2020-2021学年新数学初一下同步测试含解析:(8.3再探实际问题与二元一次方程组)
2020-2021学年人教版七年级数学下册《8.3实际问题与二元一次方程组》同步提升训练(附答案)
2021年人教版七年级数学下册《8.3实际问题与二元一次方程组》同步提升训练(附答案)1.如图是一个迷宫游戏盘的局部平面简化示意图,该矩形的长、宽分别为5cm,3cm,其中阴影部分为迷宫中的挡板,设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,则下列所列方程正确的是()A.y=5×3﹣3x﹣5x B.y=(5﹣x)(3﹣x)C.y=3x+5x D.y=(5﹣x)(3﹣x)+5x22.某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为()A.B.C.D.3.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm4.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定5.中国古代人民在生产生活中发现了许多数学问题,在《九章算术》中记载了这样一个问题,大意为:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,则衡器两边的总重量相等,如果5只雀和6只燕的总重量为1斤,问雀、燕每1只各重多少斤?”如果设每只雀重x斤,每只燕重y斤,则下列方程组正确的是()A.B.C.D.6.某玩具车间每天能生产甲种玩具零件100个或乙种玩具零件200个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A.B.C.D.7.为了更好地开展阳光大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都买),该班级的购买方案共有()A.3种B.4种C.5种D.6种8.某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?设大盒装x个,小盒装y个,则下列方程组中正确的是()A.B.C.D.9.某核心素养测试由20道题组成,答对一题得6分,答错一题扣4分.今有一考生虽然做了全部的20道题,但所得总分为零,他答对的题有()A.12道B.10道C.8道D.6道10.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.已知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为()A.B.C.D.11.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是()A.B.C.D.12.一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是.13.《九章算术》记载了这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万,问善田几何?”意思是:当下良田1亩,价值300钱;薄田7亩,价值500钱.现在共买1顷,价值10000钱.根据条件,良田买了亩.14.长春是以汽车产业为主要经济支柱的工业化城市.新中国的第一辆汽车就是在长春诞生的,长春是中国大型的汽车制造城市,所以又叫“汽车城”.某汽车制造厂生产一款电动汽车,计划一个月生产200辆,由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?15.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?16.某市生产的洋葱品质好、干物质含量高且耐储存,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.17.为加快长三角一体化建设,某快递公司大幅下调沪苏浙皖三省一市区域内快递费用,其调整前后的费用标准如下:起步价1千克内(元)超过1千克的部分(元/千克)调整前a b调整后a﹣3b﹣1调整前寄3kg物品需要12元,调整后花同样的钱可寄出8kg物品,求a,b的值.18.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲,乙两组合做.若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.19.(列二元一次方程组求解)小明家离学校2km,其中有一段为上坡路,另一段为下坡路.他从家跑步去学校共用了16min,已知小明在上坡路上的平均速度是4.8km/h,在下坡路上的平均速度是12km/h.求小明上坡、下坡各用了多少min?20.科技馆门票价格规定如下表.购票张数1﹣50张51﹣100张100张以上每张票的价格18元15元10元某学校七年级①、②两个班共103人去科技馆,其中①班有40多人,不足50人,经计算,如果两个班都以班为单位购票,则一共应付1686元.(1)七年级②班学生有多少人?(2)如果两个班联合起来,作为一个团体购票,可以省元.21.一张方桌由一个桌面和四条腿组成,如果1立方米料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请设计一个方案,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?22.某中学为了响应“足球进校园”的号召,在商场购买A、B两种品牌的足球,已知购买一个B品牌足球比购买一个A品牌足球多30元,购买2个A品牌足球和3个B品牌足球共需340元.(1)求购买一个A品牌足球和一个B品牌足球各需多少元?(2)该中学决定购买A、B两种品牌足球共50个,恰商场对两种品牌足球的售价进行调整,A品牌足球售价比原来提高8%,B品牌足球按原售价的九折出售,如果此次购买A、B两种品牌足球总费用为3060元,那么该中学购进B品牌足球多少个?23.列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.平价商场经销的甲,乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)求甲种商品每件的进价;(利润率=×100%)(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元旦”期间,该商场只对乙种商品进行如表的优惠促销活动:打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠按表的优惠条件,若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?25.某飞镖游戏规则如下:掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分,每次掷中的位置用一个“×”标注.如图,已知小红,小华和小明的有效成绩均为8次,结果小红得了65分,小华得了71分.(1)列方程组解答:掷中A区、B区一次各得多少分?(2)按照同样的记分方法,小明得了多少分?26.大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?27.“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤器,空气净化器和过滤器在两家商场的售价一样.已知买一个空气净化器和1个过滤器要花费2320元,买2个空气净化器和3个过滤器要花费4760元.(1)请用方程组求出一个空气净化器与一个过滤器的销售价格分别是多少元?(2)为了“庆新年,贺元旦”,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤器.若某单位想要买10个空气净化器和30个过滤器,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.28.某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?类别/单价成本价(元/箱销售价(元/箱)A品牌2032B品牌355029.我市为加快美丽乡村建设,建设秀美幸福抚州,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和4个B类村庄改建共需资金多少万元?30.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?31.已知:用3辆A型车和2辆B型车载满货物一次可运货共19吨;用2辆A型车和3辆B型车载满货物一次可运货共21吨.(1)1辆A型车和1辆B型车都载满货物一次分别可以运货多少吨?(2)某物流公司现有49吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都载满货物.①求m、n的值;②若A型车每辆需租金130元/次,B型车每辆需租金200元/次.请求出租车费用最少是多少元?32.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?33.一条船顺流航行,每小时行20km;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.34.实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?参考答案1.解:设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,根据题意可得:y=(5﹣x)(3﹣x),故选:B.2.解:每组10人时,实际人数可表示为10y﹣5;每组9人时,实际人数可表示为9y+3;可列方程组为:,故选:C.3.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.4.解:设购买1支钢笔、1支铅笔、1支水彩笔分别需要x、y、z元,根据题意得:,①+②得:5x+5y+5z=100,所以x+y+z=20,故选:B.5.解:设每只雀重x斤,每只燕重y斤,则方程组为,故选:A.6.解:由题意可得,,故选:B.7.解:设购买x个跳绳,y个呼啦圈,依题意得:8x+12y=120,∴y=10﹣x.∵x,y均为正整数,∴x为3的倍数,∴或或或,∴该班级共有4种购买方案.故选:B.8.解:依题意得:.故选:C.9.解:设他答对了x道题,答错了y道题,依题意得:,解得:.故选:C.10.解:若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为:.故选:B.11.解:设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒,根据题意可列方程组:,故选:C.12.解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.13.解:设良田买了x亩,薄田买了y亩,依题意得:,解得:,即良田买了12.5亩,故答案为:12.5.14.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)(200﹣4×30)÷2=80÷2=40(名).答:还需要招聘40名新工人才能完成一个月的生产计划.15.解:(1)设甲种型号的空气加湿器每台的进价为x元,乙种型号的空气加湿器每台的进价为y元,依题意得:,解得:.答:甲种型号的空气加湿器每台的进价为200元,乙种型号的空气加湿器每台的进价为170元.(2)设该超市本次购进购进甲种型号的空气加湿器m台,则购进乙种型号的空气加湿器(60﹣m)台,依题意得:(260﹣200)m+(190﹣170)(60﹣m)=2800,解得:m=40,∴60﹣m=20(台).答:该超市本次购进购进甲种型号的空气加湿器40台,乙种型号的空气加湿器20台.16.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意得:,解得:.答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意得:3a+4b=31,∴a=.又∵a,b均为非负整数,∴或或,∴该物流公司共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车.(3)方案1所需租车费为100×9+120×1=1020(元);方案2所需租车费为100×5+120×4=980(元);方案3所需租车费为100×1+120×7=940(元).∵1020>980>940,∴费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元.17.解:由题意可知:,解得:,答:a的值是8,b的值是2.18.解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)设甲组每天完成的工作量为m,乙组每天完成的工作量为n,依题意得:,解得:,∴甲组单独完成装修所需时间为1÷=12(天),乙组单独完成装修所需时间为1÷=24(天).施工方案①所需装修费用及耽误营业损失的费用之和为(300+200)×12=6000(元);施工方案②所需装修费用及耽误营业损失的费用之和为(140+200)×24=8160(元);施工方案③所需装修费用及耽误营业损失的费用之和为(300+140+200)×8=5120(元).∵5120<6000<8160,∴方案③请甲,乙两组合做最有利于商店经营.19.解:设小明上坡用了xmin,下坡用了ymin,依题意得:,解得:.答:小明上坡用了10min,下坡用了6min.20.解:(1)设七年级②班有x人,七年级①班有y人,由题意得:,解得:,答:七年级②班有56人;(2)1686﹣10×103=656(元).即如果两班联合起来,作为一个团体购票,可省656元,故答案为:656.21.解:设用x立方米木料做桌面,用y立方米木料做桌腿,则恰好配成方桌50x张,依题意得:,解得:,∴50x=150.答:用3立方米木料做桌面,用2立方米木料做桌腿,恰好配成方桌150张.22.解:(1)设购买一个A品牌足球需要x元,购买一个B品牌足球需要y元,依题意得:,解得:.答:购买一个A品牌足球需要50元,购买一个B品牌足球需要80元.(2)设该中学购进B品牌足球m个,则购进A品牌足球(50﹣m)个,依题意得:50×(1+8%)(50﹣m)+80×0.9m=3060,解得:m=20.答:该中学购进B品牌足球20个.23.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.24.解:(1)设甲种商品的进价为a元,则98﹣a=40%a.解得a=70.答:甲种商品的进价为70元;(2)设该商场购进甲种商品x件,根据题意可得:70x+80(50﹣x)=3800,解得:x=20;乙种商品:50﹣20=30(件).答:该商场购进甲种商品20件,乙种商品30件.(3)设小华在该商场购买乙种商品b件,根据题意,得①当过480元,但不超过680元时,480+(128b﹣480)×0.6=576,解得b=5.②当超过680元时,128b×0.75=576,解得b=6.答:小华在该商场购买乙种商品5或6件.25.解:(1)设掷中A区一次得x分,掷中B区一次得y分,依题意得:,解得:.答:掷中A区一次得10分,掷中B区一次得7分.(2)2×10+6×7=62(分).答:小明得了62分.26.解:设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,依题意得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名大学生志愿者.27.解:(1)设一个空气净化器与一个过滤器的销售价格分别为x元、y元,由题意得:,解得:,答:一个空气净化器2200元,一个过滤器120元;(2)选择“苏宁”商场购买更合算,理由如下:在“国美”商场购买所需费用为:0.95(2200×10+120×30)=24320(元),在“苏宁”商场购买所需费用为:2200×10+(30﹣10×2)×120=23200(元),∵24320>23200,∴选“苏宁”商场购买更合算.28.解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.29.解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,由题意得,,解得:.答:建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)3x+4y=3×120+4×180=1080(万元).答:共需资金1080万元.30.解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.31.解:(1)设1辆A型车和1辆B型车都载满货物一次分别可以运货x吨,y吨,根据题意得:,解得:.答:1辆A型车一次可以运货3吨,1辆B型车一次可以运货5吨.(2)①由(1)和题意得:3m+5n=49,∴,∵m、n都是正整数,∴或或.②∵A型车每辆需租金130元/次,B型车每辆需租金200元/次,∴当m=13,n=2时,需租金:130×13+200×2=2090(元),当m=8,n=5时,需租金:130×8+200×5=2040(元),当m=3,n=8时,需租金:130×3+200×8=1990(元),∵2090>2040>1990,所以租车费用最少的是1990元.32.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.33.解:设水流速度为xkm/h,由题意,得20﹣x=16+x,解得:x=2.轮船在静水中的速度为:16+2=18km/h.答:轮船在静水中的速度为18km/h,水的流速为2km/h.34.解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.。
2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组(含答案)
8.3实际问题与二元一次方程组一、单选题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x岁,小明今年y岁,根据题意列方程得()A.345x y yx y x-=-⎧⎨-=-⎩B.345x y yx y x-=+⎧⎨-=-⎩C.345x y yx y x-=-⎧⎨-=+⎩D.345x y yx y x-=+⎧⎨-=+⎩2.某校运动员按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则可列出的方程组为()A.7385y xy x=+⎧⎨=-⎩B.7385y xy x=+⎧⎨=+⎩C.7385y xy x=-⎧⎨=-⎩D.7385y xy x=-⎧⎨=+⎩3.某校八(3)班40名同学为“希望工程”捐款,共捐款510元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A.x y406x8y510+=⎧⎨+=⎩B.x y406x8y416+=⎧⎨+=⎩C.x y276x8y416+=⎧⎨+=⎩D.x y2986320x y+=⎧⎨+=⎩4.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50元,如果乙得到甲所有钱的23,那么乙也共有钱50元,问甲、乙各自带了多少钱?设甲原有钱x元,乙原有钱y元,可列方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y+=⎧⎪⎨+=⎪⎩5.父子二人并排站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭⎩B.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩C.3.21137x yx y+=⎧⎪⎨=⎪⎩D.3.2111137x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩6.《九章算术》是我国古代数学的经典著作,书中记:今有上禾七乘,损实一斗,益之下禾两秉,而实一十斗;下禾八秉,益实一斗,于上禾二秉,而实一十斗.问上、下禾实一秉各几何?其意思为:现有七捆上等稻子和两捆下等稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子,问一捆上等稻子和一捆下等稻子各打谷子多少斗?设一捆上等稻子和一捆下等稻子分别打成谷子x斗,y斗,则可建立方程组为()A.72110 28110 x yx y-+=⎧⎨++=⎩B.7211028110x yx y+-=⎧⎨+-=⎩C.72(1)1028(1)10x yx y+-=⎧⎨++=⎩D.7211028110x yx y+-=⎧⎨++=⎩7.元代数学家朱世杰撰写的《四元玉鉴》中记载了一个问题,大意是:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可买苦果七个,十一文钱可买甜果九个,问甜果、苦果各几个?设买了甜果x个,苦果y个,根据题意可列方程组()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100011499997x yx y+=⎧⎪⎨+=⎪⎩C.100079999411x yx y+=⎧⎪⎨+=⎪⎩D.100097999114x yx y+=⎧⎪⎨+=⎪⎩8.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.5352x yx y+=⎧⎨+=⎩B.3552x yx y+=⎧⎨+=⎩C.5325x yx y+=⎧⎨=+⎩D.5235x yx y+=⎧⎨=+⎩9.某运输队接到给武汉运输物资的任务,该队有A型卡车和B型卡车,A型卡车每次可运输6t物资,每天可运输5次,B型卡车每次可运输8t物资,每天可运输4次,若每天派出20辆卡车,刚好运输620t物资,设该运输队每天派出A型卡车x辆,B型卡车y 辆,则所列方程组正确的是()A.542068620x yx y+=⎧⎨+=⎩B.2068620x yx y+=⎧⎨+=⎩C.205648620x yx y+=⎧⎨⨯+⨯=⎩D.54205648620x yx y+=⎧⎨⨯+⨯=⎩10.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x元,一头牛价钱为y元,则符合题意的方程组是()A.2+10000210000(2)2xx yyx y⎧-=⎪⎪⎨⎪-+=⎪⎩B.2+1000022100002xx yyx y⎧-=⎪⎪⎨⎪+-=⎪⎩C.2++1000022100002xx yyx y⎧=⎪⎪⎨⎪+-=⎪⎩D.210000210000(2)2xx yyx y⎧++=⎪⎪⎨⎪-+=⎪⎩二、填空题11.某班20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,可列方程组为___________.12.有大小两种笔记本,3本大笔记本和2本小笔记本的售价是14元,2本大笔记本和3本小笔记本的售价为11元.设大笔记本为x元/本,小笔记本为y元/本,根据题意,列方程组正确的是____.13.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组_________.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为______.15.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是__分钟.三、解答题16.某生产车间生产A,B两种零件,现有55名工人,每人每天生产A零件12个,每人每天生产B零件8个,若一个A需搭配3个B才能成一套产品.那么应该分配多少人做A零件,多少人做B零件,才能使每天做出的产品刚好配套?17.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?18.列方程解应用题:在庆祝深圳经济特区建立40周年的活动中,八年级组购买了“小红旗”装饰各班教室,家委会先后两次在同一家商店以相同的单价购买了两种材质的“小红旗”,第一次购买300个塑料材质的“小红旗”,200个涤纶材质的“小红旗”,共花费660元;第二次购买100个塑料材质的“小红旗”,300个涤纶材质的“小红旗”共花费570元,求这两种材质的“小红旗”单价各为多少元?参考答案1.A 2.D 3.C 4.B 5.D 6.D 7.B 8.A 9.C 10.A11.20 3252 x yx y+=⎧⎨+=⎩12.3214 2311 x yx y+=⎧⎨+=⎩13.500,3%4%500 3.6% x yx y+=⎧⎨+=⨯⎩14.4648 2538 x yx y+=⎧⎨+=⎩15.416.应该分配10人做A零件,45人做B零件,才能做出刚好配套的产品.17.这些消毒液应该分装20000大瓶,50000小瓶18.塑料材质的“小红旗”的单价为1.2元,涤纶材质的“小红旗”的单价为1.5元。
2020——2021学年人教版数学七年级下册第八章二元一次方程组8.3实际问题与二元一次方程(二)
实际问题与二元一次方程(二)一.二元一次方程组的应用--看图列式1.根据图中所给出的信息,求出每个篮球的价格是______元,每个羽毛球的价格是______元。
2.元旦快到了,吴老师打算购买气球装扮教室,气球的种类有笑脸和爱心两种,两种气球的价格不同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为多少?3.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为多少?4.在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为______分5.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为______cm2。
二.二元一次方程组的应用--长方形周长面积问题1.如图,四个一样的长方形围成一个正方形,外面的大正方形周长是40、里面的小正方形周长是24,则小长方形的面积是多少?2.如图,四个一样的小长方形和一个大长方形围成一个正方形,正方形周长是32,则大长方形的面积是多少?3.四个一样的小长方形拼成一个大长方形、大长方形的周长是120,小长方形的面积是多少?4.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为多少?5.如图,长方形ABCD中放置9个形状大小都相同的小长方形,相关数据如图,则图中阴影部分面积为()三.二元一次方程组的应用--分段问题1.某旅游景点的门票价格如下表:某旅行社计划帶甲、乙两个旅行团共100多人计划去游览该景点,其中甲旅行团人数少于50人,乙旅行团人数有50多人但不足100人,如果两旅行团都以各自团体为单位单独购票,则一共支付7965元;如果两旅行团联合起来作为一个团体购票,则只管花费7210元.问两旅行团各有多少人?2.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水22吨,交水费53元;4月份用水18吨,交水费36元.求每吨水的政府补贴优惠价m和市场价n分别是多少元?3.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”那么小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费______元4.为建设资源节约型、环境友好型社会,切实做好节能减排工作,我市决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度),实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2020-2021学年人教版数学七年级下册全册单元、期中、期末测试题及答案解析(共8套)
人教版数学七年级下册全册单元、期中、期末测试题第五章单元测试题一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A. B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.人教版数学七年级下册第六章单元测试题一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣162.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.14.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.75.若,则2a+b﹣c等于()A.0 B.1 C.2 D.36.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.18.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题11.的相反数是,的绝对值是,的倒数是.12.已知:,则x+17的算术平方根为.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?21.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个,(1)当2m﹣6=m﹣2,解得m=4.(2)所以这个数为(2m﹣6)=(2×4﹣6)=2.(3)当2m﹣6=﹣(m﹣2)时,解得m=.(4)所以这个数为(2m﹣6)=(2×﹣6)=﹣.(5)综上可得,这个数为2或﹣.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.22.已知:=0,求实数a,b的值,并求出的整数部分和小数部分.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.已知实数a、b与c的大小关系如图,化简:﹣+.25.先阅读然后解答提出的问题:设a、b是有理数,且满足,求b a的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x、y都是有理数,且满足,求x+y的值.参考答案与试题解析一.选择题1.的值为()A.4 B.﹣4 C.±4 D.﹣16【考点】22:算术平方根.【专题】1 :常规题型.【分析】先求出被开方数,再根据算术平方根的定义进行解答.【解答】解:=﹣=﹣4.故选B.【点评】本题主要考查了算术平方根的计算,先求出被开方数是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【专题】1 :常规题型.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如果±1是b的平方根,那么b2013等于()A.±1 B.﹣1 C.±2013 D.1【考点】21:平方根.【分析】根据1的平方根是±1确定出b=1,然后根据有理数的乘方进行计算即可得解.【解答】解:∵±1是b的平方根,∴b=1,∴b2013=12013=1.故选D.【点评】本题考查了平方根的定义,有理数的乘方,是基础题,确定出b的值是解题的关键.4.已知=1.147,=2.472,=0.5325,则的值是()A.24.72 B.53.25 C.11.47 D.114.7【考点】24:立方根.【分析】根据被开方数小数点移动3位,立方根的小数点移动1位解答.【解答】解:==1.147×10=11.47.故选C.【点评】本题考查了立方根的应用,要注意被开方数与立方根的小数点的移动变化规律.5.若,则2a+b﹣c等于()A.0 B.1 C.2 D.3【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则2a+b﹣c=﹣4+1+3=0.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲【考点】2A:实数大小比较.【分析】由4<<5<<<6,可得10<6+<11,7<2+<8,则可求得答案.【解答】解:∵4<<5<<<6,∴10<6+<11,7<2+<8,∴丙<乙<甲.故选D.【点评】此题考查了实数的大小比较.此题难度不大,解题的关键是确定各数在哪两个整数之间.7.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4 B.3 C.2 D.1【考点】24:立方根;22:算术平方根.【分析】如果一个数的立方等于a,那么这个数叫做a的立方根,如果一个数的平方等于a,那么这个数叫做a的平方根.【解答】解:=,故①正确.=4,故⑥正确.其他②③④⑤是正确的.故选A.【点评】本题考查立方根和平方根的概念,然后根据概念求解.8.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③是3的立方根;④无理数是带根号的数;⑤2的算术平方根是.A.2个B.3个C.4个D.5个【考点】27:实数.【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【解答】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故判断错误;②实数包括无理数和有理数,故判断正确;③是3的立方根,故判断正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故判断错误;⑤2的算术平方根是,故判断正确.故选B.【点评】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.9.已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c【考点】29:实数与数轴.【专题】21 :阅读型.【分析】首先从数轴上a、b、c的位置关系可知:a<b,则b﹣a>0,c>b,则b﹣c<0.【解答】解:根据题意可知:a<b,则b﹣a>0,c>b,则b﹣c<0,原式=a+(b﹣c)+(c﹣b)=a+b﹣a+c﹣b=c.故选A.【点评】本题考查了实数与数轴的对应关系和利用绝对值的性质化简.10.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.【考点】29:实数与数轴.【分析】点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,即可求得c 的值.【解答】解:点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选C.【点评】本题考查了实数与数轴的对应关系,正确理解c与3和之间的关系是关键.二、填空题11.的相反数是﹣1,的绝对值是3,的倒数是﹣.【考点】28:实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答;根据立方根的定义和绝对值的性质解答;根据立方根的定义和倒数的定义解答.【解答】解:1﹣的相反数是﹣1;∵=﹣3,∴的绝对值是3;∵=﹣4,∴的倒数是﹣.故答案为:﹣1,3,﹣.【点评】本题考查了实数的性质,主要利用了相反数的定义,立方根的定义,绝对值的性质和倒数的定义,熟记概念和性质是解题的关键.12.已知:,则x+17的算术平方根为3.【考点】24:立方根;22:算术平方根.【分析】首先利用求得x的值,然后在求x+17的算术平方根即可.【解答】解:∵,∴5x+32=﹣8,解得:x=﹣8,∴x+17=﹣8+17=9,∵9的算术平方根为3,∴x+17的算术平方根为 3,故答案为3.【点评】本题考查了立方根及算术平方根的意义,解题的关键是首先求得x的值,然后求x+17的算术平方根.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是4或100.【考点】21:平方根.【分析】2a﹣4、3a﹣1是同一个正数的平方根,则它们互为相反数或相等,即可列出关于a的方程,解方程即可解决问题.【解答】解:∵2a﹣4、3a﹣1是同一个正数的平方根,则这两个式子一定互为相反数或相等.即:(2a﹣4)+(3a﹣1)=0或2a﹣4=3a﹣1,解得:a=1或a=﹣3,则这个数是:(2a﹣4)2=4或(2a﹣4)2=100故答案为:4或100.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.14.一个负数a的倒数等于它本身,则=1;若一个数a的相反数等于它本身,则﹣5+2=﹣9.【考点】2C:实数的运算.【分析】因为一个负数a的倒数等于它本身,所以a=﹣1,由此即可求出的值;因为一个数a的相反数等于它本身,所以a=0,由此即可求出﹣5+2的值.【解答】解:∵一个负数a的倒数等于它本身,∴a=﹣1,∴==1;∵一个数a的相反数等于它本身,∴a=0,∴﹣5+2=0﹣5﹣4=﹣9.故答案为:1,﹣9.【点评】此题主要考查了实数的运算和学生的分析能力,解题的关键是根据已知条件找到a的值.15.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=1或3.【考点】2C:实数的运算.【分析】先根据平方根、立方根的定义解已知的两个方程求出x、y的值,然后再代值求解.【解答】解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.【点评】本题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.16.如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,,则点C对应的实数是3﹣2.【考点】29:实数与数轴.【分析】根据数轴的特点表示出AB的长,在表示出BC的长,然后用点B表示的数加上BC的长度计算即可.【解答】解:∵点A,B对应的实数分别为1,,∴AB=﹣1,∴BC=2AB=2(﹣1)=2﹣2,∴点C对应的数是+2﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了实数与数轴,主要利用了数轴上两点间的距离的表示,是基础题.三、解答题17.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.【考点】2C:实数的运算.【专题】11 :计算题.【分析】①原式利用绝对值的代数意义化简,计算即可得到结果;②原式利用乘方的意义,平方根及立方根定义计算即可得到结果;③原式利用平方根,立方根,以及绝对值的代数意义化简,计算即可得到结果;④原式利用平方根,绝对值,以及乘方的意义计算即可得到结果.【解答】解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求下列各等式中的x:(1)27x3﹣125=0(2)(3)(x﹣2)3=﹣0.125.【考点】24:立方根.【分析】(1)先移项,然后将三次项的系数化为1,开立方即可得出x的值;(2)先开立方、开平方,然后移项合并,再开立方,可得出x的值;(3)直接开立方得出(x﹣2)的值,继而可得出x的值.【解答】解:(1):移项得:27x3=125,系数化为1得:x3=,开立方得:;(2)原方程可化为:x3=﹣8,开立方得:x=﹣2;(3)开立方得:x﹣2=﹣0.5,移项得:x=1.5.【点评】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算,属于基础题.19.在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.【考点】2C:实数的运算.【专题】11 :计算题.【分析】根据题意填写表格即可.【解答】解:根据题意得:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.国际比赛的足球场长在100米到110米之间,宽在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,问这个足球长是否能用作国际比赛吗?。
2020-2021学年人教版七年级下册同步及综合测试题及答案:综合测试题及答案
2020-2021学年人教版 七年级第二学期水平测试数学科试题(考试时间:100分钟 满分:110分)题号一二三 总分 得分(1-12) (13-18) 1920212223241.在平面直角坐标系中,点所在的象限是( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.下列四个方程中,是二元一次方程组的是 ( ).A .30x -=B .25x z -=C .358xy -=D .112y x += 3.若235a bxy +与63a b x y --是同类项,则2a b +=( ).A .3-B .3C .6D .94.由132x y-=。
可以得到用x 表示y 的式子( ). A .223x y -=B .2133x y =- C .223x y =- D .223x y =- 5.下列几对数值中哪一对是方程5414x y +=的解( ).A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .32x y =⎧⎨=⎩ D .41x y =⎧⎨=⎩6.不等式36x -≤的解集在数轴上表示为( ).7.如果等腰三角形有两边分别分别是4cm 和8cm ,那么该等腰三角形的周长为( ).题号 1 2 3 4 5 6 7 8 9 10 11 12 选项D-1 0 C0 1-1-2A-1 0 1 2B-10 12A. 17cmB. 22cmC. 1722cm cm 或D.以上答案都不对 8.一个多边形的每个外角都等于45,则这个多边形的内角和等于( ). A .675 B .720 C .900 D .10809.已知方程组52ax by bx ay +=⎧⎨+=⎩的解是43x y =⎧⎨=⎩,则( ).A .23a b =⎧⎨=⎩B .21a b =⎧⎨=-⎩ C .21a b =-⎧⎨=⎩ D .21a b =-⎧⎨=-⎩10.阅读材料:“今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各何”,阎伟经过认真思考,并得出了正确结论,则下列结论中正确的是( ).A .鸡23只, 兔12只B .鸡24只, 兔11只C .鸡25只, 兔10只D .鸡12只, 兔23只 11.如果关于x 的不等式()11a x a +>+的解集为1x >,那么a 的取值范围是( ). A.0a > B.0a < C.1a >- D.1a <- 12.如图1,在ABC ∆中,AD 是ABC ∆的高,40B ∠=,20CAD ∠=.则BAC ∠的度数为( ).A .20B .30C .50D .60二、填空题(每小题3分,共18分)13.写出一个解是12x y =⎧⎨=-⎩的二元一次方程组: .14.x 的12与5的差不小于3,用不等式表示为 .15.若32x y-<-,则2x 3y .16. 根据下面所给信息,则每只玩具小猫的价格为 .买 一共要70元买 一共要50元17.方程39x y +=的正整数解是: .18.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降 元出售此商品. 三、解答题(本大题共66分 19.(本题8分)解下列不等式,并把它的的解集在数轴上表示出来.()31317x x +->ACDB图120.解下列方程组.(每小题5分,共10分)(1)35215x y x y -=⎧⎨-+=⎩ (2)()()()3155135x y y x -=+⎧⎪⎨-=+⎪⎩21. (本题8分)如图2的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(12)-,,请在图中画出平面直角坐标系,并写出白棋的坐标.22. (本题8分)在等式y kx b =+中,当1x =时,2y =,当1x =-时,4y =-,求当2x =-时,y 的值.图2 A B23. (本题10分)“五一”期间,某商场搞优惠促销,由顾客抽奖确定折扣,某顾客购买A B 、两种商品,分别抽到七折(按售价的70%)和九折(按售价的90%),共付款386元,这两种商品原售价之和为500元,问这两种商品的原售价分别为多少元?24. (本题12分)如图3,将一副三角板的两个直角顶点重合在一起放置, (1)当60BOC ∠=时,AOD ∠= .(2)当70BOC ∠=时,AOD ∠= .(3)你知道AOC ∠与BOD ∠的大小关系吗?请说明理由. (4)把三角板COD 绕点O 顺时针旋转到如图4的位置,(3)中的结论还成立吗?为什么?DC BAO图3BCDOA图4七年级数学科试题参考答案题号1 2 3 4 5 6 7 8 9 10 11 12 选项D B BCBDBDBACB13、答案不唯一,如:13x y x y +=-⎧⎨-=⎩ 14、1532x -≥ 15、>16、10 17、32x y =⎧⎨=⎩与61x y =⎧⎨=⎩ 18、60三、解答题19、解:31317x x +->24x >∴2x >把不等式的解集在数轴上表示为:20、(1)35215x y x y -=⎧⎨-+=⎩解:由①,得 35y x =- ③ 把③代入②,得 ()23515x x -+-=解这个方程,得5x =把5x =代入①,得 10y =所以这个方程组的解是510x y =⎧⎨=⎩(2)()()()3155135x y y x -=+⎧⎪⎨-=+⎪⎩ 解:整理方程组,得383520x y x y -=⎧⎨-=⎩ ③-④,得① ②①②③ ④。
2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组 同步习题(含答案)
8.3实际问题与二元一次方程组同步习题一.选择题1.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A.B.C.D.2.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.3.一行人去住店.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有空客房x间,这一行人共有y人,下列方程组中正确的是()A.B.C.D.4.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.5.为保护生态环境,重庆市某县相应国家“退耕还林”号召,将部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的还要少1平分千米,求改变后林地面积和耕地面积各多少千米?若设改变后耕地面积为x平方千米,林地地面积为y 平方千米,根据题意,列出如下四个方程组,其中正确的是()A.B.C.D.6.明明家离学校1500米,其中有一段为上坡路.另一段为下坡路,某天他去学校共用了12分钟,假设明明上坡路的平均速度是5千米/时,下坡路的平均速度是8千米/时.若设明明上坡路用了x分钟,下坡路用了y分钟,根据题意可列方程组为()A.B.C.D.7.已知某种轮船的载重量为500吨,容积为2000立方米.现有甲、乙两种货物待装,甲种货物每吨5立方米,乙种货物每立方米0.5吨,求怎样装货,才能最大限度利用船的载重量和容积.设装甲、乙两种货物分别为x吨、y吨,于是有方程组()A.B.C.D.8.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为()A.150,100B.125,75C.120,70D.100,1509.某初中学校现有学生500人,计划一年后男生增加5%,女生增加4%,这样总人数将增加4.5%,设该校现有男生x人,女生y人,可得方程组为()A.B.C.D.10.为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1亩需资金200元,种草1亩需资金100元,某组农民计划在一年内完成2400亩绿化任务,在实施中由于实际情况所限,植树完成了计划的90%,但种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树x亩,种草y亩,则可列方程组为()A.B.C.D.二.填空题11.买7个本和2块橡皮用16.6元,买两个本比买3块橡皮多花1.6元,那么买一个本和一块橡皮共用元.12.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有本.13.学校为七年级艺术节获奖选手购买以下三种奖品,其中笔记本每本5元,文具盒每个6元,钢笔每支10元,购买的文具盒的数量是钢笔数量的2倍,共花费226元,则这奖品的购买总数量.14.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元.设其中有x张成人票,y张学生票,根据题意列方程组是.15.缤果奶茶店的一种饮品是由果汁原液和纯净水按一定比例配制而成,其中购买1吨果汁原液的钱可以购买20吨纯净水.由于今年果汁价格上涨30%,纯净水价格也上涨了10%,导致配制的这种饮品价格上涨26%,问这种饮品果汁与纯净水的配制比例是.三.解答题16.用二元一次方程组解应用题:某客运公司,有大小两种客车,已知3辆小客车和1辆大客车每次可运送105人,1辆小客车和2辆大客车每次可运送110人,问:每辆小客车和每辆大客车各能坐多少人?17.2019年8月,第二届全国青年运动会在山西太原举行,开幕式的门票价格如下表:等级A B C 票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.若小聪购买1张A等票6张B 等票和3张C等票共需花费多少元?18.某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:价格/类型A型B型进价(元/只)1535标价(元/只)2550(1)这两种文具盒各购进多少只?(2)若A型文具盒按标价的8折出售,B型文具盒按标价的9折出售,那么这批文具盒全部售出后,超市共获利多少元?参考答案一.选择题1.解:设有x人,商品的价格为y,依题意,得.故选:D.2.解:根据共有160张铁皮,得方程x+y=160;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×6x=20y.列方程组为.故选:A.3.解:设该店有客房x间,房客y人;根据题意得:,故选:A.4.解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.5.解:设改变后耕地面积为x平方千米,林地地面积为y平方千米,根据题意,得.故选:C.6.解:根据题意可列方程组:,整理,得:,故选:B.7.解:根据载重量为500吨,可列方程为x+y=500;根据容积为2000立方米,可列方程为5x+2y=2000.那么方程组可列为:.故选:B.8.解:设他们每人都领了y张信纸和x个信封,由题意,得,解得:.即:他们每人都领了150张信纸和100个信封.故选:A.9.解:设该校现有男生x人,女生y人,由题意得,.故选:B.10.解:设该组农民计划植树x亩,种草y亩,由题意得,.故选:D.二.填空题11.解:设每个本x元,每块橡皮y元,依题意,得:,①﹣②,得:5x+5y=15,∴x+y=3.故答案为:3.12.解:设这箱书一共有x本,共y个同学参与分书,依题意,得:,解得:.故答案为:42.13.解:设购买笔记本x本,文具盒y个,钢笔z支,则有5x+6y+10z=226,y=2z,易知0<x≤45,0<y≤37,0<z≤22,∴5x+12z+10z=226,5x+22z=226,即x=.∵x,y,z均为正整数,226﹣22z≥0,即0<z≤10,∴z只能取8,当z为8时,x==10,y=2z=16,x+y+z=34.购买的奖品总数为34.故答案为:34.14.解:设其中有x张成人票,y张儿童票,根据题意得:.故答案为:.15.解:设这种饮品果汁与纯净水的配制比例为a:b,购买一吨纯净水的价格是x,由题意,得=(1+26%),解得a:b=1:5.故答案为:1:5.三.解答题16.解:设每辆小客车能坐x人,每辆大客车能坐y人,依题意得:,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人.17.解:设A等票的票价为x元/张,B等票的票价为y元/张,依题意得:,解得:,∴x+6y+3×150=2750.答:小聪购买1张A等票6张B等票和3张C等票共需花费2750元.18.解:(1)设A型文具盒购进x只,B型文具盒购进y只,依题意得:,解得:.答:A型文具盒购进40只,B型文具盒购进80只.(2)(25×0.8﹣15)×40+(50×0.9﹣35)×80=1000(元).答:这批文具盒全部售出后,超市共获利1000元.。
2020-2021年七年级下期中考数学试卷含解析
一、选择题(每小题4分,共48分)1.已知∠α=35°,则∠α的补角的度数是()A.55° B.65° C.145°D.165°2.将图中所示的图案平移后得到的图案是()A.B.C. D.3.P为直线l上的一点,Q为l外一点,下列说法不正确的是()A.过P可画直线垂直于l B.过Q可画直线l的垂线C.连结PQ使PQ⊥l D.过Q可画直线与l垂直4.如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1与∠2是邻补角 B.∠1与∠3是对顶角C.∠2与∠4是同位角 D.∠3与∠4是内错角5.设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个B.3个C.2个D.1个6.如图,点E在CD延长线上,下列条件中不能判定AB∥CD 的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°7.在下列说法中:(1)△ABC在平移过程中,对应线段一定相等(2)△ABC在平移过程中,对应线段一定平行(3)△ABC在平移过程中,周长保持不变(4)△ABC在平移过程中,对应边中点的连线段的长等于平移的距离(5)△ABC在平移过程中,面积不变.其中正确的有()A.(1)(2)(3)(4)B.(1)(2)(3)(4)(5)C.(1)(2)(3)(5)D.(1)(3)(4)(5)8.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是()A.18° B.126°C.18°或126°D.以上都不对9.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50° B.55° C.60° D.65°10.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位11.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等12.如图,点D在直线AE上,量得∠CDE=∠A=∠C,有以下三个结论:①AB∥CD;②AD∥BC;③∠B=∠CDA.则正确的结论是()A.①②③B.①② C.①D.②③13.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40° B.50° C.60° D.70°二、填空题(每小题5分,满分30分)14.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.15.如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D= ,∠B= .16.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是(填序号).17.把命题“同角的余角相等”改写成“如果…那么…”的形式.18.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.19.一个小区大门的栏杆如图所示,BA垂直地面AB于A,CD平行于地面AE,那么∠ABC+∠BCD= 度.三、解答题(共72分)20.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC 的度数.21.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)22.如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.23.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,∠B=∠又∵AB∥DE,AB∥CF,∴∴∠E=∠∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.24.如图,已知AB∥CD,∠A=∠C,试说明∠E=∠F.25.如图EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.参考答案与试题解析一、选择题(每小题4分,共48分)1.已知∠α=35°,则∠α的补角的度数是()A.55° B.65° C.145°D.165°【考点】余角和补角.【分析】根据互补即两角的和为180°,由此即可得出∠α的补角度数.【解答】解:∠α的补角=180°﹣35°=145°.故选:C.2.将图中所示的图案平移后得到的图案是()A.B.C. D.【考点】生活中的平移现象.【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答】解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案平移得到.故选C.3.P为直线l上的一点,Q为l外一点,下列说法不正确的是()A.过P可画直线垂直于l B.过Q可画直线l的垂线C.连结PQ使PQ⊥l D.过Q可画直线与l垂直【考点】垂线.【分析】直接利用垂线的定义结合垂线作法得出答案.【解答】解:A、∵P为直线l上的一点,Q为l外一点,∴可以过P可画直线垂直于l,正确,不合题意;B、∵P为直线l上的一点,Q为l外一点,∴可以过Q可画直线l的垂线,正确,不合题意;C、连结PQ不能保证PQ⊥l,故错误,符合题意;D、∵Q为l外一点,∴可以过Q可画直线与l垂直,正确,不合题意;故选:C.4.如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1与∠2是邻补角 B.∠1与∠3是对顶角C.∠2与∠4是同位角 D.∠3与∠4是内错角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据邻补角的定义,可判断A,根据对顶角的定义,可判断B,根据同位角的定义,可判断C,根据内错角的定义,可判断D.【解答】解:A、∠1与∠2有一条公共边,另一边互为方向延长线,故A正确;B、∠1与∠3的两边互为方向延长线,故B正确;C、∠2与∠4的位置相同,故C正确;D、∠3与∠4是同旁内角.故D错误;故选:D.5.设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个B.3个C.2个D.1个【考点】命题与定理.【分析】利用两条直线的位置关系分别判断后即可确定正确的选项.【解答】解:①如果a与b相交,b与c相交,那么a与c 相交,错误;②如果a与b平行,b与c平行,那么a与c平行,正确;③如果a与b垂直,b与c垂直,那么a与c垂直,错误;④如果a与b平行,b与c相交,那么a与c相交,正确,故选C.6.如图,点E在CD延长线上,下列条件中不能判定AB∥CD 的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误.故选A.7.在下列说法中:(1)△ABC在平移过程中,对应线段一定相等(2)△ABC在平移过程中,对应线段一定平行(3)△ABC在平移过程中,周长保持不变(4)△ABC在平移过程中,对应边中点的连线段的长等于平移的距离(5)△ABC在平移过程中,面积不变.其中正确的有()A.(1)(2)(3)(4)B.(1)(2)(3)(4)(5)C.(1)(2)(3)(5)D.(1)(3)(4)(5)【考点】平移的性质;平行线的性质.【分析】根据平移的性质对各小题分析判断即可得解.【解答】解:(1)△ABC在平移的过程中,对应线段一定相等,正确;(2)△ABC在平移过程中,对应线段一定平行或在同一直线上,故本小题错误;(3)△ABC在平移过程中,周长保持不变,正确;(4)△ABC在平移过程中,对应边中点的连线的长度等于平移的距离,正确.(5)△ABC在平移过程中,面积不变,正确.综上所述,正确的(1)(3)(4)(5).故选D.8.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是()A.18° B.126°C.18°或126°D.以上都不对【考点】平行线的性质.【分析】由∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,然后设∠α=x°,由∠α与∠β的3倍少36°,分别从∠α与∠β相等或互补去分析,求得方程,解方程即可求得∠α的度数.【解答】解:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补,设∠α=x°,∵∠α与∠β的3倍少36°,∴若∠α与∠β相等,则x=3x﹣36,解得:x=18,若∠α与∠β互补,则x=3﹣36,解得:x=126,∴∠α的度数是18°或126°.故选C.9.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50° B.55° C.60° D.65°【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等可得∠1=∠EFB,再根据翻折变换的性质可得∠2=∠1,然后根据平角等于180°列式计算即可得解.【解答】解:如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选C.10.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位【考点】平移的性质.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.11.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等【考点】命题与定理.【分析】根据平行线的性质对A、B进行判断;根据邻补角的定义对C进行判断;根据对顶角的性质对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误;C、邻补角不一定相等,只有都为90度时,它们才相等,所以C选项错误;D、对顶角相等,所以D选项正确.故选D.12.如图,点D在直线AE上,量得∠CDE=∠A=∠C,有以下三个结论:①AB∥CD;②AD∥BC;③∠B=∠CDA.则正确的结论是()A.①②③B.①② C.①D.②③【考点】平行线的判定与性质.【分析】根据平行线的判定推出AD∥BC,AB∥CD,根据平行线的性质得出∠B+∠A=180°,∠A+∠CDA=180°,即可得出答案.【解答】解:∵∠C=∠CDE,∴AD∥BC(内错角相等,两直线平行),(故①正确)∵∠A=∠CDE,∴AB∥CD(同位角相等,两直线平行),(故②正确)∴∠B+∠A=180°,∠A+∠CDA=180°,∴∠B=∠CDA(等量代换),(故③正确)即正确的结论有①②③,故选:A.13.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40° B.50° C.60° D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠1+∠2的度数,再由∠1=∠2得出∠2的度数,进而可得出结论.【解答】解:∵a∥b,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2=∠4.∵∠1=∠2,∴∠2=×140°=70°,∴∠4=∠2=70°.故选D.二、填空题(每小题5分,满分30分)14.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.15.如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D= 39°,∠B= 129°.【考点】平行线的性质;余角和补角.【分析】由平行线的性质可知∠D=∠1,根据∠C和∠D互余可求得∠C,最后根据平行线的性质可求得∠B.【解答】解:∵AB∥DC,∴∠D=∠1=39°.∵∠C和∠D互余,∴∠C+∠D=90°.∴∠C=90°﹣39°=51°.∵AB∥DC,∴∠B+∠C=180°.∴∠B=180°﹣51°=129°.故答案为:39°;129°.16.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是①③④(填序号).【考点】平行线的判定.【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;故答案为:①③④.17.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.18.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.19.一个小区大门的栏杆如图所示,BA垂直地面AB于A,CD平行于地面AE,那么∠ABC+∠BCD= 270 度.【考点】平行线的性质.【分析】作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.【解答】解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270.三、解答题(共72分)20.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC 的度数.【考点】平行线的性质;角平分线的定义.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC 的度数.【解答】解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°(两直线平行,同位角相等),∵CD平分∠ACB,∴∠BCD=∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°(两直线平行,内错角相等).21.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;(2)将每个关键点向左平移3个单位,连接即可.22.如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.【考点】平行线的性质;角平分线的定义.【分析】本题主要利用两直线平行,同位角相等和角平分线的定义进行做题.【解答】证明:∵AD∥BC(已知)∴∠B=∠EAD(两直线平行,同位角相等)∠DAC=∠C(两直线平行,内错角相等)又∵∠B=∠C(已知)∴∠EAD=∠DAC(等量代换)∴AD平分∠CAE(角平分线的定义).23.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,∠B=∠1(两直线平行,内错角相等)又∵AB∥DE,AB∥CF,∴DE∥CF(平行于同一条直线的两直线平行)∴∠E=∠2(两直线平行,内错角相等)∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.【考点】平行线的性质.【分析】关系为∠B+∠E=∠BCE,理由为:过点C作CF∥AB,理由两直线平行,内错角相等得到∠B=∠1,再利用平行于同一条直线的两直线平行得到DE与CF平行,利用两直线平行内错角相等得到∠E=∠2,利用等式的性质得到∠B+∠E=∠1+∠2,等量代换即可得证.【解答】解:∠B+∠E=∠BCE,理由为:过点C作CF∥AB,∠B=∠1(两直线平行,内错角相等),又∵AB∥DE,AB∥CF,∴DE∥CF(平行于同一条直线的两直线平行),∴∠E=∠2(两直线平行,内错角相等),∴∠B+∠E=∠1+∠2,即∠B+∠E=∠BCE.故答案为:1(两直线平行,内错角相等);DE∥CF(平行于同一直线的两条直线平行);2 (两直线平行,内错角相等)24.如图,已知AB∥CD,∠A=∠C,试说明∠E=∠F.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∠ABF=∠C,求出∠A=∠ABF,根据平行线的判定得出AE∥CF,根据平行线的性质得出即可.【解答】解:∵AB∥CD,∴∠ABF=∠C,∵∠A=∠C,∴∠A=∠ABF,∴AE∥CF,∴∠E=∠F.25.如图EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.【考点】平行线的性质.【分析】由EF与AD平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与AB平行,利用两直线平行同旁内角互补,即可求出所求角的度数.【解答】解:∵EF∥AD,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴AB∥DG,∴∠BAC+∠AGD=180°,∵∠BAC=70°,∴∠AGD=110°.。
2020-2021学年七年级下学期期末数学试卷及答案解析 (113)
2020-2021学年七年级下学期期末数学试卷一.选择题(共6小题,满分18分,每小题3分)
1.9的平方根是()
A.±3B.﹣3C.3D.√9 2.下列不等式变形中,一定正确的是()
A.若ac>bc,则a>b
B.若a>b,则ac2>bc2
C.若ac2>bc2,则a>b
D.若a>0,b>0,且1
a >
1
b
,则a>b
3.下列说法中正确的是()
A.带根号的数是无理数
B.无理数不能在数轴上表示出来
C.无理数是无限小数
D.无限小数是无理数
4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()
A.∠1=∠2B.∠3=∠4
C.∠D=∠DCE D.∠D+∠ACD=180°
5.下列调查方式,你认为最合适的是()
A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.了解赣州市居民日平均用水量,采用全面调查方式
D.了解赣州市每天的平均用电量,采用抽样调查方式
6.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是()
第1 页共18 页。
2020-2021学年七年级下学期数学练习题及答案 (470)
2020-2021学年七年级下学期数学练习题及答案
2.(3分)以下问题,不适合用全面调查的是()
A.旅客上飞机前的安检
B.公司招聘总经理助理,对应聘人员的面试
C.了解某校七年级学生阳光体育运动时间
D.了解一批灯泡的使用寿命
【分析】直接利用全面调查和抽样调查的意义分析得出答案.
【解答】解:A、旅客上飞机前的安检,必须全面调查,故此选项不合题意;
B、公司招聘总经理助理,对应聘人员的面试,必须全面调查,故此选项不合题意;
C、了解某校七年级学生阳光体育运动时间,必须全面调查,故此选项不合题意;
D、了解一批灯泡的使用寿命,必须抽样调查,故此选项符合题意.
故选:D.
【点评】此题主要考查了全面调查与抽样调查,正确把握相关定义是解题关键.
第1页共1页。
2020-2021人教版七年级数学下学期二元一次方程组同步讲义练习和同步练习答案解析
)
A.
千米
B.
千米
C.
千
米
D. 无法确定
二、填空题 :
11、已知方程 mx+2y=3x-4 是关于 x、y 的 二元一次方程,那么 m的取值范
围是
12、若
是二元 一次方程,则
___________.
第 14 页 共 20 页
13、体育委员小金带了 500 元钱去买体育用品,已知一个足球 x 元,一个
的解是
第 2 页 共 20 页
,求 a+b 的值.
【例 6】 为了解决农民工子女入学难的问题,我市建立了一套进城农民工
子女就学的保障机制,其中一项就是免交“借读费”。据统计,
2004 年秋
季有 5000 名农民工子女进入主城区中小学学习,预测 2005 年秋季进入主
城区中小学学习的农民工子女将比 2004 年有所增加,其中小学增加 20%,
解这个方程组,得
答:该校有小学生 440 人,初
中生 400 人 .
22、解:设一盒“福娃”玩具和一枚徽章的价格分别为
x 元和 y 元 .
依题意, 得
解这个方程组, 得
答:一盒“福娃”玩具和一枚徽章的价格分别为
125 元和 10 元 .
23、解:方程组如下 :
, 可以用代入消元和加减消元法来解这
个方程组 .
y)=1800
C.200(30 ﹣ x)+50(60 ﹣x﹣ y)=1800
D.200(30 ﹣ x)+50[30 ﹣(30
﹣ y) ﹣y]=1800
12、 |3a + b+ 5| + |2a -2b- 2|=0 ,则 2a2-3ab 的值是(
2021七年级下学期数学第八章8.3实际问题与二元一次方程组测试卷、练习卷(带答案解析)
8.3实际问题与二元一次方程组测试卷、练习卷(带答案解析)一、选择题(本大题共10小题,共30.0分)1. “十⋅一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )A. {x +y =1049x +37y =466 B. {x +y =1037x +49y =466 C. {x +y =46649x +37y =10D. {x +y =46637x +49y =102. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A. {5x +6y =15x −y =6y −x B. {6x +5y =15x +y =6y +x C. {5x +6y =14x +y =5y +xD. {6x +5y =14x −y =5y −x3. 2020年2月某敬老院为了更好的保护好老人,预防老人们感染新冠病毒,用4800元购进A ,B 口罩共160件,其中A 型口罩每件24元,B 型口罩每件36元.设购买A 型口罩x 件,B 型口罩y 件,依题意列方程组正确的是( )A. {x +y =16036x +24y =4800 B. {x +y =16024x +36y =4800 C. {36x +24y =160x +y =4800D. {24x +36y =160x +y =48004. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A. {x +y =352x +2y =94 B. {x +y =354x +2y =94 C. {x +y =354x +4y =94D. {x +y =352x +4y =945. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为( )A. {y =5x +45y =7x +3B. {y =5x −45y =7x +3C. {y =5x +45y =7x −3D. {y =5x −45y =7x −36. 母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A. 3种B. 4种C. 5种D. 6种7. 一道习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x3+y4=5460,则另一个方程正确的是( )A. x 4+y 3=4260B. x 5+y 4=4260C. x 4+y 5=4260D. x 3+y 4=42608. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. {y −8x =3y −7x =4B. {y −8x =37x −y =4C. {8x −y =3y −7x =4D. {8x −y =37x −y =49. 秀山到怀化路程全长288 km ,一辆小汽车和一辆客车同时从秀山、怀化两地相向而行,经过1小时50分钟相遇,相遇时小汽车比客车多行驶40 km ,设小汽车和客车的平均速度分别为x km/h 和y km/h ,则下列方程组正确的是( ).A. {x +y = 401.5(x +y ) = 288 B. {x −y = 401.5(x +y ) = 288C. {x −y = 40 116(x +y ) = 288D. {116(x −y ) = 40116(x +y ) = 28810. 七年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下列方程组中正确的是A. {x+y=2462y=x−2B. {x+y=2462x=y+2C.{x+y=2462x=y−2D. {x+y=2462y=x+2二、填空题(本大题共4小题,共12.0分)11.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折之后,买500件A商品和500件B商品用了9600元,比不打折少花元。
2020-2021学年七年级下学期数学练习题及答案 (330)
2020-2021学年七年级下学期数学练习题及答案
7.(4分)如图,∠1与∠2是对顶角的是()
A.B.
C.D.
【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.
【解答】解:根据对顶角的定义可知:只有选项B是对顶角,其它都不是.
故选:B.
【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的.
8.(4分)在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个
【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【解答】解:无理数有:0.101001…,,共3个.
故选:C.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;
开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
第1页共1页。
2020-2021学年七年级下学期数学练习题及答案 (472)
2020-2021学年七年级下学期数学练习题及答案
4.(3分)已知关于x,y的方程组,给出下列结论:①是方程组的解;
②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程
x+y=4﹣a的解;④x,y的都为自然数的解有3对.其中正确的为()
A.②③④B.②③C.③④D.①②④
【分析】①将x=5,y=﹣1代入检验即可做出判断;
②将x和y分别用a表示出来,然后求出x+y=3来判断;
③将a=1代入方程组求出方程组的解,代入方程中检验即可;
④由x+y=3得到x、y都为自然数的解有4对.
【解答】解:①将x=5,y=﹣1代入方程组得:
,
由①得a=2,由②得a=,故①不正确.
②解方程
,
①﹣②得:8y=4﹣4a
解得:y=,
将y的值代入①得:x=,
所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.
③将a=1代入方程组得:
,
解此方程得:
,
将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.
④因为x+y=3,所以x、y都为自然数的解有,,,.故④不正
确.
则正确的选项有②③.
故选:B.
【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.解题的关键是根据条件,求出x、y的表达式.。
2020-2021学年七年级下学期期末数学试卷及答案解析 (120)
2020-2021学年七年级下学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算中,正确的是()A.2a2﹣a2=2B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a 2.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b)D.(b+m)(m﹣b)3.如图,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为()A.65°B.70°C.97°D.115°4.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对5.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.6.若三角形的三边长分别为3,4,x ,则x 的值可能是( )A .1B .6C .7D .107.小浩掷一枚硬币,连续8次正面朝上,请问他第9次掷硬币时,出现正面朝上的概率是( )A .0B .18C .12D .18.如图是一张靶纸,共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环,小明两次投中概率最大的环数是( )A .12B .14C .16D .189.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .AASD .ASA10.如图,D 2020次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .二.填空题(共8小题,满分24分,每小题3分)11.计算:2﹣2×46=.12.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE 的度数是.13.如图,BP平分∠ABC,AP⊥BP,垂足为P,连接CP,若三角形△ABC内有一点M,则点M落在△BPC内(包括边界)的概率为.14.若9x2﹣mx+16是完全平方式,则m=.15.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为米.16.观察下列图案的规律,画出第6个图案..17.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是元.18.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.三.解答题(共7小题,满分46分)19.(10分)计算下列各题:(1)(﹣1)2021+(−13)﹣2﹣(3﹣π)0+16×2﹣3(2)(x+y)(x﹣y)+x2y(﹣xy+y3)÷xy220.(6分)(1)解方程:x2﹣3x﹣4=0(2)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.21.(5分)如图,在三角形ABC中,CD平分∠ACB,交AB于点D,点E在AC上,点F 在CD上,连接DE,EF.(1)若∠ACB=70°,∠CDE=35°,求∠AED的度数;(2)在(1)的条件下,若∠BDC+∠EFC=180°,试说明:∠B=∠DEF.22.(5分)请你在图中以直线l为对称轴作出所给图形的另一半.23.(6分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?24.(6分)如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.25.(8分)在一张正方形白铁皮四个角上各剪去边长为6cm的小正方形后,做成一个盒子,盒底的面积比原白铁皮的面积小336cm2,求原白铁皮的边长.2020-2021学年七年级下学期期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列运算中,正确的是()A.2a2﹣a2=2B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a 【解答】解:A、2a2﹣a2=a2,此选项错误;B、(a3)2=a6,此选项错误;C、a2•a4=a6,此选项正确;D、a﹣3÷a﹣2=a﹣3﹣(﹣2)=a﹣1,此选项错误;故选:C.2.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b)D.(b+m)(m﹣b)【解答】解:A、C、D符合平方差公式的特点,故能运用平方差公式进行运算;B、两项都互为相反数,故不能运用平方差公式进行运算.故选:B.3.如图,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为()A.65°B.70°C.97°D.115°【解答】解:∵∠2=∠5=70°,∠1=110°,∴∠1+∠5=180°,∴a∥b(同旁内角互补两直线平行),∴∠4=∠3,∵∠4=115°,∴∠3=115°.故选:D.4.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对【解答】解:∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵∠DOF与∠2互余,∴∠2=90°﹣∠DOF=90°﹣26°=64°.故选:B.5.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故不合题意;B、是轴对称图形,故不合题意;C、不是轴对称图形,故符合题意;D 、是轴对称图形,故不合题意.故选:C .6.若三角形的三边长分别为3,4,x ,则x 的值可能是( )A .1B .6C .7D .10【解答】解:∵4﹣3=1,4+3=7,∴1<x <7,∴x 的值可能是6.故选:B .7.小浩掷一枚硬币,连续8次正面朝上,请问他第9次掷硬币时,出现正面朝上的概率是( )A .0B .18C .12D .1【解答】解:每一次掷硬币出现正面和反面的机会都相同,且后一次结果都不会受前面结果的影响.P (正面朝上)=12.故选:C .8.如图是一张靶纸,共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环,小明两次投中概率最大的环数是( )A .12B .14C .16D .18【解答】解:①投中2个10环,共20环;②投中2个8环,共得16环;③投中2个6环,共得12环;④投中1个10环、1个8环,共得18环;⑤投中1个10环、1个6环,共得16环;⑥投中1个8环、1个6环,共得14环;在以上所列5种结果中,小明两次投中16环次数最多,所以小明两次投中概率最大的环数是16环,故选:C.9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.10.如图,D2020次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.计算:2﹣2×46=1024.【解答】解:2﹣2×46=14×46=1024.故答案为:1024.12.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE的度数是5°.【解答】解:∵在△ABC中,∠B=50°,∠C=60°,∴∠BAC=180°﹣50°﹣60°=70°.∵AD平分∠BAC,∴∠CAD=12∠BAC=35°.∵AE⊥BC于E,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=35°﹣30°=5°.故答案为:5°.13.如图,BP平分∠ABC,AP⊥BP,垂足为P,连接CP,若三角形△ABC内有一点M,则点M落在△BPC内(包括边界)的概率为12.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,{∠ABP =∠EBP BP =BP ∠APB =∠EPB,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =12S △ABC ,则点M 落在△BPC 内(包括边界)的概率S △BPC S △ABC =12. 故答案为12. 14.若9x 2﹣mx +16是完全平方式,则m = ±24 .【解答】解:∵9x 2﹣mx +16是完全平方式,∴m =±24.故答案为:±2415.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 1.5×10﹣6 米. 【解答】解:0.0000015=1.5×10﹣6, 故答案为:1.5×10﹣6. 16.观察下列图案的规律,画出第6个图案..【解答】解:. 17.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是 800 元.【解答】解:设他的飞机票价格是x 元,可列方程x •1.5%×(30﹣20)=120解得:x =800则他的飞机票价格是800元.18.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用4n+2枚棋子.【解答】解:“上”字共有四个端点每次每个端点增加一枚棋子,而初始时内部有两枚棋子不发生变化,所以第n个字需要4n+2枚棋子.故答案为:4n+2.三.解答题(共7小题,满分46分)19.(10分)计算下列各题:(1)(﹣1)2021+(−13)﹣2﹣(3﹣π)0+16×2﹣3(2)(x+y)(x﹣y)+x2y(﹣xy+y3)÷xy2【解答】解:(1)(﹣1)2021+(−13)﹣2﹣(3﹣π)0+16×2﹣3=(﹣1)+9﹣1+16×1 8=(﹣1)+9﹣1+2=9;(2)(x+y)(x﹣y)+x2y(﹣xy+y3)÷xy2=x2﹣y2+(﹣x3y2+x2y4)÷xy2=x2﹣y2﹣x2+xy2=xy2﹣y2.20.(6分)(1)解方程:x2﹣3x﹣4=0(2)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【解答】解:(1)分解因式得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1;(2)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,由x2﹣4x﹣1=0,得到x2﹣4x=1,则原式=3+9=12.21.(5分)如图,在三角形ABC中,CD平分∠ACB,交AB于点D,点E在AC上,点F在CD上,连接DE,EF.(1)若∠ACB=70°,∠CDE=35°,求∠AED的度数;(2)在(1)的条件下,若∠BDC+∠EFC=180°,试说明:∠B=∠DEF.【解答】(1)解:∵CD平分∠ACB,∴∠BCD=12∠ACB,∵∠ACB=70°,∴∠BCD=35°,∵∠CDE=35°,∴∠CDE=∠BCD,∴DE∥BC,∴∠AED=∠ACB=70°;(2)证明:∵∠EFC+∠EFD=180°,∠BDC+∠EFC=180°,∴∠EFD=∠BDC,∴AB∥EF,∴∠ADE=∠DEF,∵DE∥BC,∴∠ADE=∠B,∴∠DEF=∠B.22.(5分)请你在图中以直线l为对称轴作出所给图形的另一半.【解答】解:23.(6分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生50人,并将条形图补充完整;(2)捐款金额的众数是10,平均数是13.1;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450=13.1; (3)捐款20元及以上(含20元)的学生有:7+450×600=132(人);故答案为:(1)50,(2)10,13.1. 24.(6分)如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.【解答】解:(1)汽车从出发到最后停止共经过了24min ,它的最高时速是75km /h ;(2)汽车大约在第2分钟到第6分钟和第18分钟到第22分种之间保持匀速行驶,时速分别是25km /h 和75km /h ;(3)出发后(8分)到(10分)速度为0,所以汽车是处于静止的.可能遇到了红灯或者障碍(或者遇到了朋友或者休息);(4)该汽车出发2分钟后以25km/h的速度匀速行驶了4分钟,又减速行驶了2分钟,又停止了2分钟,后加速了8分钟到75km/h的速度匀速行驶了4分钟,最后2分钟停止了行驶.25.(8分)在一张正方形白铁皮四个角上各剪去边长为6cm的小正方形后,做成一个盒子,盒底的面积比原白铁皮的面积小336cm2,求原白铁皮的边长.【解答】解:设白铁皮原来的长是xcm,则:x2﹣(x﹣12)2=336,解得:x=20.答:白铁皮原来边长20cm.。
2020-2021学年七年级下学期期末数学试卷及答案解析 (121)
2020-2021学年七年级下学期期末数学试卷一.选择题(共6小题,满分18分,每小题3分)1.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°2.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.03.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.5.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A .1个B .2个C .3个D .4个6.如图,B 是直线l 上的一点,线段AB 与l 的夹角为α(0°<α<180°),点C 在l 上,若以A 、B 、C 为顶点的三角形是等腰三角形,则满足条件的点C 共有( )A .2个B .3个C .2个或4个D .3个或4个二.填空题(共6小题,满分18分,每小题3分)7.人体红细胞的直径约为0.0000077m ,用科学记数法表示为 .8.若x ﹣y =6,xy =7,则x 2+y 2的值等于 .9.如图,AB ∥CD ,一副三角尺按如图所示放置,∠AEG =20度,则∠HFD 为 度.10.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n = . 11.等腰三角形的一个外角度数为100°,则顶角度数为 .12.如图,矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点,连接AE ,把∠B 沿AE折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为 .三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算:(1)(﹣2x2y)3÷(﹣xy)−12x2y3(2)(−12)﹣2﹣(3.14﹣π)0+0.254×44(3)已知a m=2,a n=5,求a3m+2n的值.14.(6分)化简求值:[4(x2+y)(x2﹣y)﹣(2x2﹣y)2]÷y,其中x=12,y=3.15.(6分)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.16.(6分)如图,在一不规则区域内,有一边长为3√3米的正方形,向区域内随机地撒4000颗黄豆,数得落在正方形区域内(含边界)的黄豆有1350颗,以此实验数据为依据,可以估计出该不规则图形的面积.(1)随机向不规则区域内掷一粒黄豆,求黄豆落在正方形区域内(含边界)的概率;(2)请你估计出该不规则图形的面积;17.(6分)如图,在等腰梯形ABCD中,AB∥CD,AD=BC.(1)尺规作图:请你找出CD边的中点M(不写作法,保留作图痕迹)(2)连接MA、MB,写出图中的全等三角形,并选其中一对加以证明.四.解答题(共3小题,满分24分,每小题8分)18.(8分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.19.(8分)某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图所示,请根据图象提供的信息回答下列问题:(1)此人离开出发地最远距离是千米;(2)此人在这次行走过程中,停留所用的时间为分钟;(3)由图中线段OA可知,此人在这段时间内行走的速度是每小时千米;(4)此人在120分钟内共走了千米.20.(8分)如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,在折叠,使AD落在对角线BD上,得折痕DG,若AB=2,BC=1,求AG.五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE .求证:∠A =∠D .22.(9分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?六.解答题(共1小题,满分12分,每小题12分)23.(12分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a +bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=(2+3)+(1﹣4)i =5﹣3i .(1)填空:i 3= ,i 4= .(2)计算:①(1+i )(1﹣i );②(1+i )2;(3)试一试:请利用以前学习的有关知识将2+i 2−i 化简成a +bi 的形式.2020-2021学年七年级下学期期末数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.如图,P是∠ABC内一点,点Q在BC上,过点P画直线a∥BC,过点Q画直线b∥AB,若∠ABC=115°,则直线a与b相交所成的锐角的度数为()A.25°B.45°C.65°D.85°【解答】解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.2.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.0【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.4.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故不合题意;B、是轴对称图形,故不合题意;C、不是轴对称图形,故符合题意;D、是轴对称图形,故不合题意.故选:C.5.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷9=2809(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.6.如图,B是直线l上的一点,线段AB与l的夹角为α(0°<α<180°),点C在l上,若以A、B、C为顶点的三角形是等腰三角形,则满足条件的点C共有()A.2个B.3个C.2个或4个D.3个或4个【解答】解;如图1,当α=90°,∴只有两个点符合要求,如图2,当α为锐角与钝角时,符合条件的点有4个,分别是AC3=AB,AB=BC2,AC1=BC,AB=BC.∴满足条件的点C共有:2或4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)7.人体红细胞的直径约为0.0000077m ,用科学记数法表示为 7.7×10﹣6m . 【解答】解:0.000 007 7=7.7×10﹣6. 故答案为:7.7×10﹣6m . 8.若x ﹣y =6,xy =7,则x 2+y 2的值等于 50 .【解答】解:因为x ﹣y =6,xy =7,所以x 2+y 2=(x ﹣y )2+2xy =62+2×7=50,故答案为:50.9.如图,AB ∥CD ,一副三角尺按如图所示放置,∠AEG =20度,则∠HFD 为 35 度.【解答】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP =∠AEG =20°,∴∠PGF =70°,∴∠GFC =∠PGF =70°,∴∠HFD =180°﹣∠GFC ﹣∠GFP ﹣∠EFH =35°.故答案为:35.10.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n = 8 .【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据古典型概率公式知:P(白球)=4n+4=13,解得:n=8,故答案为:8.11.等腰三角形的一个外角度数为100°,则顶角度数为80°或20°.【解答】解:当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故答案为:80°或20°.12.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=√82+62=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算:(1)(﹣2x2y)3÷(﹣xy)−12x2y3(2)(−12)﹣2﹣(3.14﹣π)0+0.254×44(3)已知a m=2,a n=5,求a3m+2n的值.【解答】解:(1)原式=﹣8x6y3÷(﹣xy)−12x2y3=8x5y2−12x2y3.(2)原式=4﹣1+(0.25×4)4=3+1=4;(3)∵a m =2,a n =5,∴a 3m +2n =a 3m •a 2n=(a m )3•(a n )2=23×52=8×25=200.14.(6分)化简求值:[4(x 2+y )(x 2﹣y )﹣(2x 2﹣y )2]÷y ,其中x =12,y =3.【解答】解:原式=(4x 4﹣4y 2﹣4x 4+4x 2y ﹣y 2)÷y =(﹣5y 2+4x 2y )÷y =﹣5y +4x 2, 当x =12,y =3时,原式=﹣15+1=﹣14.15.(6分)如图,在△ABC 中,∠ABC =60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC =AE +CD .【解答】证明:在AC 上取AF =AE ,连接OF ,∵AD 平分∠BAC 、∴∠EAO =∠F AO ,在△AEO 与△AFO 中,{AE =AF ∠EAO =∠FAO AO =AO∴△AEO ≌△AFO (SAS ),∴∠AOE =∠AOF ;∵AD 、CE 分别平分∠BAC 、∠ACB ,∴∠ECA +∠DAC =12∠ACB +12∠BAC =12(∠ACB +∠BAC )=12(180°﹣∠B )=60° 则∠AOC =180°﹣∠ECA ﹣∠DAC =120°;∴∠AOC =∠DOE =120°,∠AOE =∠COD =∠AOF =60°,则∠COF =60°,∴∠COD =∠COF ,∴在△FOC 与△DOC 中,{∠COD =∠COFCO =CO ∠FCO =∠DCO,∴△FOC ≌△DOC (ASA ),∴DC =FC ,∵AC =AF +FC ,∴AC =AE +CD .16.(6分)如图,在一不规则区域内,有一边长为3√3米的正方形,向区域内随机地撒4000颗黄豆,数得落在正方形区域内(含边界)的黄豆有1350颗,以此实验数据为依据,可以估计出该不规则图形的面积.(1)随机向不规则区域内掷一粒黄豆,求黄豆落在正方形区域内(含边界)的概率;(2)请你估计出该不规则图形的面积;【解答】解:(1)记“黄豆落在正方形区域内”为事件A .∴P (A )=13504000=2780, 答:黄豆落在正方形区域内(含边界)的概率为2780;(2)∵P =2780,∵正方形面积等于27,∴不规则图形面积为80平方米. 17.(6分)如图,在等腰梯形ABCD 中,AB ∥CD ,AD =BC .(1)尺规作图:请你找出CD 边的中点M (不写作法,保留作图痕迹)(2)连接MA 、MB ,写出图中的全等三角形,并选其中一对加以证明.【解答】 解:(1)如图所示,点M 为CD 的中点;(2)△ADM ≌△BCM .证明:在等腰梯形ABCD 中,∠D =∠C ,∵M 是CD 的中点,∴DM =CM ,在△ADM 和△BCM 中,{AD =BC∠D =∠C DM =CM,∴△ADM ≌△BCM (SAS ).四.解答题(共3小题,满分24分,每小题8分)18.(8分)已知:如图,在△ABC 中,CD ⊥AB 于点D ,E 是AC 上一点且∠1+∠2=90°.求证:DE ∥BC .【解答】证明:∵CD ⊥AB (已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).19.(8分)某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图所示,请根据图象提供的信息回答下列问题:(1)此人离开出发地最远距离是4千米;(2)此人在这次行走过程中,停留所用的时间为20分钟;(3)由图中线段OA可知,此人在这段时间内行走的速度是每小时 4.5千米;(4)此人在120分钟内共走了8千米.【解答】解:由图象得:(1)此人离开出发地最远距离是4千米;(2)此人在这次行走过程中,停留所用的时间为60﹣40=20分钟;(3)∵40分钟=23小时,∴3÷23=4.5(千米/时)∴此人在这段时间内行走的速度是每小时4.5千米;(4)此人在120分钟内共走了3+0+1+4=8(千米).故答案为:(1)4,(2)20,(3)4.5,(4)8.20.(8分)如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,在折叠,使AD落在对角线BD上,得折痕DG,若AB=2,BC=1,求AG.【解答】解:∵AD 沿DG 折叠后点A 的对称点是点E ,∴AD =ED =1,AG =EG ,∠DEG =90°,设AG =x ,则EG =x ,BG =2﹣x ,∵AB =2,AD =BC =1,∠BAD =90°,∴BD =√AB 2+AD 2=√22+12=√5,∴BE =√5−1,在Rt △BEG 中,由勾股定理,可得BE 2+EG 2=BG 2,∴(√5−1)2+x 2=(2﹣x )2,解得x =√5−12,即AG 的长是√5−12. 五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE .求证:∠A =∠D .【解答】证明:∵∠ACD =∠BCE ,∴∠ACB =∠DCE ,在△BCA 和△ECD 中,{CB =CE ∠ACB =∠DCE CA =CD,∴△ABC ≌△DEC (SAS ),∴∠A =∠D .22.(9分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 10 米,乙在A 地时距地面的高度b 为 30 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?【解答】解:(1)(300﹣100)÷20=10(米/分钟),b =15÷1×2=30.故答案为:10;30.(2)当0≤x ≤2时,y =15x ;当x ≥2时,y =30+10×3(x ﹣2)=30x ﹣30.当y =30x ﹣30=300时,x =11.∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y ={15x(0≤x ≤2)30x −30(2≤x ≤11). (3)甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y =10x +100(0≤x ≤20).当10x +100﹣(30x ﹣30)=50时,解得:x =4;当30x ﹣30﹣(10x +100)=50时,解得:x =9;当300﹣(10x +100)=50时,解得:x =15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.六.解答题(共1小题,满分12分,每小题12分)23.(12分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a +bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2+i )+(3﹣4i )=(2+3)+(1﹣4)i =5﹣3i .(1)填空:i 3= ﹣i ,i 4= 1 .(2)计算:①(1+i )(1﹣i );②(1+i )2;(3)试一试:请利用以前学习的有关知识将2+i 2−i化简成a +bi 的形式. 【解答】解:(1)i 3=i 2×i =﹣i ;i 4=(﹣1)2=1,故答案为:﹣i ,1.(2)①(1+i )(1﹣i )=1﹣i 2=1﹣(﹣1)=2;②(1+i )2=1+2i +i 2=2i ;(3)原式=(2+i)2(2−i)(2+i)=4+4i+i 24−i 2=4+4i−14−(−1)=35+45i .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1
A.
y
1
x 1
B.
y
2
x 1
C.
y
2
x 1
D.
y
0
3
x 2 y 1 0, 解析:由非负数的和等于0,所以得各部分都等于0,于是得方程组 x 2 y 3 0, 解这个方程组
x 1,
得
y
1.
答案:A
的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程组正确的是( )
6x 8y 250 A. x 75% y
8x 6 y 250
B.
y
75%
x
8x 6 y 250 C. x 75% y
6x 8y 250
D.
y
75%
x
解析:根据等量关系(1)买甲种水的钱数+买乙种水的钱数=250,(2)乙桶的个数=甲种水的桶
B.
y
2x
4
x y 349
C.
y
2x
4
x y 349 D. 2 y x 4
解析:审清题意后找出两个等量关系:男生人数y+女生人数x=349;男生人数y=女生人数x的2倍-4.
x y 349,
所以由此列式得
y
2x
4.
答案:C
2.买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙中水每桶6元,乙种水的桶数是甲种水
1.1x 0.9 y
D.
y
x
24
解析:由等量关系(1)A的面积×1.1=B的面积×0.9,(2)B的面积-A的面积=24,得方 程
1.1x 0.9 y,
组
y
x
24.
答案:D
4.某营业员昨天卖出7件衬衫和4条裤子共560元,今天又卖出9件衬衫和6条裤子共650元.若设每件
衬衫售价为x元,每条裤子售价为y元,则可列方程组为________________.
x y 364, 解析:设盛饭的碗有x只,盛羹的碗有y只,则由题意得 3x 4 y.
x 208,
解方程组得
y
156.
所以共有寺僧208×3=624(人).
答案:624
6.某班文艺小组购买每张3元、5元的杂技票共计20张,用去76元,问其中3元票、5元票各几张?
解:设3元票、5元票各x张、y张,
新人教数学2020-2021学年七年级下册
同步测控优化训练含解析
8.3 再探实际问题与二元一次方程组 5分钟训练(预习类训练,可用于课前) 1.八年级(3)班共有学生349人,其中男生人数y比女生人数x的2倍少4人,则下列方程组中正确 的是( )
x y 349 A. 2 y x 4
x y 349
第5层楼每平方 米的价格分别是平均价格的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼
房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息得出了下列方程组,其中正确的
是( )
2
0.9x 1.1y
A.
y
x
24
1.1x 0.9 y B. x y 24
0.9x 1.1y C. x y 24
答案:D
2.李振同学骑车从家到学校,在平路上、上坡路上、下坡路上,每小时分别骑10 km、8 km、16
km.从家到学校有一段平路和一段下坡路,需3.5 h,从学校原路返回家需4 h,设李振同学从家到
学校平路有x km,下坡路有y km,则列的方程组是( )
x 10
y 16
3.5
x
A. 10
y 8
4
x 8
y 16
3.5
x
B. 10
y 8Leabharlann 4x 16y 10
3.5
x
C. 16
y 8
4
x 8
y 16
3.5
D.
x
8
y 10
4
解析:注意把从家到学校的上坡和下坡转化为从学校到家的下坡与上坡.
答案:A
3.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房
在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的总房价相同,第3层楼和
龄=3,所以只要设小明的年龄为x,小亮的年龄为y,就可列出方程组.
x y 8, 根据题意有 2 y x 3,
x y 8, 即 x 2 y 3.所以两式相加得y=11.则x=11+8=19.所以小明今年19岁,小亮今年11岁.
答案:19 11
1
4.如图8-3-1,将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°.设∠BAE与 ∠BAD的度数分别为x、y,则可得到方程组为________________.
解析:题中表示等量关系的语句是“7件衬衫和4条裤子共560元”“9件衬衫和6条裤子共650元”.由此
可列出方程组.
7x 4 y 560, 答案: 9x 6 y 650
5.阅读下面这首古诗,然后计算共有寺僧多少人. 巍巍古寺在山林,不知寺内几多僧. 三百六十四只碗,看看用尽不差争. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺中几多僧. 读上面诗题,可以算出共有寺僧____________人.
图8-3-1 解析:根据等量关系(1)∠BAD-∠BAE=48°,(2)∠BAD+2∠BAE=90°可列方程
y x 48,
组
y
2
x
90.
y x 48,
答案:
y
2
x
90
10分钟训练(强化类训练,可用于课中)
1.某商店同时卖出两套服装,每套均卖168元,以成本算,其中一套盈利20%,另一套亏本20%,
8x 6 y 250,
数的75%,可得
y
75%
x.
答案:B
3.小明对小亮说:“我比你大8岁.”小亮却说:“我的年龄的两倍比你大3岁.”请你根据以上对话填
空:小明今年___________岁,小亮今年_____________岁.
解析:此题需在对话中找到等量关系:小明的年龄=小亮的年龄+8;小亮的年龄×2-小明的年
由(1)3元票的张数+5元票的张数=20张,(2)买3元票的钱数+买5元票的钱数=76,
3x 5y 76,
x 12,
得 x y 20,
解之,得
y
8.
答:3元票、5元票各12张 、8张.
30分钟训练(巩固类训练,可用于课后)
1.已知|x-2y+1|+(x+2y-3)2=0,则x、y的值分别为( )
则这次出售中,商贩( )
A.不赚不赔
B.赚了37.3元 C.赚了14元
D.赔了14元
解析:设盈利的一套服装的进价为x元,亏本的一套服装的进价为y元,则由题意得x
(1+20%)=168,y(1-20%)=168.解得x=140,y=210.这样成本为210+140=350(元),而售价
为168+168=336(元),所以赔了14元.