高中磁场知识点及规律总结

合集下载

高中物理:磁场 电磁感应知识点总结

高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。

2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。

3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。

此外,磁场还可以产生电能,为机器提供动力。

二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。

2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。

3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。

高二物理选修3-1第三章磁场知识点总结复习

高二物理选修3-1第三章磁场知识点总结复习

第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性.磁体:具有磁性的物体叫磁体.磁极:磁体中磁性最强的区域叫磁极。

2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。

3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。

磁场的基本性质:对处于其中的磁极和电流有力的作用.磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的.磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场.4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角.地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。

宇宙中的许多天体都有磁场。

月球也有磁场。

例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。

设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引"、“排斥”或“无作用力”),A端将感应出极。

3。

2 磁感应强度第二节 、 磁感应强度1.磁感应强度的方向:小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

磁场的知识点总结

磁场的知识点总结

磁场的知识点总结磁场是物理学中的一个重要概念,它在我们的日常生活和许多科学技术领域都有着广泛的应用。

下面我们就来对磁场的相关知识点进行一个全面的总结。

一、磁场的基本概念磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷的周围。

磁场对放入其中的磁体、电流和运动电荷有力的作用。

我们用磁感应强度 B 来描述磁场的强弱和方向。

磁感应强度是一个矢量,其方向就是小磁针静止时 N 极所指的方向。

在国际单位制中,磁感应强度的单位是特斯拉(T)。

二、磁通量磁通量是指穿过某一面积的磁感线的条数。

我们用Φ 表示磁通量,其计算公式为Φ =B·S·cosθ,其中 B 是磁感应强度,S 是垂直于磁场方向的面积,θ 是 B 与 S 之间的夹角。

磁通量是一个标量,但有正负之分,其正负表示磁感线穿过平面的方向不同。

三、磁场的产生1、永磁体:永磁体周围存在磁场,如常见的磁铁。

2、电流:电流能够产生磁场,这就是奥斯特实验所证明的。

直线电流的磁场方向可以用安培定则(右手螺旋定则)来判断:用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

3、环形电流和通电螺线管:环形电流和通电螺线管的磁场方向也可以用安培定则来判断:让右手弯曲的四指与环形电流或通电螺线管的电流方向一致,伸直的大拇指所指的方向就是环形电流或通电螺线管中心轴线上磁感线的方向。

四、磁场对电流的作用1、安培力:磁场对通电导线有力的作用,这个力称为安培力。

当电流方向与磁场方向垂直时,安培力的大小 F = BIL,其中 B 是磁感应强度,I 是电流强度,L 是导线在磁场中的有效长度。

当电流方向与磁场方向平行时,安培力为零。

安培力的方向可以用左手定则来判断:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时大拇指所指的方向就是通电导线在磁场中所受安培力的方向。

高中科学易考知识点电磁感应的规律

高中科学易考知识点电磁感应的规律

高中科学易考知识点电磁感应的规律电磁感应是高中科学中一个重要且易考的知识点。

本文将介绍电磁感应的规律,包括法拉第电磁感应定律和楞次定律,以及相关的应用。

一、法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。

根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中将会产生感应电动势。

1. 磁通量的概念磁通量是衡量磁场穿过给定面积的数量。

用符号Φ表示,单位是韦伯(Wb)。

磁通量可以通过磁通量的定义来计算:Φ= B∙A∙cosθ,其中B表示磁场强度,A表示磁场线垂直于给定面积的面积,θ表示磁场线与法线之间的夹角。

2. 法拉第电磁感应定律的表达式根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

表达式可以表示为:ε = -N∙ΔΦ/Δt,其中ε表示感应电动势,N表示线圈的匝数,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。

3. 磁感线切割导体产生感应电动势当导体在磁场中运动时,如果导体与磁感线垂直,并切割磁感线,就会产生感应电动势。

这是因为磁感线切割导体时,磁通量发生了变化,从而产生感应电动势。

二、楞次定律楞次定律是描述电磁感应中产生的感应电流及其方向的规律。

根据楞次定律,感应电流的方向总是阻碍原磁通量变化的方向。

1. 楞次定律的表述根据楞次定律,当磁通量发生变化时,感应电流的方向会使得产生的磁场与原磁场的作用相反,从而阻碍磁通量的变化。

这是一个自我保护的规律,符合能量守恒定律。

2. 楞次定律在电磁感应中的应用楞次定律在电磁感应中有广泛的应用。

例如,变压器的工作原理就依赖于楞次定律。

变压器中的主线圈和副线圈之间通过铁芯连接,当主线圈中通过交流电时,产生的交变磁场将切割副线圈,从而在副线圈中感应出电动势和电流。

三、电磁感应的规律应用电磁感应的规律在生活中有许多应用。

下面举几个例子进行说明。

1. 发电机的工作原理发电机利用电磁感应的规律将机械能转换为电能。

当发电机中的导体在磁场中旋转时,导体切割磁感线,产生感应电动势和电流。

史上最全高中物理磁场知识点总结

史上最全高中物理磁场知识点总结

史上最全⾼中物理磁场知识点总结⼀、磁场磁体是通过磁场对铁钴镍类物质发⽣作⽤的,磁场和电场⼀样,是物质存在的另⼀种形式,是客观存在的。

⼩磁针的指南指北表明地球是⼀个⼤磁体。

磁体周围空间存在磁场;电流周围空间也存在磁场。

电流周围空间存在磁场,电流是⼤量运动电荷形成的,所以运动电荷周围空间也有磁场。

静⽌电荷周围空间没有磁场。

磁场存在于磁体、电流、运动电荷周围的空间。

磁场是物质存在的⼀种形式。

磁场对磁体、电流都有⼒的作⽤。

与⽤检验电荷检验电场存在⼀样,可以⽤⼩磁针来检验磁场的存在。

如图所⽰为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有⼒的作⽤实验。

1.地磁场地球本⾝是⼀个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。

2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。

3.指南针放在地球周围的指南针静⽌时能够指南北,就是受到了地磁场作⽤的结果。

4.磁偏⾓地球的地理两极与地磁两极并不重合,磁针并⾮准确地指南或指北,其间有⼀个交⾓,叫地磁偏⾓,简称磁偏⾓。

说明:①地球上不同点的磁偏⾓的数值是不同的。

②磁偏⾓随地球磁极缓慢移动⽽缓慢变化。

③地磁轴和地球⾃转轴的夹⾓约为11°。

⼆、磁场的⽅向在电场中,电场⽅向是⼈们规定的,同理,⼈们也规定了磁场的⽅向。

规定:在磁场中的任意⼀点⼩磁针北极受⼒的⽅向就是那⼀点的磁场⽅向。

确定磁场⽅向的⽅法是:将⼀不受外⼒的⼩磁针放⼊磁场中需测定的位置,当⼩磁针在该位置静⽌时,⼩磁针N极的指向即为该点的磁场⽅向。

磁体磁场:可以利⽤同名磁极相斥,异名磁极相吸的⽅法来判定磁场⽅向。

电流磁场:利⽤安培定则(也叫右⼿螺旋定则)判定磁场⽅向。

三、磁感线在磁场中画出有⽅向的曲线表⽰磁感线。

磁感线特点:(1)磁感线上每⼀点切线⽅向跟该点磁场⽅向相同。

(2)磁感线的疏密反映磁场的强弱,磁感线越密的地⽅表⽰磁场越强,磁感线越疏的地⽅表⽰磁场越弱。

高一物理必修三磁场知识点总结

高一物理必修三磁场知识点总结

高一物理必修三磁场知识点总结磁场是物质相互作用的重要形式之一,对于了解物质结构、电磁现象等具有重要意义。

高一物理必修三中,我们学习了关于磁场的相关知识。

本文将对磁场知识点进行总结,帮助大家更好地掌握和理解这一部分内容。

1. 磁场的产生磁场是由电流和磁体所产生的,其中我们主要研究了电流产生的磁场。

根据安培定律,电流通过导线时会形成磁场,其磁场强度与电流的大小成正比。

同时,磁场是环绕导线的圆周线圈,通过放大镜看,磁场呈螺旋形。

2. 磁场的特性磁场具有以下几个基本特性:- 磁场具有磁力线,磁力线是用来表示磁场分布的线条,在磁场中磁力线是闭合的。

- 磁场具有磁场强度的大小和方向之分,磁场强度的大小反映了磁场的强弱,磁场强度的方向可以通过右手定则确定。

- 磁场对磁体的作用力类似于重力对物体的作用,磁极之间可以相互吸引或排斥,这是磁场的一种重要表现形式。

3. 磁场与电流之间的相互作用磁场与电流之间有着密切的联系,它们之间存在多种相互作用的方式:- 安培力:当导线内有电流通过时,该导线会受到磁场力在垂直于导线和磁场方向的方向上的作用。

- 洛伦兹力: 运动电荷在磁场中会受到洛伦兹力的作用,该力的方向垂直于运动电荷的速度和磁场方向。

4. 磁场的效应和应用磁场在生活中有着广泛的应用,下面介绍几个常见的磁场效应和应用:- 电磁感应:当磁通量发生改变时,会产生感生电动势,这就是电磁感应现象。

电磁感应是电力工业的基础,也是变压器、发电机等设备的工作原理。

- 磁铁:磁铁是由铁磁性物质制成的,具有磁性。

磁铁可以用于指南针、电磁铁等设备中。

- 高速列车:通过利用磁悬浮技术,可以使列车离地运行,减少了摩擦力,提高了速度。

5. 磁场的测量和磁感线图为了能够准确地测量磁场的强度和方向,我们需要采用恰当的测量方法和工具。

磁感线图是用来表示磁场分布的图形,通过磁感线图我们可以直观地了解磁场的强弱和方向。

总结:磁场是物质之间相互作用的一种重要形式,我们学习了磁场的产生、特性以及与电流之间的相互作用。

高二物理《磁场》重难知识点解析及综合能力精析

高二物理《磁场》重难知识点解析及综合能力精析

高二《磁场》重难点精析及综合能力强化训练高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。

I. 重难知识点精析一、知识点回顾1、磁场(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。

(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。

2、磁感应强度ILF B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。

3、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线4、安培力——磁场对电流的作用力(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。

B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥)(2)安培力方向的判定:用左手定则。

通电环行导线周围磁场地球磁场 通电直导线周围磁场另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。

5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中的重要概念,它是指能够在空间中产生磁力影响的区域。

磁场的产生与磁性物质有关,可以通过磁石或电流来形成。

以下是磁场的一些主要知识点的总结。

1. 磁场的性质:磁场是无形的,无可触摸的。

它具有方向性,可由箭头表示,指向磁力线所指的方向。

磁场能够相互作用,产生吸引或排斥的力。

2. 磁性物质的特性:铁、镍和钴等金属是典型的磁性物质,在磁场中能够被吸引。

一般情况下,非磁性物质不会受到磁场的影响。

3. 磁石的特性:磁石是一种能够持久产生磁场的物质。

磁石有两个极,一个是北极,指向地理南极,另一个是南极,指向地理北极。

同极相斥,异极相吸。

4. 磁力线:磁力线是表示磁场分布的曲线。

磁力线由北极指向南极,且不相交。

磁力线越密集,表示磁场越强。

5. 磁场的单位:国际单位制中,磁场的单位是特斯拉(Tesla),表示为T。

常用的单位还有高斯(Gauss),1特斯拉等于10^4高斯。

6. 安培环路定理:安培环路定理描述了磁场的环路规律。

根据该定理,一个封闭环路中,通过这个环路的磁感应强度总和等于该环路所包围的电流之代数和乘以真空中的磁导率。

7. 磁感应强度和磁场强度:磁感应强度B表示单位面积上垂直于磁力线的磁力线数目,单位是特斯拉。

磁场强度H是指单位长度上的磁场强度,单位是安培/米。

8. 基尔霍夫电流定律:基尔霍夫电流定律描述了电流在磁场中的周线规律,根据该定律,若电流通过一个闭合环路,则其周线上的磁力和零。

9. 磁感应强度与电流的关系:根据比奥-萨伐尔定律,通过一根长直导线的电流会在其周围产生磁感应强度,其大小与电流和距离的乘积成正比。

10. 麦克斯韦方程组:麦克斯韦方程组是电磁场理论的基础,描述了电场和磁场的相互关系。

其中包括四个方程式,分别是高斯定律、高斯磁定律、法拉第电磁感应定律以及安培环路定理。

以上是关于磁场的一些主要知识点的总结。

磁场是物理学中一门重要的学科,应用广泛,涵盖了很多领域。

高中物理选修31——磁场知识点总结

高中物理选修31——磁场知识点总结

高中物理选修3-1——磁场知识点总结高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。

(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。

(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。

磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。

2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。

在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。

(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。

b.任意两条磁感线不能相交。

3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。

电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。

用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。

如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

变化磁场知识点总结

变化磁场知识点总结

变化磁场知识点总结变化磁场是物理学中重要的概念之一,它描述了磁场随时间变化的性质和规律。

在这篇文章中,我们将对变化磁场的相关知识点进行总结。

1. 磁场和磁感应强度磁场是由电流产生的,它由磁感应强度B来描述。

磁感应强度是一个矢量,它的方向是磁力线的方向,其大小与磁场的强度成正比。

当磁场在空间中分布不均匀时,磁感应强度也会随之变化。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述磁场随时间变化时,会引起感应电动势的规律。

它可以用公式表示为ε=-dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间。

这个定律对于理解变化磁场的影响非常重要。

3. 感应电动势的方向根据法拉第电磁感应定律,感应电动势的方向与磁场的变化方向和速率有关。

当磁场增加时,感应电动势的方向与磁场增加的方向相反;当磁场减少时,感应电动势的方向与磁场减少的方向相同。

4. 涡旋电场当磁场随时间变化时,会在空间中产生涡旋电场。

这种电场是由感应电动势产生的,它沿着磁场的曲线方向存在,是变化磁场的一个重要特征。

5. 涡旋电场的应用涡旋电场在工程和科学研究中有着重要的应用。

例如,涡旋电场可以用来实现非接触式的电能传输,还可以用来检测和测量磁场的变化。

6. 感应电动势的应用感应电动势的应用也非常广泛。

它可以用来实现发电机的工作原理,还可以应用在变压器、感应加热等领域。

7. 法拉第定律法拉第定律是描述磁场和电场之间相互作用的规律。

根据法拉第定律,磁场的变化会引起感应电动势的产生,从而产生感应电流。

这个定律对于理解变化磁场的影响和应用至关重要。

8. 磁场的能量当磁场随时间变化时,会产生磁场能量的变化。

这种能量的变化可以用磁场的自能表达,它是变化磁场的一个重要特征。

9. 磁场的辐射磁场的随时间变化还会产生磁场的辐射。

这种辐射是一种电磁波,它具有能量传播和传感的特性,对于通信、雷达等领域有着重要的应用。

10. 磁场的诱导磁场的变化还可以通过诱导的方式传递到其他物体上,从而引起感应电动势和感应电流的产生。

高中物理磁场知识点归纳

高中物理磁场知识点归纳

高中物理磁场知识点归纳高中物理磁场知识点1.磁场1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相互作用.4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的指向就是那一点的磁场方向.2.磁感线1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.3几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/A•m.2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:1地磁场的N极在地球南极附近,S极在地球北极附近.2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力1安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.2安培力的方向由左手定则判定.3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.点击查看:高中物理知识点总结6.洛伦兹力1洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.4在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计,1若带电粒子的速度方向与磁场方向平行相同或相反,带电粒子以入射速度v做匀速直线运动.2若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动1带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.2带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比,作用力的方向在它们的连线上。

表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$ 是静电力常量,约为$90×10^9 N·m^2/C^2$ 。

要理解库仑定律,需要注意以下几点:(1)库仑定律适用于真空中的点电荷。

如果电荷分布在一个带电体上,当带电体的大小远小于它们之间的距离时,可以将带电体视为点电荷。

(2)库仑力是一种“超距作用”,即电荷之间不需要接触就能产生相互作用力。

2、电场强度电场强度是描述电场强弱和方向的物理量。

放入电场中某点的电荷所受的电场力$F$ 跟它的电荷量$q$ 的比值,叫做该点的电场强度,简称场强。

表达式为:$E =\frac{F}{q}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

常见的电场强度的计算方法:(1)真空中点电荷产生的电场:$E = k\frac{Q}{r^2}$,其中$Q$ 是产生电场的点电荷的电荷量,$r$ 是该点到点电荷的距离。

(2)匀强电场:电场强度处处相等的电场叫匀强电场。

其电场强度大小为:$E =\frac{U}{d}$,其中$U$ 是两点间的电势差,$d$ 是沿电场线方向两点间的距离。

3、电场线电场线是为了形象地描述电场而引入的假想曲线。

电场线上每一点的切线方向都跟该点的场强方向一致,电场线的疏密表示电场的强弱。

常见的电场线形状:(1)正点电荷的电场线:从正电荷出发,终止于无穷远。

(2)负点电荷的电场线:从无穷远出发,终止于负电荷。

(3)等量同种电荷的电场线:分布不均匀,越靠近电荷,电场线越密集。

(4)等量异种电荷的电场线:从正电荷出发,终止于负电荷,两电荷连线的中垂线上电场强度的方向始终与中垂线垂直。

4、电势能与电势(1)电势能:电荷在电场中具有的势能叫电势能。

高中物理磁现象和磁场知识点总结

高中物理磁现象和磁场知识点总结

高中物理磁现象和磁场知识点总结磁现象和磁场一直是物理学中的重要内容,也是高中物理课程中的一部分。

了解和掌握磁现象和磁场的知识对于理解电磁现象和电磁场具有重要意义。

本文将对高中物理中的磁现象和磁场知识点进行总结。

1. 磁现象的基本特征磁现象主要包括磁性物体吸引或排斥的现象。

磁性物体可以分为两类:铁磁体和永磁体。

铁磁体是指受到外界磁场作用后,具有自己的磁性,可以被较强的外磁场吸引住;永磁体是指在没有外部磁场作用下,具有自己的磁性,可以吸引铁磁体。

2. 磁力和磁场磁力是指磁体之间相互作用的力。

磁场是指空间中具有磁性物体周围某一点的磁性特征,是用来描述磁力作用的场。

3. 磁场的表示方法磁场可以通过磁力线(磁感线)来表示。

磁力线是瞬时磁力的方向,用连续的曲线表示磁力的方向和强度。

4. 磁感强度磁感强度是描述磁场强弱的物理量,用字母B表示。

磁感强度的单位是特斯拉(T)。

5. 磁力的计算当两个磁性物体相互作用时,会产生磁力。

根据库仑定律的类比,可以得出两个磁体之间的磁力公式:F = k * (m1 * m2) / r^2,其中F表示磁力,k表示比例常数,m1和m2表示两个磁体的磁矩,r表示两个磁体之间的距离。

6. 磁场对电荷的作用磁场不仅对磁性物体有作用,还对带电粒子(电荷)有作用。

当带电粒子在磁场中运动时,会受到一个称为洛伦兹力的力,该力的大小和方向由电荷、速度和磁场的特性决定。

7. 安培力和安培定则安培力是指导线中的电流在磁场中受到的力。

根据安培定则,安培力的大小和方向等于导线中的电流、导线长度、磁场的磁感强度以及导线与磁场夹角的综合影响。

8. 电磁铁电磁铁是一种利用电流在导线中产生的磁场而形成的人工磁体。

电磁铁广泛应用于各个领域,如电力、通信和科学实验等。

9. 磁场对运动带电粒子的影响磁场对运动带电粒子的影响可以通过洛伦兹力来描述。

洛伦兹力的方向垂直于带电粒子的速度和磁场的方向,大小由电荷的量、速度和磁场的特征共同决定。

高中磁场知识点总结

高中磁场知识点总结

高中磁场知识点总结磁场是物理学中一个重要的概念,它描述了磁体或电流周围空间中存在的一种特殊物质。

在高中物理课程中,对磁场的理解和掌握是基础且关键的。

以下是对高中磁场知识点的总结:磁场的基本概念- 磁场是一种无形的力场,存在于磁体或电流周围。

- 磁场的基本单位是特斯拉(T)。

磁力的性质- 磁力是作用在磁体上的力,遵循库仑定律。

- 磁力的方向总是垂直于磁场线。

磁场的来源- 永久磁体:如磁铁,具有固定的磁极。

- 电流产生的磁场:奥斯特实验表明,电流周围存在磁场。

磁场的表示- 磁场线:用于形象表示磁场的分布和方向,磁场线从磁北极出发,指向磁南极。

- 磁感应强度(B):描述磁场的强度,单位是特斯拉(T)。

磁场的测量- 磁力计:用于测量磁场强度的仪器。

磁场的效应- 磁化:非磁性物质在磁场中获得磁性。

- 磁悬浮:物体在磁场中悬浮,不受重力影响。

- 磁共振成像(MRI):利用磁场和射频脉冲对人体进行成像。

磁场与电流的关系- 安培环路定理:描述电流与磁场的关系。

- 右手定则:用于确定电流产生的磁场方向。

洛伦兹力- 洛伦兹力是带电粒子在磁场中受到的力,公式为 \( F = q(v\times B) \),其中 \( F \) 是力,\( q \) 是电荷量,\( v \) 是速度,\( B \) 是磁感应强度。

磁场对电流的作用- 电动机:利用磁场对电流的作用产生机械运动。

- 发电机:利用磁场变化产生电流。

磁场的应用- 指南针:利用地球磁场指示方向。

- 硬盘存储:利用磁场存储信息。

磁场的屏蔽与存储- 磁屏蔽:使用特殊材料减少磁场的影响。

- 磁存储:利用磁场的稳定性存储信息。

磁场的计算- 磁场的计算通常涉及到复杂的数学公式和物理原理,如毕奥-萨伐尔定律等。

通过上述总结,我们可以看到磁场在物理学中的重要性和广泛应用。

掌握磁场的基本概念、性质、效应以及与电流的关系,对于深入理解物理现象和解决相关问题至关重要。

希望这份总结能够帮助同学们更好地复习和掌握磁场的相关知识。

高中物理磁场知识点总结

高中物理磁场知识点总结

高中物理磁场知识点总结一、磁场的概念1. 磁场定义:磁场是磁体周围存在的特殊形态的物质,它是一种力场。

2. 磁场的描述:磁场的强弱和方向可以通过磁力线来描述。

3. 磁场的来源:永久磁铁、电流、运动电荷等。

二、磁场的基本性质1. 磁场对磁体的作用:磁体在磁场中会受到磁力的作用。

2. 磁场对电流的作用:电流在磁场中会受到安培力的作用。

3. 磁通量:通过某一面积的磁力线的总数,表示磁场的强度和面积的乘积。

三、磁场的测量1. 磁感应强度(B):描述磁场强度的物理量,单位是特斯拉(T)。

2. 磁场强度(H):与磁感应强度有关,但受到介质磁化率的影响。

3. 测量工具:磁力计、霍尔效应传感器等。

四、磁场的计算1. 毕奥-萨伐尔定律:计算由电流产生的磁场的基本定律。

2. 磁场的叠加原理:多个磁场源产生的磁场可以通过矢量叠加得到。

3. 磁矩:描述磁体磁性质的物理量,与磁场的关系。

五、磁场的应用1. 电动机和发电机:利用磁场与电流的相互作用原理。

2. 磁悬浮列车:利用磁场的排斥和吸引力实现悬浮。

3. 磁共振成像(MRI):利用磁场和射频脉冲产生身体内部的图像。

六、磁场的分类1. 恒定磁场:磁场随时间不变。

2. 交变磁场:磁场随时间周期性变化。

3. 非均匀磁场:磁场强度在空间中不均匀分布。

七、磁场的安全与防护1. 磁场对人体的影响:强磁场可能对人体产生影响,需采取防护措施。

2. 磁场对电子设备的影响:强磁场可能干扰电子设备的正常工作。

3. 磁场屏蔽:使用磁性材料来减少外部磁场的影响。

八、磁场的前沿研究1. 超导磁体:利用超导材料产生强磁场。

2. 磁制冷:利用磁性材料的磁热效应进行制冷。

3. 量子磁学:研究量子层面上的磁性现象。

请将以上内容复制到Word文档中,并根据需要调整格式和样式。

您可以添加页眉、页脚、目录和其他文档元素以提高专业性和可读性。

物理磁场的知识点总结

物理磁场的知识点总结

物理磁场的知识点总结物理磁场的知识一、磁场磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。

磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的。

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

二、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。

安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点:(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S 极到N极。

(2)磁感线是闭合曲线。

(3)磁感线不相交。

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。

3.几种典型磁场的磁感线:(1)条形磁铁。

(2)通电直导线。

①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中磁场知识点及规律总结
一、磁现象和磁场
1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.
2、磁现象的电本质:运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用, 所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.
3.磁场的方向:规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

二、磁感应强度
1、 表示磁场强弱的物理量.是矢量.
2、 大小:B=F/Il (电流方向与磁感线垂直时的公式).
3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N
极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.
4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T .
5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.
6、 匀强磁场的磁感应强度处处相等.
7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强
度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.
三、几种常见的磁场
(一)、 磁感线
⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极
极磁体的外部N S S N
⒊磁感线的疏密表示磁场的强弱,磁感线越密的地方磁场越强。

⒋磁感线不相交也不想切。

5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.
6.磁感线上某点的切线方向表示该点的磁场方向。

7.(环形电流磁场)安培定则:
a.用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的的就是磁感线环绕的向;
b.其磁感线是内密外疏的同心圆。

8.(通电螺线管)安培定则:
a.让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;
b.通电螺线管的磁场相当于条形磁铁的磁场
9. 熟记常用的几种磁场的磁感线:
(二)、匀强磁场
1、磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。

2、磁感应强度的大小和方向处处相同的区域,叫匀强磁场。

其磁感线平行且等距。

例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。

3、如用B=F/(I·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位
置的磁场为匀强。

(三)、磁通量(Φ)
1.磁通量Φ:穿过某一面积磁力线条数,是标量.
2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.
3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.
四、磁场对通电导线的作用力
(一)、安培力:
1、通电导线在磁场中受到的作用力叫做安培力.
说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏
观表现即为安培力.
2、安培力的计算公式:F=BILsinθ(θ是I与B的夹角);通电导线与磁场方向垂直时,
即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有
最小值,F=0N;00<B<900时,安培力F介于0和最大值之间.
3、安培力公式的适用条件:
①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对
电流元),但对某些特殊情况仍适用.
如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=
I1I2 BI2L,方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.
②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作
用力.两根通电导线间的磁场力也遵循牛顿第三定律.
(二)、左手定则
1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同
一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和
导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.
2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B
与I的方向不一定垂直.
3.安培力F、磁感应强度B、电流1三者的关系
①已知I,B的方向,可惟一确定F的方向;
②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;
③已知F,1的方向时,磁感应强度B的方向不能惟一确定.
4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空
间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.
(三)、安培力的性质和规律;
1、公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿
L 由始端流向末端.如图示,甲中:/2l l ,乙中:L/=d(直径)=2R (半圆环且半径为R)
2、 安培力的作用点为磁场中通电导体的几何中心;
(四)、分析在安培力作用下通电导体运动情况的一般步骤
1、 画出通电导线所在处的磁感线方向及分布情况
2、 用左手定则确定各段通电导线所受安培力
3、 据初速方向结合牛顿定律确定导体运动情况
五、磁场对运动电荷的作用力
(一)、洛仑兹力
磁场对运动电荷的作用力
1、 洛伦兹力的公式: f=qvB sin θ,θ是V 、B 之间的夹角.
2、 当电荷速度方向与磁场方向垂直时,洛伦兹力的大小F=qvB
3、 当v=0时,F=0,即磁场对静止的电荷无作用力,磁场只对运动电荷有作用力,这与电场对其中的静止电荷或运动电荷总有电场力的作用是不同的。

4、 当电荷运动方向与磁场方向相同或相反,即v 与B 平行时,F=0。

5、 当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小F=qvBsin θ
6、 只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.
(二)、洛伦兹力的方向
1.洛伦兹力F 的方向既垂直于磁场B 的方向,又垂直于运动电荷的速度v 的方向,即F 总是垂直于B 和v 所在的平面.
2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.
(三)、洛伦兹力与安培力的关系
1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.
2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.
六、带电粒子在匀强磁场中的运动
1、 不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速
圆周运动;三是螺旋运动.
2、 不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB ;其运动周期T=2πm/qB (与速度大小无关).
3、 不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:
带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);
垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).
4、 带电粒子在匀强磁场中的运动
①当υ∥B 时,所受洛仑兹力为零,做匀速直线运动;
②当υ⊥B 时,所受洛仑力充分向心力,做半径和周期分别为 R=qB m υ,T=qB
m π2 的 匀速圆周运动;
③当υ与B 夹一般角度时,由于可以将υ正交分解为υ∥和υ⊥(分别平行于和垂直于)B ,此时,电荷的合运动在中学阶段一般不要求定量掌握。

(二)、带电粒子在磁场中运动的圆心、半径及时间的确定
(1)用几何知识确定圆心并求半径.
因为F 方向指向圆心,根据F 一定垂直v ,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F 或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.
(2)确定轨迹所对应的圆心角,求运动时间.
先利用圆心角与弦切角的关系,或者是四边形内角和等于3600(或2π)计算出圆心角θ的大小,再由公式t=θT/3600(或θT/2π)可求出运动时间.
(3)注意圆周运动中有关对称的规律.
如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.。

相关文档
最新文档