平方差数”,因为22531615-=≠,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M abcd =是“平方差数”,且()T M 比M 的个位数字的9倍大30,求所有满足条件的“平方差数”M .9.一个两位数M ,若将十位数字2倍的平方与个位数字的平方的差记为数N ,当N >0时,我们把N 放在M 的右边将所构成的新数叫做M 的“叠加数”.例如:M =47,∵N =(2×4)2-72=15>0,∴47的“叠加数”为4715;M =26,∵N =(2×2)2-62=-20<0,∴26没有“叠加数”.(1)请判断3420和5846是否为某个两位数的“叠加数”,并说明理由;(2)两位数M =10a +b (1≤a ≤9,1≤b ≤4,且a 、b 均为整数)有“叠加数”,且12a -M -N 能被13整除,求所有满足条件的两位数M 的“叠加数”.原创精品资源学科网独家享有版权,侵权必究!310.材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.(1)分解因式:1ab a b +++(2)若a ,()b a b >都是正整数且满足40ab a b ---=,求a b +的值;(3)若a ,b 为实数且满足50ab a b ---=,22235S a ab b a b =+++-,求S 的最小值.11.八年级课外兴趣小组活动时,老师提出了如下问题:将2346a ab b --+因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式()()()()()()234623223232a ab b a b b b a =---=---=--;解法二:原式()()()()()()24362232223a ab b a b a a b =---=---=--.【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将22x a x a -++因式分解;【挑战】(2)请用分组分解法将222ax a ab bx b +--+因式分解;(3)若229a b +=,2a b -=,请用分组分解法先将432234222a a b a b ab b -+-+因式分解,再求值.12.如图①,在平面直角坐标系中,点A ,点B 分别在x 轴负半轴和y 轴正半轴上,点C 在第二象限,且90ACB ∠=︒,AC BC =,点B 的坐标为()0,m ,点C 的纵坐标为n ,满足222170m n m +-+=.(1)求点A 的坐标;(2)如图②,点D 是AB 的中点,点E ,F 分别是边AC ,BC 上的动点,且DE DF ⊥,在点E ,F 移动过程中,四边形的面积是否为定值?请说明理由;(3)在平面直角坐标系中,是否存在点P ,使得PAC △是以点A 为直角顶点的等腰直角三角形,请直接写出满足条件的点P 的坐标.13.在x 轴正半轴上有一定点A ,(),0A a .(1)若多项式24x x a ++恰好是某个整式的平方,那么点A 的坐标为__________;(2)如图1,点P 为第三象限角平分线上一动点,连接AP ,将射线AP 绕点A 逆时针旋转30︒交y 轴于点Q ,连接PQ ,在点P 运动的过程中,当45APQ ∠=︒时,求OQA ∠的度数;(3)如图2,已知点B 、点C 分别为y 轴正半轴,x 轴正半轴上的点,C 在A 右侧,在线段OB 上取点(0)E m ,,AC n =,且45BCE ∠=︒,过点A 做AD x ⊥轴,且AD OC =,求DF 的长.(结果用m ,n 表示)14.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;再例如求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.可知当=1x -时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)代数式223a a -++的最大值为:;(2)若2211M a b =++与62N a b =-,判断M N 、的大小关系,并说明理由;(3)已知:2a b -=,2450ab c c -++=,求代数式a b c ++的值.15.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +-.原式()()()()()22223211314121231x x x x x x x x x =+-=++--=+-=+++-=+-.【材料2】因式分解:()()221x y x y ++++原创精品资源学科网独家享有版权,侵权必究!5解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x -+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y ---+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++---+=时,判断ABC 的形状并说明理由.16.我们定义:一个整数能表示成22a b +(a 、b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521=+,所以5是“完美数”.[解决问题](1)已知29是“完美数”,请将它写成22a b +(a 、b 是整数)的形式______;(2)若265x x -+可配方成()2x m n -+(m 、n 为常数),则mn =______;[探究问题](3)已知222450x y x y +-++=,则x y +=______;(4)已知224412S x y x y k =++-+(x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.[拓展结论](5)已知实数x 、y 满足25502x x y -++-=,求2x y -的最值.17.阅读材料:我们把多项式222a ab b ++及222a ab b -+叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值,最小值等.例分解因式:()22223214(1)4(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-;又例如:求代数式2246x x +-的最小值:()2222462232(1)8x x x x x +-=+-=+- ;又2(1)0x + ;∴当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,利用“配方法”,解决下列问题:(1)分解因式:245a a --=___________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22412400a a b b -+-+=求边长c 的最小值;(3)当x 、y 为何值时,多项式222267x xy y y -+-++有最大值?并求出这个最大值.18.【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为2x y +的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为y 的正方体中挖出一个棱长为x 的正方体,请根据体积的不同表示方法,直接写出33y x -因式分解的结果,并利用此结果解决问题:已知a 与2n 分别是两个大小不同正方体的棱长,且()()338244a n a n an -=--,当2a n -为整数时,求an 的值.19.材料:对一个图形通过两种不同的方法计算它的面积或体积,可以得到一个数学等式.(1)如图1,将一个边长为a 的正方形纸片剪去-一个边长为b 的小正方形,根据剩下部分的面积,可得一个关于a ,b 的等式:__________.请类比上述探究过程,解答下列问题:(2)如图2,将一个棱长为a 的正方体木块挖去一个棱长为b 的小正方体,根据剩下部分的体积,可以得到等式:33a b -=__________,将等式右边因式分解,即33a b -=__________;原创精品资源学科网独家享有版权,侵权必究!7(3)根据以上探究的结果,①如图3所示,拼叠的正方形边长是从1开始的连续奇数...,按此规律拼叠到正方形ABCD ,其边长为19,求阴影部分的面积.②计算:()()33211211+--20.(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:①2257x x +-=__________;②22672x xy y -+=__________.(3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq npb +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:①分解因式2235294x xy y x y +-++-=__________;②若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题压轴1.(2015·硚口区期末)如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是 A.2.5 B.2.4 C.2.2 D.22.(2015·洪山区期末)如图,正方形ABCD 的边长为4,点E 是正方形外一动点,∠AED =45°,P 为AB 的中点,当E 运动时,线段PE 的最大值为( )PEDCBAA .43B .32C .223+.222+3.(2015·江岸区期末)如图所示,矩形ABCD 中,AB =4,BC =34,点E 是折线段ADC 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.使△PCB 为等腰三角形的点E 的位置共有( ) A .2个 B .3个C.4个D.5个4.(2015·二中期末)如图,在Rt△ABC中,∠BAC=90°,∠BAD=30°,AB=AD,连CD 交AB于E,若EC=2DE,AE=4,则BC的长是()A.34B.24C.246D.65.(2015·青山区期末)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,AE=BC,DH ⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,OE=2,OB的长度为()A.4 B.236-C.22+D.26.(3分)(2015春•武昌区期末)如图,点E是正方形ABCD的边BC延长线一点,连接AE 交CD于F,作∠AEG=∠AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH⊥AG 于H,连接DH,则DH的长为()A.2﹣B.C.D.7.(3分)(2014春·硚口区期末)如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个8.(3分)(2014•洪山区期末)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.B.2 C.3 D.29.(3分)(2014春•江岸区期末)如图,在正方形ABCD中,AB=8,Q是CD的中点,在CD 上取一点P,使∠BAP=2∠DAQ,则CP的长度等于()A .1B .2C .3D .10.(2014春·二中期末)如图,菱形ABCD 中,∠A=60°,AB=4,点M 是边CD 的中点,直线EF 分别与AD ,AB 交于点E ,F ,若点A 与点M 关于直线EF 对称,则DE :BF 的值为( )A 、2B 、56C 、512D 、52411.(3分)(2014春•武昌区期末)如图,▱ABCD 中,AB=6,E 是BC 边的中点,F 为CD 边上一点,DF=4.8,∠DFA=2∠BAE ,则AF 的长为( )A .4.8B .6C .7.2D .10.8二、填空题压轴12.(2015·洪山区期末)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,若CD =5,则四边形ABCD 的面积为_______.DCBA13.(2015·硚口区期末)(1)△ABC 中,AB=15,BC=14,AC=13,则BC 边上的高为 ; (2)如图,△ABC 中,AB=AC ,∠A=30°,点D 在AB 上,∠ACD=15°,AD=2,则BC= .14.(2015·江汉区期末)△ABC是锐角三角形,AB=AC=5,若△ABC的面积为10,则BC 的长为_________15.(2015·江岸区期末)如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在直线BC、DC上分别找一点M、N,使得△AMN的周长最小时,则∠MAN的度数为_________▏16.(2015·二中期末)如图,将直角三角板的顶点A、B放在射线OM、ON上滑动,当∠MON=∠BAC=90°,∠ACB=60°,AC=2时,线段OC的最大值是____17.(2015·青山区期末)如图,□ABCD中,AB=22,BC=2,∠B=135°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是_________18.(3分)(2015春•武昌区期末)如图,在等腰三角形ABC中,AB=AC,∠A=80°,BC=12,点D、E分别在边AB、AC上,且DA=DE=EC,则EC= .19.(3分)(2014春•硚口区期末)如图,菱形ABCD中,∠BCD=120°,点F是BD上一点,EF⊥CF,AE⊥EF,AE=3,EF=4,则AB的长是.20.(3分)(2014春•江岸区期末)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.21.(2014春·二中期末)如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上运动,当正方形的边长为2时,OD的最大值为。

22.(3分)(2014春•青山区期末)如图,四边形ABCD是菱形,AC、BD交于点O,DH⊥AB 于H,连OH,若AC=8,OH=3,则AH= .23.(3分)(2014春•武昌区期末)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为.三、几何综合压轴24. (2015·硚口区期末)(本题10分)如图1,正方形ABCD的边长为6cm,点E从点B 出发,沿射线AB方向以1cm/秒的速度移动,点F从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD移动M,当t=2时,求AM的长;3cm,连接EF,当EF与GH的夹角为(3)如图3,点G,H分别在边AB,CD上,且GH=545°,求t的值.25.(2015·洪山区期末)(本题10分)如图直线485y x=-+与x、y轴分别交于C、A两点,四边形OABC为矩形,在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.点O 落在AB边上的点D处.(1)直接写出点A的坐标___________,点C的坐标__________;(2)求直线CE的解析式;(3)如图,过点E作EG∥x轴交CD于点H,交BC于G.是否存在过点E的一条直线,将四边形EOCH的面积二等分?若存在,求出该直线的解析式;若不存在,请说明理由.26.(2015·江汉区期末)(本题12分)四边形ABCD是矩形,点E是射线BC上一点,连接AC、DE(1) 如图1,BE=AC,若∠ACB=40°,其∠E的度数(2) 如图2,BE=AC,若M是DE的中点,连接AM、CM,求证:AM⊥MC(3) 如图3,点E在边BC上,射线AE交射线DC于点F,∠AED=2∠AEB,AF=m>0,AB=m -4,则CE=_________(直接写出结果)27.(2015·江岸区期末)(本题10分)如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF(1) 求∠FAD的度数(2) 如图2,连接FC交BD于M,求证:2AD=AF+2DM(3) 如图2,连接FC交BD于M,交AD于N.若AF=28,AN=10,则BM的长为________28.(2015·二中期末)(本题10分)(1) 如图1,当四边形ABCD 为矩形且AB =2,BC =6,求BD 的长(2) 如图2,当四边形ABCD 是平行四边形时,求证:AB 2+BC 2=21(BD 2+AC 2) (3) 如图3,四边形ABCD 中,若AB =BC ,且∠ABC =60°,∠ADC =30°,AD =6,CD =4时,求BD 的长29.(2015·青山区期末)(本题10分)如图,正方形ABCD的边长为1,M、N分别为射线CB和射线DC上的点(1) 如图1,M、N分别为线段CB和线段DC上的点,∠MAN=45°,延长CD到E,使DE=BM,连接AE,则△ABM≌△ADE(SAS),请证明:△NAE≌△NAM(2) 如图2,若DN=BM+MN,求证:∠MAN=45°(3) 在(2)的条件下,若C为DN的中点,请直接写出MN的长为_________30.(10分)(2015春•武昌区期末)在四边形ABCD中,点E、F分别是AB、AD边上一点,∠DFC=2∠FCE.(1)如图1,若四边形ABCD是正方形,∠DFC=60°,BE=4,则AF= .(2)如图2,若四边形ABCD是菱形,∠A=120°,∠DFC=90°,BE=4,求的值.(3)如图3,若四边形ABCD是矩形,点E是AB的中点,CE=12,CF=13,求的值.31.(8分)(2014春•硚口区期末)如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.①求证:AD=AF+2DM;②若AF=10,AN=12,则MD的长为.32.(12分)(2014春•洪山区期末)如图,正方形ABCD中,点P是边BC上一点,PH⊥BC 交BD于点H,连接AP交BD于点E,点F为DH中点,PF交CD的延长线于点M,连接AF.(1)求证:△PHF≌△MDF;(2)当点P在线段BC上运动时,∠PAF的大小是否会发生变化?若不变,请求出∠PAF的值;若变化,请说明理由;(3)求证:BE2+DF2=EF2.33.(10分)(2014春•江岸区期末)已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.34.(2014春·二中期末)(10分)正方形ABCD中,点E、F是对角线AC、BD上的两动点。

相关文档
最新文档