第九章磁场知识点
初中磁现象磁场知识点归纳
初中磁现象磁场知识点归纳一、什么是磁场?磁场是指物体周围存在的一种物理场,它具有磁性物质的吸引和排斥作用。
磁场是由产生磁场的物体形成的,例如磁铁或电流。
二、磁场的特征和性质1. 磁场有方向:磁场的方向从北极指向南极,形成了一个环绕磁体的磁力线。
2. 磁场的大小:磁场的大小可以通过磁感应强度来表示,单位是特斯拉(T)。
3. 磁场的强度与距离成反比:磁场的强度随着距离的增加而减小,遵循反比例关系。
4. 磁场的作用:磁场可以使磁性物质受力,具有吸引和排斥的作用。
三、磁场的生成和消失1. 磁场的生成:磁场可以由磁体(如磁铁)或电流产生。
当磁体或电流通过时,周围就会形成一个磁场。
2. 磁场的消失:当磁体或电流停止时,磁场也会消失。
四、磁场对物体的作用1. 磁性物质的吸引和排斥:磁场可以使磁性物质受力,产生吸引和排斥作用。
2. 磁场对电流的作用:磁场可以使电流受力,产生电磁感应现象。
五、磁场的应用1. 电磁铁:电磁铁是利用电流在导线中产生的磁场而产生磁力的装置,广泛应用于电磁吸盘、电磁制动等领域。
2. 电动机:电动机是利用导线中的电流与磁场相互作用而产生力矩,实现机械能转换的装置。
3. 磁共振成像:磁共振成像技术利用磁场对人体内部的水分子进行激发和检测,用于医学诊断。
六、磁场的实验1. 磁力线实验:用铁屑实验观察磁力线的形状和分布。
2. 磁场力实验:利用磁场对磁性物质的吸引和排斥力进行实验观察。
3. 电磁铁实验:通过改变电流的大小和方向,观察磁铁的磁性变化。
总结:磁场是物体周围存在的一种物理场,具有方向、大小和强度衰减的特点,可以通过磁体或电流的产生。
磁场对物体具有吸引和排斥作用,并可以对电流产生作用。
磁场的应用广泛,包括电磁铁、电动机和磁共振成像等。
通过实验可以观察和验证磁场的存在和作用。
人教版八年级物理第九章电与磁知识点总结
第九章电与磁知识点讲解第一节磁现象一、磁性能够吸引铁、钴、镍的性质。
二、磁体具有磁性的物体叫做磁体,可分为和。
三、磁极1.定义:磁体上的部分叫做磁极,任何一个磁体都有个磁极,分别是极和_____极,表示的字母为____和____。
2.规定:可以自由转动的磁体(例如悬吊的小磁针),静止时指南的那端叫做____极,指北的那端叫做____极。
条形磁体两端磁性最强,中间磁性最弱,可认为条形磁铁正中位置无磁性。
3.磁体之间相互作用规律:同名磁极相互_______,异名磁极相互_______。
四、磁化:1.定义:一些物体在______或______的作用下会获得磁性,这种现象叫做磁化。
2.方法:(1)将能被磁化的物体放在强磁体周围;(2)将能被磁化的物体放在强电流周围。
3.(1)应用:磁带、录像带、磁卡。
(2)预防:手表磁化,走时不准;电视磁化,图像色彩失真。
知识拓展:1、磁体的分类:○1按形状:条形磁体、蹄形磁体、针形磁体、圆柱形磁体○2按来源:天然磁体、人造磁体○3按保持磁性时间长短:硬磁体(永磁体)、软磁体【被磁化后,磁性容易消失的物质叫做软磁性材料,而磁性能够长期保持的物质叫做硬磁性材料,硬磁性材料可以用来制作永磁体还可以用来记录信息,如磁带、磁卡;磁性材料靠近磁体被磁化后,靠近磁体磁极的一端被磁化成异名磁极,而使它们相互吸引】2、判断物体是否具有磁性的方法:○1根据磁体的吸铁性○2根据指向性○3根据磁极间的相互作用第二节磁场一、磁场1.概念:磁体周围存在着一种物质,能使磁针偏转,这种物质叫做磁场。
(磁场看不见,摸不着,但是可以通过磁针的偏转感知到。
)2.基本性质:磁场对放入其中的磁体产生磁力的作用。
3.磁场的强弱:靠近两极的地方磁场强度越大。
4.方向:磁场中每点的磁场方向一般都不同,每点只有一个磁场方向。
物理学中规定:小磁针在磁场中静止时N极所指的方向就是该点的磁场方向。
二、磁感线1.概念:我们把小磁针在磁场中的排列情况,用一些带有剪头的曲线画出来,可以方便、形象的描述磁场,这样的曲线叫做磁感线。
九年级物理磁场知识点总结
九年级物理磁场知识点总结1. 磁场的基本概念磁场是由运动电荷产生的一种特殊的力场。
在磁场中,会对处于其中的磁性物体产生力的作用,使其受到磁力的影响。
磁场可以通过磁力线来描述,磁力线是一种用来表示磁场方向和强度分布的线条。
2. 磁场的性质磁场具有一些特殊的性质,这些性质包括:- 磁场的无源性:磁场没有磁荷,不存在单极子,即不存在责任的磁荷。
磁场总是由电流产生的。
- 磁场的闭合性:磁场总是从磁南极到磁北极形成闭合环路。
- 磁场的超导性:超导体能够完全排斥外部磁场,这种现象被称为迈森效应。
3. 磁场的来源磁场是由电流产生的。
电流在通过导线时,会形成一个螺旋状的磁场,这是安培环定律的基础。
另外,磁铁也可以产生磁场,这是由于磁铁内部的微观磁性有序排列形成了一个磁场。
4. 磁场的检测与测量磁场可以通过磁场强度计或者磁力计来进行检测和测量。
磁场强度计是一种能够在磁场中测量磁场强度的仪器,它可以帮助我们了解磁场的分布和强度。
磁力计则是一种能够测量磁场产生的磁力大小的仪器。
5. 磁场与运动电荷磁场对运动电荷有一定的影响,当电荷运动时,会在其周围产生一个磁场。
根据洛伦兹力的定律,当电荷在磁场中运动时,会受到一个垂直于速度和磁场方向的洛伦兹力的作用。
这一定律对于理解磁场和电荷之间的相互作用非常重要。
6. 磁场与磁性物质磁性物质是指具有自身磁性的物质,例如铁、镍、钴等金属。
当这些物质处于外部磁场中时,会受到磁力的作用而产生磁化。
磁化后的磁性物质会具有磁性,能够相互吸引或排斥。
磁铁、电磁铁就是利用这一原理制造的。
7. 磁场与电流电流在通过导线时会产生磁场,这是由于运动的电荷会产生磁场。
磁场对电流也有一定的影响,当电流通过导线时,会在周围产生一个磁场。
因此,电流和磁场是密切相关的,它们之间相互影响。
8. 磁场的应用磁场有许多重要的应用,其中一些包括:- 电磁铁:电磁铁是一种可以通过通电来产生磁场的装置,它在工业生产和实验研究中有着广泛的应用。
磁场知识点总结
磁场知识点总结磁场是物理学中一个重要的概念,用来描述磁性物体所产生的力和影响。
本文将对磁场的基本概念、磁场的性质、磁场的作用以及磁场的应用进行总结。
1. 磁场的基本概念:磁场是物质周围的一种物理现象,是一种力的表现形式。
它是通过电流或磁石等磁性物体所产生的,并且可以在空间中传递力和能量。
磁场可以用磁感线来表示,磁感线是垂直于磁场方向的曲线,它们趋向于从磁南极到磁北极。
2. 磁场的性质:磁场具有以下几个重要的性质:(1) 磁场是无源场,即不存在磁单极子。
每个磁体都有一个南极和一个北极,它们总是以成对的形式出现。
(2) 磁场是矢量场,具有大小、方向和方向性。
磁场的大小可以通过磁感应强度来表示,方向则由南极指向北极。
(3) 磁场具有叠加性,在空间中的磁场可以由多个独立的磁场叠加而成。
这意味着可以通过相应的磁体或电流分布来产生所需的磁场。
3. 磁场的作用:磁场对电荷、电流和磁性物体都有作用,主要表现为以下几个方面:(1) 对电荷和电流的作用:磁场可以对运动中的电荷和电流产生力的作用,这种力称为洛伦兹力。
电子在磁场中会受到洛伦兹力的作用,产生磁场力线。
洛伦兹力是电流表面电流的基础。
(2) 对电流的作用:磁场可以通过电流产生力矩的作用,使得电流线产生扭转。
这种受力矩的现象称为磁力偶,并且是电动力学中的基本原理之一。
(3) 对磁性物体的作用:磁场可以对磁性物体产生力的作用,使磁性物体受到吸引或排斥。
当一个磁性物体进入一个磁场时,它会受到一个力的作用,这种力称为磁场力。
4. 磁场的应用:磁场的应用广泛,不仅在日常生活中有很多应用,还在科学研究和工程技术领域发挥着重要的作用。
(1) 电磁感应和发电:磁场和电磁感应的理论基础上建立了电动机、发电机和变压器等电气设备,这些设备在我们的生活中起着重要的作用。
(2) 磁共振成像:核磁共振成像是一种医学成像技术,利用磁场对人体内部的水分子核磁共振进行成像,用于检查和诊断人体的疾病。
磁场知识点总结
磁场知识点总结一、磁场的基本概念1、磁场的定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围的空间中,能够对放入其中的磁体、电流或运动电荷产生力的作用。
2、磁场的性质磁场具有力的性质和能的性质。
力的性质表现为磁场对放入其中的磁体、电流或运动电荷有力的作用;能的性质表现为磁场具有能量,可以与其他形式的能量相互转化。
3、磁场的方向规定在磁场中某一点小磁针北极所指的方向为该点磁场的方向。
在磁场中可以用磁感线来形象地描述磁场的方向,磁感线上某点的切线方向即为该点的磁场方向。
二、磁感线1、磁感线的定义磁感线是在磁场中画出的一些有方向的曲线,这些曲线上每一点的切线方向都跟该点的磁场方向相同。
2、磁感线的特点(1)磁感线是闭合曲线,在磁体外部,磁感线从 N 极出发,回到S 极;在磁体内部,磁感线从 S 极指向 N 极。
(2)磁感线的疏密程度表示磁场的强弱,磁感线越密的地方,磁场越强;磁感线越疏的地方,磁场越弱。
(3)磁感线不相交,因为磁场中某点的磁场方向只有一个。
三、常见磁体的磁场分布1、条形磁铁的磁场条形磁铁外部的磁感线从 N 极出发,回到 S 极,内部从 S 极指向 N 极,形成闭合曲线。
两端磁性最强,中间磁性最弱。
2、蹄形磁铁的磁场蹄形磁铁的磁感线分布与条形磁铁类似,也是从 N 极出发,回到 S 极,内部从 S 极指向 N 极。
3、地磁场地球本身是一个巨大的磁体,地磁场的 N 极在地理南极附近,S 极在地理北极附近。
地磁场的磁感线从地理南极附近出发,回到地理北极附近。
不过,地磁场的磁感线与地理子午线并不完全重合,存在一定的磁偏角。
四、电流的磁场1、奥斯特实验奥斯特实验表明,通电导线周围存在磁场,这是人类第一次发现电与磁之间的联系。
2、通电直导线的磁场通电直导线周围的磁感线是以导线为圆心的一系列同心圆,其方向可以用安培定则(右手螺旋定则)来判断:用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,那么弯曲的四指所指的方向就是磁感线的环绕方向。
初中物理第九章电与磁知识点
第九章 电和磁一、磁现象1.磁性、磁体和磁极:能够吸引铁、钴、镍等物质的性质叫磁性;具有磁性的物体叫磁体;磁体上磁性最强的部分叫磁极。
2.磁体的指向性和磁体的两极:⑴磁体的指向性:能在水平面内自由转动的条形磁体和磁针,静止后总是一个磁极指南,另一个磁极指北,这种现象叫磁体的指向性;⑵磁体的两极:磁体指南的磁极叫南极,用符号S 表示,指北的磁极叫北极,用符号N 表示。
3.磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。
4.磁化:使原来没有磁极的物体获得磁极的过程叫磁化。
铁棒被磁化后磁极容易消失,称为软磁体;钢棒被磁化后磁极能够长期保持,称为硬磁体或永磁体,因此钢是制造永久磁体的好材料。
二、磁场1.磁场及其基本性质:磁体周围空间存在着磁场,它的基本性质是它对放入其中的磁体产生力的作用。
磁体间的相互作用就是通过磁场而发生的。
2.磁场方向规定:在磁场中的某点,小磁针静止时北极所指方向就是该点的磁场方向。
3.磁感线及其方向的规定:磁感线是用来描述磁场分布的有向假想曲线,在任何一点的曲线方向跟放在该点的磁针北极所指方向一致。
磁体周围的磁感线都从磁体N 极出来,回到磁体 S 极。
4.5.在磁场中的某点,北极所受的磁力方向和该点的磁场方向相同,南极所受磁力方向跟该点磁力方向相反。
6.地磁场:(1)地球本身是一个巨大的磁体,地磁北极在地理南极附近,地磁南极在地理北极附近。
(2)地球周围空间存在着地磁场,地磁场的磁感线从地磁N 极出发到地磁S 极,磁针指南北是因为受到地磁场的作用。
(3)世界上最早发现地磁偏角的科学家是中国宋代的沈括。
三、电生磁1.奥斯特实验表明:①通电导体和磁体一样,周围空间存在着磁场,这种现象叫做电流的磁效应。
②电流的磁场方向和电流方向有关。
2.世界上第一个发现电与磁之间联系的科学家是丹麦国的物理学家奥斯特。
3.通电螺线管外部的磁场和条形磁体的磁场一样,它两端的极性跟螺线管中的电流 方向有关。
物理磁场知识点总结
物理磁场知识点总结一、磁场的基本概念和性质磁场是一个矢量场,具有方向性,方向由被测点附近正常情况下运动带电荷子的方向决定。
磁场具有强度,其强度由磁场中的磁通量密度决定,磁通量密度单位为特斯拉(Tesla)。
磁场是连续的,磁通量在磁场中连续流动,遵循磁场规律。
二、磁场的产生和影响因素磁场是由运动的带电粒子(主要是电子)产生的。
当电流通过导线时,会在导线周围产生磁场。
电流的方向、大小和导线的形状会影响磁场的分布。
自旋磁矩和轨道磁矩也会产生磁场。
带电粒子(如电子)具有固有的自旋磁矩,当粒子的自旋磁矩与周围的磁场相互作用时,会产生局部磁场。
此外,带电粒子在原子核周围运动会产生轨道磁矩,轨道磁矩与自旋磁矩相互作用,可以导致磁场的产生。
影响磁场强弱的因素包括电流的大小、线圈匝数以及线圈中是否有铁芯等。
电流越大、线圈匝数越多、有铁芯,则产生的磁场就越强,反之则越弱。
三、磁极和磁相互作用磁体各部分磁性强弱不同,磁性最强的区域叫磁极。
任何磁体都有两个磁极:南极(S极)和北极(N极)。
同名磁极相互排斥,异名磁极相互吸引。
磁极间的相互作用是以磁场作为媒介的,因此两磁体不用在物理层面接触就能发生作用。
四、磁化和去磁使原来没有磁性的物体获得磁性的过程叫做磁化。
磁化后的物体失去磁性的过程叫做退磁或去磁。
五、磁场的应用磁场的应用范围广泛,涉及到电磁感应、磁性材料应用、医学影像诊断、磁悬浮和地磁导航等领域。
例如,磁悬浮列车利用磁力驱动实现高速悬浮行驶;磁共振成像(MRI)利用磁场进行人体内部结构成像诊断;磁体治疗仪利用磁场的生物效应进行治疗;磁控靶向给药系统通过磁场引导药物到达特定部位等。
总之,物理磁场是一个复杂而重要的物理概念,掌握其基本概念、性质、产生和应用等方面的知识点对于深入理解电磁现象和应用电磁技术具有重要意义。
磁场知识点总结
磁场知识点总结磁场是物理学中的重要概念,涉及到电磁学、力学和量子力学等多个领域。
本文将对磁场的基本概念、性质、产生和应用进行总结和介绍。
一、磁场的基本概念1. 磁性:物质的磁性可以分为铁磁性、顺磁性和抗磁性三种类型,其中铁磁性是最强的。
磁铁、铁、镍和钴等物质具有明显的铁磁性。
2. 磁感应强度:磁感应强度B用来衡量磁场的强弱,单位为特斯拉(T)或高斯(G)。
磁感应强度的方向是从磁南极指向磁北极,与物体受力的方向相反。
3. 磁场力线:磁场力线是用来表示磁场分布的曲线,它的方向与磁场力的方向相同。
磁力线在磁场内是闭合曲线,在磁场外则是无限延伸的。
4. 磁场强度:磁场强度H定义为单位长度内的电流对磁感应强度的贡献,单位是安培/米(A/m)。
二、磁场的性质1. 磁场的无源性:磁场无法单独存在,必须由电流或磁体产生。
从这个角度看,磁场是一种有源场。
2. 磁场的有方向性:磁场的方向由磁场力线表示,从磁南极指向磁北极。
在磁场中的磁体会受到力的作用,沿磁力线方向运动或受到磁力的约束。
3. 磁场的叠加性:磁场在空间中的分布满足叠加原理,即多个磁场叠加时,磁感应强度的合成等于各个磁场磁感应强度的矢量和。
4. 磁场的衰减性:磁场的强度随着距离磁体的增加而减弱。
根据安培环路定理,磁感应强度的大小与电流强度、距离和导线形状有关。
三、磁场的产生1. 安培定律:安培定律描述了电流通过导线时产生的磁场。
根据安培定律,通过电流I的无限长直导线周围的磁感应强度与电流的强度成正比,与距离的倒数成反比。
公式为B=μ0I/2πr,其中μ0是真空中的磁导率,约等于4π×10^-7 T•m/A。
2. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场对导体中电流的感应作用。
当导体相对于磁场运动或磁场发生变化时,导体中将会产生感应电动势,使电子流动形成感应电流。
公式为ε=-dφ/dt,其中ε为感应电动势,φ为磁通量,t为时间。
四、磁场的应用1. 电磁铁:电磁铁是将电流通过导线产生的磁场用来吸引或排斥物体的装置。
初三物理磁场知识总结归纳
初三物理磁场知识总结归纳磁场是物理学中重要的概念之一,它在我们的日常生活和科学研究中都起到了至关重要的作用。
在初中物理学中,我们学习了许多与磁场相关的知识,本文将对初三物理磁场知识进行总结和归纳。
一、磁场的基本概念磁场是指磁力的作用区域,它由磁体产生,并且在空间中具有方向性和大小。
磁场可以通过磁针的指向来揭示,磁针指向磁场线的方向。
磁场线是从磁南极指向磁北极的曲线,形状呈现出封闭环路的特点。
二、磁场的特性1. 磁场的磁力线是无源的,即它们不会形成闭合的回路。
2. 磁力线不会相交,这是由于磁力线所描述的是磁场的方向,不可能同时存在多个不同的方向。
3. 磁力线会聚和发散,聚集的地方磁场强度大,发散的地方磁场强度小。
三、磁场的产生磁场可以通过电流和永磁体来产生。
当电流通过导线时,将会在导线周围形成环绕导线的磁场。
根据安培定理,电流越大,产生的磁场越强。
而永磁体则是通过磁性材料本身的磁性来产生磁场,它具有两个磁极,分别为磁南极和磁北极。
四、磁场的力学效应磁场会对运动带电粒子产生力的作用,这就是磁力。
磁力的方向遵循右手定则:伸直右手,让拇指指向带电粒子的运动方向,四指伸直则指向磁场方向。
当电荷的速度方向垂直于磁场时,将会受到力的作用,这就是洛伦兹力。
洛伦兹力的大小与电荷的速度、电荷的大小和磁场的强度有关。
五、磁感应强度与磁感线磁感应强度(B)是描述磁场强弱的物理量,它的单位是特斯拉(T)。
磁感线是描绘磁感应强度分布的曲线,它们从磁北极指向磁南极,磁感线的密度可以反映磁场的强弱,密集的磁感线表示磁场强度大,稀疏的磁感线表示磁场强度小。
六、磁场内的带电粒子运动规律当带电粒子进入磁场时,将会受到洛伦兹力的作用,从而改变运动轨迹。
当带电粒子的速度方向与磁场方向平行时,洛伦兹力垂直于速度方向,粒子将会做匀速直线运动;当速度方向垂直于磁场方向时,洛伦兹力与速度方向垂直,粒子将会做匀速圆周运动;当速度方向与磁场方向有一个夹角时,洛伦兹力会让粒子做带半径的螺旋线运动。
磁场笔记知识点总结图
磁场笔记知识点总结图一、磁场的基本概念1. 磁场的定义:磁场是由磁物质或者电流所产生的具有磁性的空间区域。
2. 磁场的性质:磁场是一种向量场,具有方向和大小,并且遵循磁场线规律。
3. 磁感线:磁感线是用来表示磁场分布的曲线,具有起点和终点,磁感线的方向表示磁场的方向,线的密度表示磁场的强弱。
二、磁场的产生1. 电流产生磁场:安培环形定律和比奥-萨伐特定律描述了通过电流产生磁场的原理。
2. 磁体产生磁场:磁体是产生磁场的物质,具有磁性,可以产生磁场,并且可以吸引铁、镍等物质。
三、磁场的性质1. 磁场的磁通量:磁通量是磁场通过某个平面的总磁场量,用Φ表示,单位为韦伯(Wb)。
2. 磁场的磁感应强度:磁感应强度是磁场在某点的强度,用B表示,单位为特斯拉(T)。
3. 磁场的磁力线:磁力线是切线方向上表示磁感应强度的连续曲线,它的方向是磁感应强度方向。
四、磁场与电流1. 洛伦兹力:当电荷在磁场中运动时,会受到磁场力的作用,这种力被称为洛伦兹力。
2. 比奥-萨伐特定律:描述了通过电流产生磁场的原理,包括了电流元产生的微元磁场强度。
五、磁场的应用1. 电磁感应:当磁通量发生变化时,会产生感应电动势,这是电磁感应现象。
2. 电磁感应的应用:电磁感应在发电机、变压器、感应加热等领域有着广泛的应用。
3. 磁场在生活中的应用:磁场在电动机、磁力计、磁铁等方面有着广泛的应用。
六、磁场的研究和发展1. 磁场的现代研究:磁场在量子力学、相对论等物理领域有着重要的作用,磁场的研究也得到了不断的发展。
2. 磁场在科技领域的应用:磁场在电磁学、天文学、医学等领域有着重要的应用,为人类的科技发展做出了巨大贡献。
七、磁场的保护与利用1. 磁场的保护:磁场对人体健康会产生一定的影响,需要合理保护和利用。
2. 磁场的利用:磁场在电力、通讯、航天等领域有着广泛的应用,为人类社会的发展做出了重要贡献。
以上就是关于磁场的基本概念、产生、性质、与电流的联系、应用、研究和发展,以及保护与利用的知识点总结。
初三物理磁场知识点
初三物理磁场知识点磁场是物理学中一个重要的概念,它描述了磁体或电流周围空间中存在的一种力场。
在初三物理课程中,磁场的知识点主要包括以下几个方面:1. 磁场的定义:磁场是由磁体或电流产生的,能够对放入其中的磁体或电流产生力的作用的空间区域。
2. 磁感线:为了形象地描述磁场,引入了磁感线的概念。
磁感线是一些虚拟的曲线,它们从磁体的北极出发,指向南极,表示磁场的方向和强度。
磁感线的密度可以表示磁场的强弱,密度越大,磁场越强。
3. 磁场的方向:磁场的方向遵循右手定则。
当右手的四指指向电流的方向时,大拇指指向的方向就是磁场的方向。
4. 磁场的强度:磁场的强度用磁感应强度来表示,单位是特斯拉(T)。
磁感应强度描述了磁场对单位面积的磁力大小。
5. 磁场对电流的作用:当导线中的电流与磁场垂直时,导线会受到一个垂直于电流和磁场方向的力,这个力称为安培力。
安培力的大小与电流的大小、磁场的强度和导线长度有关。
6. 磁场对运动电荷的作用:当一个带电粒子以一定速度穿过磁场时,它会受到一个力的作用,这个力称为洛伦兹力。
洛伦兹力的方向垂直于磁场和粒子运动的方向,大小与粒子的电荷量、速度和磁场强度有关。
7. 磁铁的性质:磁铁具有两个磁极,即北极和南极。
同名磁极相互排斥,异名磁极相互吸引。
8. 电磁铁:电磁铁是一种利用电流产生磁场的装置。
通过改变电流的方向或大小,可以控制电磁铁产生的磁场的强弱和方向。
9. 地磁场:地球本身也是一个巨大的磁体,具有地磁场。
地磁场的方向大致由地理南极指向地理北极。
10. 磁的应用:磁场在日常生活中有广泛的应用,如指南针、电动机、发电机、磁悬浮列车等。
通过理解这些基础的磁场知识点,学生可以更好地掌握磁现象的基本原理,并能够解决相关的物理问题。
磁场知识点总结框架
磁场知识点总结框架一、基本概念1. 磁场的定义和特性2. 磁感线的性质3. 磁场与磁矩的关系二、电流及磁场1. 安培环路定理2. 洛伦兹力的方向与大小3. 磁场的矢量表示法三、磁场中的运动电荷1. 磁场对运动电荷的作用力2. 理解质子和电子在磁场中的运动规律3. 荷质比的测定四、电荷在磁场中的运动1. 螺线轨道的规律2. 离散布局的运动规律3. 利用右手定则判断电流环的磁场方向五、磁场的产生和磁性物质1. 安培环路法则2. 比较磁铁、自然磁体、铁、镍、钴的磁学性质3. 磁矩六、电磁感应现象及法拉第电磁感应定律1. 电磁感应的概念和特点2. 法拉第电磁感应定律的表述和实例3. 感生电动势、感生电流和对应变化规律七、电磁感应规律的推广1. 磁导体中的感应电流2. 感应电动势的应用3. 感应现象的重要意义八、自感现象和电感1. 自感的概念与特点2. 自感电动势的表达式及实例3. 电感和经验规律九、交流电路中的电磁感应现象1. 交变电流的特点2. 交流电路中的感应现象3. 直流电动机形式、特点和应用十、麦克斯韦方程1. 连续性方程2. 麦氏方程3. 法拉第方程和安培方程十一、磁场能量及磁场的电磁辐射1. 介质中的磁场能量2. 磁场的电磁辐射特点与数值3. 磁场与电磁辐射的应用总结磁场是我们日常生活中常见的物理现象之一,掌握磁场知识对于理解电磁学的相关原理和应用具有重要意义。
本文从磁场的基本概念入手,系统地总结了安培环路定理、洛伦兹力、磁场矢量表示法、运动电荷的磁场作用、磁场中的电荷运动规律等方面的相关知识。
并就磁场产生、磁性物质、电磁感应现象、自感现象和电感、交流电路中的电磁感应、麦克斯韦方程、磁场能量及磁场的电磁辐射等方面进行了详细的阐述和总结。
希望能对读者对磁场知识有所帮助,促进对电磁学内容的深入理解和应用。
高三物理 第九章 磁场
高三物理 第九章 磁场一、基本概念1.磁场的产生 ⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁感应强度ILFB(条件是L ⊥B ;在匀强磁场中或ΔL 很小。
) 磁感应强度是矢量。
单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2) 4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。
⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
二、安培力 (磁场对电流的作用力)1.安培力方向的判定 ⑴用左手定则。
⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则分别判定每半根导线所受的安培力。
例1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?条形磁铁通电环行导线周围磁场通电长直螺线管内部磁场 通电直导线周围磁场解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90º后平移)。
物理 选修1-1 第九章 磁场 电磁感应
第九章磁场电磁感应磁场1.磁场:磁场是存在于磁体、电流周围的一种物质(1)磁场的基本特点:磁场对处于其中的磁体、电流有力的作用.(2)磁场方向的三种判断方法:a.小磁针N极受力的方向。
b.小磁针静止时N极的指向。
c.磁感线的切线方向.2.磁感线(1)在磁场中人为地画出一系列曲线,磁感线上某一点的切线方向也表示该点的磁场方向。
曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交,不相切。
(3)几种典型磁场的磁感线的分布: 右手螺旋定则判定通电直导线、环形电流、通电螺线管周围的磁场分布①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。
(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。
(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。
4.磁场力:F=BILsinθ(θ为B与I的夹角),只要求B∥I,B⊥I两种情况;注意:只有电流和磁场之间有一定夹角时,磁场力才不为0。
磁场知识点汇总
磁场知识点汇总一、磁场⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。
⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切线方向)。
⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。
二、磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。
⒋任何两条磁感线都不会相交,也不能相切.三、安培定则是用来确定电流方向与磁场方向关系的法则弯曲的四指代表⎩⎨⎧)()(环形电流或通电螺线管电流的方向直线电流磁感线的环绕方向四、安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一样,都是由电荷的运动产生的.五、几种常见磁场⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁场. ⒊地磁场(与条形磁铁磁场类似)⑴地磁场N 极在地球南极附近,S 极在地球北极附近。
地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在南半球垂直地面向上,在北半球垂直地面向下⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.六、磁感应强度:⑴定义式LIF B =(定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。
七、磁通量⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S⒉定义二:表示穿过某一面积磁感线条数磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出. 当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф1—ф2(ф1为正向磁感线条数,ф2为反向磁感线条数。
磁场知识点总结
磁场知识点总结一、什么是磁场?磁场是周围空间中存在的一个物理概念,它是由物质物体所产生的一种力场。
磁场使得具有磁性的物质在其中受到力的作用。
磁场的存在是由物体的电荷和电流所带来的。
二、磁场的生成1. 磁体发出的磁场磁体可以通过电流产生磁场,这个现象被称为电磁感应。
电流通过导线时,会在周围产生磁场。
这个磁场的强弱与电流的大小成正比,与导线形状和材料有关。
2. 静磁场和运动磁场静磁场是指物体不发出电流时产生的磁场,如永磁体所产生的磁场。
运动磁场是指电流在移动导体中产生的磁场,如电动机中的磁场。
三、磁场的性质1. 磁场的方向和大小磁场是一个矢量量,具有方向和大小。
磁场的方向可以用磁力线表示,它们从一个磁极流向另一个磁极。
磁场的大小可以通过磁感应强度来表示,单位是特斯拉。
2. 磁场的磁通量磁通量是磁场通过某一面积的大小,用符号Φ表示。
磁通量随磁场的强度和面积的变化而变化,可以用安培力定义为单位磁场通过单位面积的磁通量。
3. 磁场对物体的影响磁场可以对具有磁性的物体产生力的作用,这个力被称为磁力。
物体受到磁力的大小取决于物体的磁性以及磁场的强弱。
4. 磁场的行为规律磁场遵循一定的行为规律,如磁场会将同性磁极排斥,异性磁极相吸。
这个规律被称为磁性规律。
四、磁场的应用1. 电磁感应和发电机电磁感应通过磁场和电场的相互作用,将机械能转化为电能。
发电机就是一个利用电磁感应原理的设备,将机械能转化为电能,广泛用于发电工业。
2. 磁记录技术磁记录技术是一种利用磁场记录和存储信息的方法。
如磁带、磁盘等设备就是利用磁场来储存和读取信息的。
3. MRI技术MRI(Magnetic Resonance Imaging)技术是一种通过磁场和无线电波对人体进行成像的技术。
它利用人体组织中的氢原子的磁性来获取人体内部的结构信息,广泛应用于医学诊断领域。
4. 磁悬浮技术磁悬浮技术利用磁场对物体进行悬浮和推动,实现了无接触、无摩擦的悬浮运动。
九年级物理 磁场 知识点
九年级物理磁场知识点一、引言磁场是物理学中的重要概念,具有广泛的应用。
本文将介绍九年级物理学中与磁场相关的几个重要知识点。
二、磁场的基本概念1. 磁场的定义:磁场是指磁力的作用范围,是描述物体间相互作用的一种物理量。
2. 磁场的表示方法:可以用磁力线表示磁场的分布情况,磁力线是磁场的定性表示,可以描绘磁场的方向和强弱。
三、磁场的特性1. 磁场的无源性:磁场不存在单极子,即不存在一个只有南极或只有北极的物体。
2. 磁场的磁力性:磁场可以对磁性物质产生力的作用,即磁力。
四、磁场的来源1. 磁场的产生原理:磁场是由带有电荷的物体运动所产生的,如电流、电荷的移动等。
2. 磁场的产生方式:可以通过电磁铁、电磁感应等方式产生磁场。
五、磁场的单位和测量1. 磁通量的单位:磁通量是磁场通过单位面积的大小,其单位为韦伯(Wb)。
2. 磁感应强度的单位:磁感应强度是磁场的强弱度量,其单位为特斯拉(T)。
3. 磁场的测量:可以通过霍尔效应、法拉第电磁感应等方法来测量磁场的强度。
六、磁场的作用1. 磁场对带电粒子的力的作用:根据洛伦兹力定律,磁场可以对带电粒子产生力的作用,使其运动轨迹发生偏折。
2. 磁场对电流的作用:根据安培力定律,磁场可以对电流产生力的作用,导致电流所在导线发生力的作用。
3. 磁场对磁性物质的作用:磁场可以对磁性物质产生磁力作用,使其发生磁化。
七、磁场的应用1. 电动机的工作原理:电动机是利用磁场对电流产生力的作用,实现电能转化为机械能的装置。
2. 磁共振成像技术:磁共振成像利用磁场对人体组织的磁性作用,实现对人体内部结构的成像。
3. 磁记录技术:磁记录技术利用磁场对磁性材料的磁化作用,实现信息的存储和读取。
八、总结磁场是物理学中一项重要的研究内容,涉及到许多基本概念和原理。
通过了解磁场的基本概念、特性、来源、单位和测量、作用和应用等知识点,我们可以更好地理解和应用磁场的相关知识。
希望本文对九年级物理学生们的学习和理解有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场知识点总结
一、磁场、磁感应强度
1.磁场
(1)基本特性:磁场对处于其中的、和有磁场力的作用.
(2)方向:小磁针的所受磁场力的方向.
(3)最早揭示磁现象的电本质的假说和实验——。
2.磁感应强度
(1)物理意义:描述磁场的.
(2)定义式:B= (通电导线垂直于磁场).
(3)方向:小磁针静止时的指向.
3.磁通量
(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向的平面面积S和B的乘积.
(2)公式:Φ= .
注意:①磁通量是标量,其正负值仅表示
② S指线圈在磁场内的正对面积,即
③磁通量与线圈匝数
(3)单位:1 Wb= .
二、磁感线及几种常见的磁场
1.磁感线:在磁场中画出一些曲线,使曲线上每一点的 方向都跟这点的磁感应强度的方向一致.
特点:①磁感线是为了形象描绘磁场中各点磁感应强度情况而假想出来的曲线
②磁感线上每点的切线方向,都表示该点
③磁感线密的地方磁场,疏的地方
④在磁体外部,磁感线由,在磁体内部磁感线,形成闭合曲线
⑤磁感线不能相交
2.几种常见的磁场
(1)条形磁铁和蹄形磁铁的磁场(如下图所示)
(2)匀强磁场:在磁场的某些区域内,磁感线为 的平行线(如下图所示)
(3)地磁场
①地磁场的N极在地球 附近,S极在地球 附近,磁感线分布如图所示.
②地磁场B的水平分量(B x)总是从地球 指向 ,而竖直分
量(B y)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.
③在赤道平面上,距离地球表面高度相等的各点,磁感应强度
相等且方向水平平行.
(4)几种电流周围的磁场分布 三、 安培力
1. 安培力的方向(左手定则):伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁
感线从 进入,并使四指指向 ,这时大拇指所指的方向就是通电导线在磁场中所受 .
2. 安培力的大小:在匀强磁场中,通电导线受到的安培力的计算公式为:
(θ为导线与B 的夹角) ① 当θ = 90°时,安培力最大为:
② 当θ = 0°或180°时,安培力为:
3.应用安培力公式应注意的问题
① 安培力的方向,总是 ,即一定垂直B 和I ,但B 与I 不一定垂直。
② 弯曲导线的有效长度L ,等于两端点连接直线的长度(如右图所示)相应的电流方向,沿L 由始端流向末端。
公式的运动条件:一般只运用于匀强磁场。
四、洛伦兹力
1.定义: 运动电荷在磁场中所受的磁场的力.
2.大小:(1) v∥B时,F=
(2) v⊥B时,F= .
(3) v与B夹角为θ时,F= (θ为夹角).
3.方向: F、v、B三者的关系满足定则.
4.特点: 由于F始终v的方向,故洛伦兹力永不做功.
注意:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.
五、带电粒子在磁场中的运动
1.若带电粒子的速度方向与匀强磁场方向平行,带电粒子以入射速度v 做 运动.
2.若带电粒子的速度方向与匀强磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v 做 运动.
(1) 基本公式:洛伦兹力提供向心力,有: r
mv qvB 2
① 轨道半径: ; ② 角速度: ; ③ 周期: ;
④ 频率: ; ⑤ 动能: (2) T 、f 和ω的特点:
T 、f 和ω的大小与轨道半径R 和运行速率v ,只与磁场的 和粒子的比荷 有关. (3) 圆心的确定
基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向 的直线,两条直线的交点就是圆弧轨道的圆心(如图15-12所示,图中P 为入射点, M 为出射点)。
b. 已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图15-13示,P 为入射点,M 为出射点)。
(4) 半径的确定
用几何知识(勾股定理、三角函数等)求出半径大小. 注意:带电粒子在不同边界磁场中的运动 ① 直线边界(进出磁场具有对称性,如图)
从同一边界进出磁场时入射速度和出射速度与边界夹角 。
② 平行边界(存在临界条件,如图)
② 圆形边界(沿径向射入 射出,如图)
图15-12 图
15-13
(5) 圆心角а的计算
a. 粒子速度的偏向角(φ)等于回旋角 (а),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图15-14) ,即:
b. 相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即: 所以, (6) 运动时间的计算
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,
其运动时间可由下式表示: 六、带电粒子在复合场中的运动
1.复合场:复合场是指电场、磁场和重力场并存,或其中某两种场并存的场,或分区域存在.
2.带电粒子在复合场中的运动分类
(1)静止或匀速直线运动
当带电粒子在复合场中所受合外力为零时,将处于 状态或做 . (2)匀速圆周运动
在三场并存的区域中,当带电粒子所受的重力与电场力大小 ,方向 时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做 运动. 3.带电粒子在复合场中运动的应用实例 a. 速度选择器(原理如右图)
(1)平行板中电场强度E 和磁感应强度B 互相 .这种装置能把具 有一定 的粒子选择出来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是 ,即v = 与粒子的电性、电荷量和质量 (填“有关”或“无关”). b. 质谱仪(如右图)
(1)构造:如下图所示,由粒子源、 、偏转磁场和照相底片 等构成.
(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式:
粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式
图15-14
由以上两式可得出需要研究的物理量,如粒子轨道半径、粒子质量荷:r= ,
m= , q/m=
c. 回旋加速器(如右图)
(1)构造:如右图所示,D1、D2是半圆金属盒,D形盒的缝隙处接
电源.D形盒处于匀强磁场中,其半径为R.
(2)原理:①交流电的周期和粒子做圆周运动的周期 ,
周期为:
③粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一
次一次地反向,粒子就会被一次一次地加速.每次加速有:Uq=
④粒子在磁场中偏转时,有洛伦兹力提供向心力,即:qvB= mv2/R ,得粒子飞出加速器是的动能:E km=
,可见粒子获得的最大动能由 B和D形盒 决定,与加速电压 .
⑤设粒子在磁场中偏转n圈,则E k = = 所以:n=B2R2q/4Um
粒子在回旋加速器中运动时间为:t= nT=。