高考数学试题北京卷(文科)
2012年高考真题——文科数学(北京卷)解析版(2)
2012年普通高等学校招生全国统一考试数学(文)(北京卷)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A .(-∞,-1) B .(-1,-23) C .(-23,3) D . (3,+∞)【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D . 【答案】D2.在复平面内,复数103i i+对应的点的坐标为A . (1 ,3)B .(3,1)C .(-1,3)D .(3 ,-1)【解析】本题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
i i ii i i i i i ii 3110301091030)3)(3()3(1031022+=+=--=-+-=+,实部为1,虚部为3,对应复平面上的点为(1,3),故选A . 【答案】A3.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π(D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
【答案】D4.执行如图所示的程序框图,输出S值为(A )2 (B )4 (C )8 (D )16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
【答案】C5.函数x x x f )21()(21-=的零点个数为(A )0 (B )1(C )2 (D )3【解析】x x x f )21()(21-=的零点,即令0)(=x f ,根据此题可得xx )21(21=,在平面直角坐标系中分别画出幂函数21x 和指数函数x)21(的图象,可得交点只有一个,所以零点只有一个,故选B 。
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(5分)(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.(5分)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.(5分)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A .B.2+C .﹣2D.2﹣6.(5分)记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(5分)执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A .B .C .D .9.(5分)设O为坐标原点,直线x=a与双曲线C :﹣=1(a>0,b>0)的两条渐近线分别交于D,E 两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.(5分)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.(5分)已知△ABC 是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A .B .C.1D .12.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。
2022年全国统一高考数学试卷(文科)(全国一卷)
全国统一高考数学试卷(文科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个2.(5分)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|4.(5分)椭圆=1的离心率为()A.B.C.D.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.50406.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.4810.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k ﹣垂直,则k=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.。
2023年高考全国乙卷文科数学试题(含答案详解)
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
北京卷高考文科数学真题试卷及答案解析
2016年高考真题文科数学(北京卷)文科数学考试时间:____分钟题型单选题填空题简答题总分得分单选题(本大题共8小题,每小题____分,共____分。
)1.已知集合,则A.B.C.D.2.复数A. iB. 1+iC.D.3.执行如图所示的程序框图,输出的s值为A. 8B. 9C. 27D. 364.下列函数中,在区间上为减函数的是A.B.C.D.5.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为A. 1B. 2C.D. 26.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A.B.C.D.7.已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为A. −1B. 3C. 7D. 88.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛填空题(本大题共6小题,每小题____分,共____分。
)9.已知向量,则a与b夹角的大小为_________.10.函数的最大值为_________.11.某四棱柱的三视图如图所示,则该四棱柱的体积为___________.12.已知双曲线(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=_______;b=_____________.13.在△ABC中,,a=c,则=_________.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.简答题(综合题)(本大题共6小题,每小题____分,共____分。
2020年北京市高考文科数学试卷(含解析版)
绝密★本科目考试启用前2020 年普通高等学校招生全国统一考试(北京卷)数学本试卷共5 页,150 分,考试时长120 分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40 分)一、选择题10 小题,每小题4 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {-1, 0,1, 2} ,B = {x | 0 <x< 3} ,则A B =().A.{-1, 0,1}B.{0,1}C. {-1,1, 2}D. {1, 2} 【答案】D【解析】【分析】根据交集定义直接得结果.【详解】A I B = {-1, 0,1, 2}I(0, 3) = {1, 2},故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.2.在复平面内,复数z 对应的点的坐标是(1, 2) ,则i ⋅z =().D. -2 -iA.1+ 2iB.-2 +iC.1- 2i【答案】B【解析】【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【详解】由题意得z =1+ 2i ,∴iz =i - 2 .故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.33 35-rrrr +15 53.在( x - 2)5 的展开式中, x 2 的系数为( ).A. -5 【答案】CB. 5C. -10D. 10【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定 x 2 的系数即可. 【详解】( - 2) 展开式的通项公式为: T= C r( x ) (-2) = (-2)C rx2,令5 - r = 2 可得: r = 1 ,则 x 2 的系数为: (-2)1C 1 = (-2)⨯ 5 = -10 .25故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n ,r 均为非负整数,且 n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. 6 +B. 6 + 2C. 12 +D.12 + 2【答案】D5-r x 35【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2 的等边三角形,侧面为三个边长为2 的正方形,则其表面积为:S = 3⨯(2⨯ 2)+ 2⨯⎛1⨯ 2⨯ 2⨯sin 60︒⎫=12 + 2 3 .2 ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1 的圆经过点(3, 4) ,则其圆心到原点的距离的最小值为().A. 4B. 5C. 6D. 7【答案】A【解析】【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1 可得答案.【详解】设圆心C (x, y ),则化简得(x - 3)2 +(y - 4)2 =1,=1,所以圆心C 的轨迹是以M (3, 4) 为圆心,1 为半径的圆,(x -3)2 +(y - 4)2所以| OC | +1 ≥| OM | == 5 ,所以| OC |≥ 5 -1 = 4 ,32+ 42当且仅当C 在线段OM 上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6.已知函数f (x) = 2x-x -1 ,则不等式f (x) > 0 的解集是().(1, +∞) A.(-1,1) B. (-∞, -1)C. (0,1)D. (-∞, 0) ⋃(1, +∞)【答案】D【解析】【分析】作出函数y = 2x和y =x +1 的图象,观察图象可得结果.【详解】因为f (x)= 2x -x -1,所以f (x)> 0 等价于2x>x +1 ,在同一直角坐标系中作出y = 2x和y =x + 1 的图象如图:两函数图象的交点坐标为(0,1),(1, 2) ,不等式2x>x +1 的解为x < 0 或x > 1 .所以不等式f (x)> 0 的解集为:(-∞, 0)⋃(1, +∞).故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线().A. 经过点OC. 平行于直线OP B. 经过点PD. 垂直于直线OP【答案】B【解析】【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到F ,Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ = PF ,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列{a n}中,a1=-9 ,a3=-1 .记T n=a1a2…a n(n =1, 2,…) ,则数列{T n}().A.有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差d =a5-a1 =-1+ 9= 2 ,5 -1 5 -1则其通项公式为:a n=a1+(n -1)d=-9 +(n -1)⨯2 = 2n -11 ,注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1 <a7 <,且由T5< 0 可知T i< 0(i ≥ 6, i ∈N ),Ti 由Ti-1 =ai>1(i ≥ 7, i ∈N )可知数列{T n}不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 =1,故数列{T n}中的正项只有有限项:T2 = 63 ,T4 = 63⨯15 = 945 .故数列{T n}中存在最大项,且最大项为T4.故选:B.【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知α, β∈R ,则“存在k ∈Z 使得α=kπ+ (-1)kβ”是“sin α= sin β”的().A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得α=kπ+ (-1)kβ时,若k 为偶数,则sin α= sin (kπ+β)= sin β;若k 为奇数,则sinα= sin (kπ-β)= sin ⎡⎣(k -1)π+π-β⎤⎦= sin (π-β)= sin β;(2)当sin α= sin β时,α=β+ 2mπ或α+β=π+ 2mπ,m ∈Z ,即α=kπ+(-1)k β(k = 2m)或α=kπ+(-1)k β(k = 2m +1),亦即存在k ∈Z 使得α=kπ+ (-1)kβ.所以,“存在k ∈Z 使得α=kπ+ (-1)kβ”是“ sin α= sin β”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10.2020 年3 月14 日是全球首个国际圆周率日(πD ay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().⎛30︒ 30︒⎫ ⎛30︒ 30︒⎫A.3n sinn +tan ⎪n B. 6n sin n+tan ⎪n⎝⎭⎝⎭⎛60︒ 60︒⎫ ⎛60︒ 60︒⎫C.3n sinn +tan ⎪n D. 6n sin n+tan⎪n⎝⎭⎝⎭【答案】A【解析】【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似⎩y 值可得出结果.【详解】单位圆内接正 6n 边形的每条边所对应的圆周角为360︒ = 60︒, 每条边长为 n ⨯ 6 n2 s in 30︒ ,n所以,单位圆的内接正6n 边形的周长为12n sin 30︒ ,n单位圆的外切正6n 边形的每条边长为2 tan30︒ ,其周长为12n tan30︒ ,nn12n sin 30︒ +12n tan 30︒∴2π = n n = 6n ⎛sin 30︒ + tan 30︒ ⎫ , 2 n n ⎪⎝ ⎭则π = 3n ⎛sin30︒+ tan 30︒ ⎫ . n n ⎪ ⎝ ⎭故选:A.【点睛】本题考查圆周率π 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共 110 分)二、填空题共 5 小题,每小题 5 分,共 25 分.11. 函数 f (x ) =1x +1+ ln x 的定义域是 .【答案】(0, +∞)【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.⎧ 【详解】由题意得 x > 0 ,∴ x > 0⎨x +1 ≠ 0 故答案为: (0, +∞)【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线C :x 2- = 1,则 C 的右焦点的坐标为 ;C 的焦点到其渐近线的距6 3离是 .26 3 3 3 PD |= 【答案】(1). (3, 0)(2).【解析】【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a = ,b = ,则c = 为(3, 0) , = 3 ,则双曲线C 的右焦点坐标双曲线C 的渐近线方程为 y =±2 x ,即 x ± 2所以,双曲线C 的焦点到其渐近线的距离为2 y = 0 ,= .故答案为: (3, 0) ; .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形 ABCD 的边长为2,点 P 满足 AP = 1( AB + AC ) ,则| ;2PB ⋅ PD =.【答案】(1).(2). -1【解析】【分析】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立平面直角坐标系,求得点 P 的坐标,利用平面向量数量积的坐标运算可求得 以及 PB ⋅ PD 的值.【详解】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立如下图所示的平面直角坐标系,3a 2 +b 2 3 12+ 25PD5cos 2 ϕ + (sin ϕ +1)2( )则点 A (0, 0) 、 B (2, 0) 、C (2, 2) 、 D (0, 2) ,AP = 1 AB + AC = 1 (2, 0) + 1(2, 2) = (2,1) ,2 2 2则点 P (2,1) ,∴ PD = (-2,1) , PB = (0, -1) ,因此,故答案为:; -1.= ,PB ⋅ PD = 0 ⨯(-2) +1⨯ (-1) = -1.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点 P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数 f (x ) = sin(x + ϕ) + cos x 的最大值为 2,则常数ϕ 的一个取值为.【答案】 π (2k π + π, k ∈ Z 均可) 22【解析】【分析】根据两角和的正弦公式以及辅助角公式即可求得 f ( x ) =( x +θ ) ,可得 = 2 ,即可解出.【详解】因为 f ( x ) = cos ϕ sin x + (sin ϕ +1)cos x =sin ( x +θ ) ,所以 = 2 ,解得sin ϕ = 1 ,故可取ϕ = π . 2故答案为: π ( 2k π + π, k ∈ Z 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业PD =(-2)2 +125 cos 2 ϕ + (sin ϕ +1)2cos 2 ϕ + (sin ϕ +1)2cos 2ϕ + (sin ϕ +1)2要限期整改、设企业的污水摔放量W 与时间t 的关系为W =f (t) ,用-f (b) -f (a)的大小评b -a价在[a, b] 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1 ,t2 ]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0, t1],[t1, t2],[t2, t3]这三段时间中,在[0, t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【分析】根据定义逐一判断,即可得到结果【详解】-f (b) -f (a)表示区间端点连线斜率的负数,b -a在[t1 ,t2 ]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0, t1 ],[t1, t2 ],[t2 , t3 ]这三段时间中,甲企业在[t1 ,t2 ]这段时间内,甲的斜率最小,其相反数最大,即在[t1 ,t2 ]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6 小题,共85 分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体ABCD -A1B1C1D1中,E 为BB1的中点.(I)求证:BC1 // 平面AD1E ;(II)求直线AA1与平面AD1E 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)2 .3【解析】【分析】(I)证明出四边形ABC1D1为平行四边形,可得出BC1 //AD1,然后利用线面平行的判定定理可证得结论;(I I)以点A 为坐标原点,AD 、AB 、AA1 所在直线分别为x 、y 、z 轴建立空间直角坐标系A -xyz ,利用空间向量法可计算出直线AA1与平面AD1E 所成角的正弦值.【详解】(Ⅰ)如下图所示:⎩⎩在正方体 ABCD - A 1B 1C 1D 1 中, AB //A 1B 1 且 AB = A 1B 1 , A 1B 1 //C 1D 1 且 A 1B 1 = C 1D 1 ,∴ AB //C 1D 1 且 AB = C 1D 1 ,所以,四边形 ABC 1D 1 为平行四边形,则 BC 1 //AD 1 ,BC 1 ⊄ 平面 AD 1E , AD 1 ⊂ 平面 AD 1E ,∴ BC 1 // 平面 AD 1E ;(Ⅱ)以点 A 为坐标原点, AD 、 AB 、 AA 1 所在直线分别为 x 、 y 、 z 轴建立如下图所示的空间直角坐标系 A - xyz ,设正方体 ABCD - A 1B 1C 1D 1 的棱长为2 ,则 AD 1 = (2, 0, 2) , AE = (0, 2,1) ,A (0, 0, 0) 、A 1 (0, 0, 2) 、D 1 (2, 0, 2) 、E (0, 2,1),设平面 AD E 的法向量为n = (x , y , z ) ,由⎧n ⋅ AD 1 = 0 ,得⎧2x + 2z = 0 ,1⎨n ⋅ AE = 0 ⎨2 y + z = 0令 z = -2 ,则 x = 2 , y = 1,则n = (2,1, -2).cos < =-2 . 3因此,直线AA 与平面AD E 所成角的正弦值为2 .113【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17.在ABC 中,a +b = 11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:c = 7, cos A =-1 ;7条件②:cos A =1, cos B =9.816注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =3, S = 6 3 ;2选择条件②(Ⅰ)6(Ⅱ)sin C =7, S =157.4 4【解析】【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin A, sin B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ) c = 7, cos A =-17a +b =11∴a= 8 +c2- 2bc cos A∴a2= (11-a)2+ 72- 2(11-a) ⋅7 ⋅(-1)7(Ⅱ)cos A =-1,A∈(0,π)∴sin A = =4 3 7 7n, AA >=1n ⋅AA1n ⋅AA1=-43⨯ 2a2=b21- cos2A1- cos 2 B a 由正弦定理得: sin A = c ∴8 sin C 4 3 7= 7 sin C ∴sin C = 3 2S = 1 ba sin C = 1 (11- 8) ⨯8⨯ 3 = 6 2 2 2 选择条件②(Ⅰ) cos A = 1 , cos B = 9,A , B ∈(0,π )∴sin A 8 16 = 3 7, s in B == 5 7 8 16a =b ∴a = 11- a ∴ a = 6 由正弦定理得: sin A sin B 3 7 5 78 16(II ) sin C = sin( A + B ) = sin A cos B + sin B cos A =3 7 ⨯ 9 + 5 7 ⨯ 1 =7S = 1 ba sin C = 1(11- 6) ⨯ 6⨯7 = 15 78 16 16 8 42 2 4 4【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I ) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II ) 从该校全体男生中随机抽取 2 人,全体女生中随机抽取 1 人,估计这 3 人中恰有 2 人支持方案一的概率;31- cos 2 A 男生女生支持不支持支持不支持 方案一 200 人 400 人 300 人 100 人 方案二 350 人250 人150 人250 人(III)将该校学生支持方案的概率估计值记为p0,假设该校年级有500 名男生和300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)1【答案】(Ⅰ)该校男生支持方案一的概率为33 ,该校女生支持方案一的概率为;4(Ⅱ)13,(Ⅲ)p <p 3610【解析】【分析】(I)根据频率估计概率,即得结果;(II)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;(III)先求p0,再根据频率估计概率p1,即得大小.2001【详解】(Ⅰ)该校男生支持方案一的概率为=,200+40033003该校女生支持方案一的概率为=;300+1004(Ⅱ)3 人中恰有2 人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3 人中恰有2 人支持方案一概率为:(1)2 (1-3) +C1(1)(1-1)3=13;(III)p1 <p34233436【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.19.已知函数f (x) = 12 -x2.(I)求曲线y =f (x) 的斜率等于-2 的切线方程;(II)设曲线y =f (x) 在点(t, f (t)) 处的切线与坐标轴围成的三角形的面积为S (t) ,求S (t)的最小值.【答案】(Ⅰ)2x +y -13 = 0 ,(Ⅱ)32 .【解析】【分析】12)⋅ ,( ) (I ) 根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(II ) 根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为 f (x ) = 12 - x 2 ,所以 f '( x ) = -2x , 设切点为( x 0 ,12 - x 0 ) ,则-2x 0 = -2 ,即 x 0 = 1 ,所以切点为(1,11) ,由点斜式可得切线方程 : y -11 = -2 ( x -1) ,即2x + y - 13 = 0 . (Ⅱ)显然t ≠ 0 ,因为 y = f (x ) 在点(t ,12 - t 2 ) 处的切线方程为: y - (12 - t 2 )= -2t ( x - t ) ,令 x = 0 ,得 y = t 2 +12 ,令 y = 0 t 2 +12 ,得x = ,2t所以S (t ) = 1⨯(t 2 + t 2 +12 22 | t |不妨设t > 0 (t < 0 时,结果一样) ,t 4 + 24t 2 + 1441 则 S t == (t 3+ 24t + 144) , 4t4 t所以 S '(t ) = 1(3t 2 + 24 - 144 3(t 4 + 8t 2 - 48)) = 4t 2 4t 23(t 2 - 4)(t 2 + 12)3(t - 2)(t + 2)(t 2 + 12)==,4t 24t 2由 S '(t ) > 0 ,得t > 2 ,由 S '(t ) < 0 ,得0 < t < 2 ,所以 S (t ) 在(0, 2) 上递减,在(2, +∞) 上递增, 所以t = 2 时, S (t ) 取得极小值, 也是最小值为 S (2) =16 ⨯16 = 32 .8【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆C :x 2+y 2= 过点 A (-2, -1) ,且a = 2b .a 2b21y + ⎨ 2 y y2 (I ) 求椭圆 C 的方程:(II ) 过点 B (-4, 0) 的直线 l 交椭圆 C 于点 M , N ,直线 MA , NA 分别交直线 x = -4 于点P , Q .求| PB |的值.| BQ |【答案】(Ⅰ) x 2+ = 1;(Ⅱ)1.82【解析】【分析】(Ⅰ)由题意得到关于 a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线 MA ,NA 的方程确定点 P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得 y P + y Q = 0 ,从而可得两线段长度的比值.【详解】(1)设椭圆方程为: x 2 y = 1(a > b > 0),由题意可得:⎧ 4 + 1 = 1a b⎧a 2 = 8 ⎪ a2⎪⎩b 2 a = 2b ,解得: ⎨ , ⎩b = 2故椭圆方程为: x 2+ = 1.82(2)设 M (x 1, y 1 ) , N ( x 2 , y 2 ) ,直线 MN 的方程为: y = k ( x + 4) ,与椭圆方程 x 2 + = 1联立可得: x 2 + 4k 2 ( x + 4)2 = 8 ,8 2即:(4k 2 +1) x 2 + 32k 2 x + (64k 2 - 8) = 0 ,-32k 2 则: x 1 + x 2 =4k 2+1, x 1x 2 =64k 2 - 8 .4k 2+1直线 MA 的方程为: y +1 =y 1 +1( x + 2) ,x 1 + 2令 x = -4 可得: y = -2⨯ y 1 +1 -1 = -2⨯ k ( x 1 + 4) +1 - x 1 + 2 = -(2k +1)( x 1 + 4) , P x + 2 x + 2 x + 2 x + 21 1 1 12 2 22 2= ⨯= ,a n n a同理可得: y = -(2k +1)( x 2 + 4) . x 2 + 2很明显 y P y Q < 0 ,且:=,注意到:y + y = -(2k +1)⎛ x 1 + 4 + x 2 + 4 ⎫ = -(2k +1)⨯ ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) , P Qx + 2 x + 2 ⎪ ( x + 2)( x + 2) ⎝ 1 2 ⎭ 1 2而: ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) = 2 ⎡⎣x 1x 2 + 3( x 1 + x 2 ) + 8⎤⎦= ⎡ 64k 2 - 8 ⎛ -32k 2 ⎫ ⎤ 2 ⎢ 4k 2 +1+ 3⨯ 4k 2 +1 ⎪ + 8⎥⎣⎝ ⎭ ⎦ (64k 2 - 8) + 3⨯(-32k 2 ) + 8(4k 2 +1)2 0 4k 2+1故 y P + y Q = 0, y P = - y Q .从而= = 1 .【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{a n } 是无穷数列.给出两个性质:2①对于{a }中任意两项a i , a j (i > j ) ,在{a } 中都存在一项a ,使 i= a ;n n mm ja 2②对于{a n }中任意项a n (n …3) ,在{a n } 中都存在两项a k , a l (k > l ) .使得a n(I) 若a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;= k .a l(II) 若a = 2n -1(n = 1, 2, ) ,判断数列{a }是否同时满足性质①和性质②,说明理由; (III) 若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n } 为等比数列.【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】PBPQy Py Q PB PQ y Py QQa 2 a a ma 【分析】(I) 根据定义验证,即可判断;(II) 根据定义逐一验证,即可判断;a 2 (III) 解法一:首先,证明数列中的项数同号,然后证明a 3 = 2,最后,用数学归纳法证明数a 1列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得a 1, a 2 , a 3 成等比数列,之后证得a 1, a 2 , a 3, a 4 成等比数列,同理即可证得数列为等比数列,从而命题得证.a 29 【详解】(Ⅰ)Q a = 2, a = 3, 3 = ∉ Z ∴{a } 不具有性质①; 2 3 n2a 2 a 2(Ⅱ) Q ∀i , j ∈ N *, i > j , i = 2(2i - j )-1, 2i - j ∈ N * ∴ i = a∴{a }具有性质①; a j a ja 22i - j nQ ∀n ∈ N *, n ≥ 3, ∃k = n -1,l = n - 2, k = 2(2k -l )-1 = 2n -1 = a ,∴{a } 具有性质②;n nl(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然a n ≠ 0 (n ∉ N *),假设数列中存在负项,设N 0 = max {n | a n < 0} ,第一种情况:若 N 0 = 1,即a 0 < 0 < a 1 < a 2 < a 3 <,由①可知:存在m 1 ,满足a a 2 = 2 < 0 ,存在m 2 ,满足aa 2 = 3 < 0 , m 1 m 21 1a 2 a 2由 N 0 = 1可知 2= 3 ,从而a 2 = a 3 ,与数列的单调性矛盾,假设不成立. a 1 a 1a 2第二种情况:若 N ≥ 2 ,由①知存在实数m ,满足a = N 0< 0 ,由 N 的定义可知:m ≤ N ,0 012 2另一方面, a m = N 0> N 0 = aa a N 0 ,由数列 单调性可知: m > N 0 ,1N 0这与 N 0 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.aaa 1a 1 1 1a 综上可得,数列中的项数同号.a 2 其次,证明a 3 = 2:a 1利用性质②:取n = 3 ,此时a 32= k (k > l ) , a l由数列的单调性可知a k > a l > 0 ,而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1最后,用数学归纳法证明数列为等比数列:假设数列{a n }的前k (k ≥ 3) 项成等比数列,不妨设a s= a q s -1(1 ≤ s ≤ k ) ,其中a 1 > 0, q > 1,( a 1 < 0, 0 < q < 1 情况类似)由①可得:存在整数m ,满足 a a2= k = a q k > a,且a = a q k ≥ a(*)a k -1a 2 am 1 k +1由②得:存在 s > t ,满足: a = s = a ⋅ s > a ,由数列的单调性可知: t < s ≤ k +1, k +1 a s a ss -1t t22s -t - - 由 a = a q (1 ≤ s ≤ k ) 可得: a = s= a q 1 > a = a q k 1 (**)s 1 k +1 1 k 1t 由(**)和(*)式可得: a q k ≥ a q 2s -t -1 > a q k -1,结合数列的单调性有: k ≥ 2s - t -1 > k -1, 注意到 s , t , k 均为整数,故k = 2s - t -1, 代入(**)式,从而a= a q k .k +11总上可得,数列{a }的通项公式为: a = a q n -1 .nn1即数列{a n }为等比数列.【解法二】假设数列中的项数均为正数:m1 kaa 1 4 1 4 1 4 1 4 1 首先利用性质②:取n = 3 ,此时 a 3由数列的单调性可知a k > a l > 0 ,2= k (k > l ) , a l而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1即 a , a , a 成等比数列,不妨设a = a q , a = a q 2(q > 1) ,1232 13 1a 2 a 2q 4然后利用性质①:取i = 3, j = 2 ,则a = 3 = 1 = a q 3 , a 2 a 1q即数列中必然存在一项的值为a q 3 ,下面我们来证明a = a q 3,否则,由数列的单调性可知 a < a q 3 ,在性质②中,取n = 4 ,则a a 2 = k = a a k > a,从而k < 4 ,4 a k a kl l与前面类似的可知则存在{k , l } ⊆ {1, 2, 3}(k > l ) ,满足a 4a 2a 2= k ,a l若 k = 3, l = 2 ,则: a = k = a q 3,与假设矛盾;1la 2 若 k = 3, l = 1,则: a = k = a q 4 > a q 3 ,与假设矛盾; 1 1la 2若 k = 2, l = 1 ,则: a = k = a q 2= a ,与数列的单调性矛盾;1 3l即不存在满足题意的正整数 k , l ,可见a < a q 3 不成立,从而a = a q 3,同理可得:a = a q 4 , a = a q 5 , ,从而数列{a } 为等比数列,5161n同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{a n } 为等比数列.m 14a 4 a 4a【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
1977年全国各地普通高等学校招生考试数学试题及答案
1977年全国各地普通高等学校招生考试数学试题及答案北京市高考数学试卷(文科)一、解答题(共10小题,满分100分)1.(10分)计算:.2.(10分)化简:.3.(10分)解方程:.4.(10分)不查表求sin105°的值.5.(10分)一个正三棱柱形的零件,它的高是10cm,底面边长是2cm,求它的体积.6.(10分)一条直线过点(1,﹣3),并且与直线2x+y﹣5=0平行,求这条直线的方程.7.(10分)证明:等腰三角形两腰上的高相等.8.(10分)为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.9.(10分)在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数?10.(10分)已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.1977年北京市高考数学试卷(文科)参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)计算:.考点:根式与分数指数幂的互化及其化简运算.专题:计算题.分析:由分数指数幂的运算法则,把原式转化为1+﹣,由此能求出的值.解答:解:原式=1+﹣=1+=0.点评:本题考查分数指数幂的运算法则,解题时要认真审题,仔细求解.2.(10分)化简:.考点:方根与根式及根式的化简运算.分析:分子分母同乘以,整理可得.解答:解:原式=.点评:本题考查分母或分子有理化.3.(10分)解方程:.考点:函数与方程的综合运用.专题:计算题.分析:先对等式两边同乘x2﹣1进行化简,然后解方程即可.解答:解:根据题意可知x≠1等式两边同乘x2﹣1得,x+1+x2﹣1=4x﹣2化简得x2﹣3x+2=0,解得x=2.∴原方程的解为x=2.点评:本题主要考查了函数与方程的综合运用,以及解方程等知识,属于基础题.4.(10分)不查表求sin105°的值.考点:两角和与差的正弦函数.专题:综合题.分析:把105°变为180°﹣75°,然后利用诱导公式化简,把75°变为30°+45°,利用两角和的正弦函数公式及特殊角的三角函数值化简即可得到值.解答:解:sin105°=sin(180°﹣75°)=sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=点评:此题考查学生灵活运用诱导公式、两角和的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.5.(10分)一个正三棱柱形的零件,它的高是10cm,底面边长是2cm,求它的体积.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:因为正三棱柱形的底面积由正弦定理的推论可求得,为S=•2•2•sin60°,已知高h=10,由体积公式即可求得.解答:解:正三棱柱形的底面积为S=•2•2•sin60°,高h=10,由柱体的体积公式得,体积V=sh=•2•2•sin60°•10==(cm3).点评:本题考查了柱体的体积公式的应用.是简单的计算题.6.(10分)一条直线过点(1,﹣3),并且与直线2x+y﹣5=0平行,求这条直线的方程.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:先求与直线2x+y﹣5=0平行的直线的斜率,再根据其过点(1,﹣3),用点斜式求直线方程.解答:解:∵直线2x+y﹣5=0的斜率k=﹣2,∴所求直线斜率k′=﹣2.故过点(1,﹣3)且与已知直线平行的直线为y+3=﹣2(x﹣1),即2x+y+1=0.点评:本题考查直线的平行关系,直线的点斜式方程,是基础题.7.(10分)证明:等腰三角形两腰上的高相等.考点:三角形中的几何计算.专题:证明题.分析:由题意画出图形,利用等腰三角形的定和条件找到三角形全等即可求证.解答:zm:如图,在△BDC与△CEB中,∵∠DBC=∠ECB,∠BDC=∠CEB=90°,BC=BC,∴△BDC≌△CEB,CD=BE.点评:此题考查了等腰三角形的定义,三角形全等的判定定理及性质定理.8.(10分)为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.考点:余弦定理;解三角形的实际应用.专题:计算题.分析:利用余弦定理把CA=50米,CB=30米,∠ACB=120°代入即可求得答案.解答:解:由余弦定理可得AB=AC2+BC2﹣2AC•BC•cos,∠ACB=70米.点评:本题主要考查了余弦定理的应用.属基础题.9.(10分)在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数?考点:等比数列的性质;等差数列的性质.专题:计算题.分析:依题意设出此数列,进而根据等比中项的性质和等差中项的性质联立方程组求得x和y,则插入的两个数可求.解答:解:设此数列为2,x,y,30.于是有解得x=6,y=18.故插入的两个正数为6,18,因此,所成的数列为2、6、18、30.点评:本题主要考查等比数列的性质.考查了考生分析问题和解决问题的能力.10.(10分)已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.考点:二次函数的图象.专题:作图题;综合题.分析:(1)根据二次函数的顶点坐标公式和对称轴公式分别求出即可;(2)根据列表、描点、连线的步骤画出函数图象即可;(3)令x=0求出对应的y值,写出坐标为与函数图象y轴的交点,令y=0求出对应的x值,写出坐标为函数图象与x轴的交点.解答:解:(1)∵a=1,b=﹣6,c=5∴﹣=﹣=3,==﹣1∴顶点坐标为(3,﹣1),对称轴为直线x=3.(2)如图列表(描点略)(3)图象与x轴相交,y=0即x2﹣6x+5=0解得x1=1,x2=5,所以与x轴交点的坐标为(1,0)(5,0);图象与y轴相交,x=0解得y=5,所以与y轴交点的坐标为(0,5).点评:考查学生掌握二次函数的顶点和对称轴公式,会利用描点法画函数的图象,会求函数标轴的交点坐标.北京市高考数学试卷(理科)一、解答题(共12小题,满分120分)1.(10分)解方程.2.(10分)计算:.3.(10分)已知lg2=0.3010,lg3=0.4771,求lg.4.(10分)证明:.5.(10分)求过两直线x+y﹣7=0和3x﹣y﹣1=0的交点且过(1,1)点的直线方程.6.(10分)某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?7.(10分)已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.8.(10分)一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.9.(10分)有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD•AE=AC•AB.10.(10分)当m取哪些值时,直线y=x+m与椭圆有一个交点?有两个交点?没有交点?当它们有一个交点时,画出它的图象.11.(10分)求函数f(x)=的导数.12.(10分)(1)试用ε﹣δ语言叙述“函数f(x)在点x=x0处连续的定义;(2)试证明:若f(x)在点x=x0处连续,且f(x0)>0,则存在一个x0的(x0﹣δ,x0+δ),在这个邻域内,处处有f(x)>0.北京市高考数学试卷(理科)参考答案与试题解析一、解答题(共12小题,满分120分)1.(10分)解方程.考点:方根与根式及根式的化简运算.专题:计算题.分析:先要保证方程有意义即x﹣1≥0,3﹣x≥0,再将方程两边平方,解不等式组求出x的值即为方程的解.解答:解:原方程同解于,解得x=2故方程的解为x=2点评:本题考查解无理方程常采用将方程平方去掉根号,但要注意使原方程有意义.2.(10分)计算:.考点:根式与分数指数幂的互化及其化简运算.分析:由题意根据根式与分数指数幂的运算法则进行计算.解答:解:原式=+++1=.点评:此题主要考查根式分母的有理化和分数指数幂的化简,比较简单.3.(10分)已知lg2=0.3010,lg3=0.4771,求lg.考点:对数的运算性质.专题:计算题.分析:利用对数的运算法则,将欲求lg.的式子转化成条件中的式子:“lg2=0.3010,lg3=0.4771”来表示即可.解答:解:∵lg=lg.又∵知lg2=0.3010,lg3=0.4771,∴lg=lg=0.8266.答案是:0.8266.点评:本题主要考查对数的运算性质,切实掌握对数的运算律是解题的关键.4.(10分)证明:.考点:同角三角函数基本关系的运用;三角函数恒等式的证明.专题:证明题.分析:先看左边,把正切换成正弦和余弦的形式,利用同角函数三角函数的基本关系化简整理,结果为右边,进而证明原式.解答:证:∵(1+tana)2===∴原式成立.点评:本题主要考查了同角三角函数的基本关系.解题的关键是熟练记忆同角三角函数基本关系的中各种公式,并灵活运用.5.(10分)求过两直线x+y﹣7=0和3x﹣y﹣1=0的交点且过(1,1)点的直线方程.考点:直线的一般式方程.专题:计算题.分析:求出两直线x+y﹣7=0和3x﹣y﹣1=0的交点坐标,两点式写出直线方程,将它化为一般式.解答:解:由x+y﹣7=0和3x﹣y﹣1=0联立方程组并解得:x=2,y=5.∵直线过点(2,5)和(1,1)∴所求的直线方程为,即:4x﹣y﹣3=0.点评:本题考查用两点式求直线方程.6.(10分)某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?考点:数列的应用;等比数列的前n项和.专题:应用题.分析:由题意知七月份到十月份总产值为:100+(1+20%)•100+(1+20%)2•100+(1+20%)3•100,然后利用等比数列求和公式进行计算即可.解答:解:七月份到十月份总产值为100+(1+20%)•100+(1+20%)2•100+(1+20%)3•100=.答:今年七月份到十月份总产值是536.8万元.点评:本题考查数列的性质和应用,解题时要认真审题,仔细思考,合理地建立方程.7.(10分)已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.考点:二次函数的图象.专题:作图题;综合题.分析:(1)根据二次函数的顶点坐标公式和对称轴公式分别求出即可;(2)根据列表、描点、连线的步骤画出函数图象即可;(3)令x=0求出对应的y值,写出坐标为与函数图象y轴的交点,令y=0求出对应的x值,写出坐标为函数图象与x轴的交点.解答:解:(1)∵a=1,b=﹣6,c=5∴﹣=﹣=3,==﹣1∴顶点坐标为(3,﹣1),对称轴为直线x=3.(2)如图列表(描点略)(3)图象与x轴相交,y=0即x2﹣6x+5=0解得x1=1,x2=5,所以与x轴交点的坐标为(1,0)(5,0);图象与y轴相交,x=0解得y=5,所以与y轴交点的坐标为(0,5).点评:考查学生掌握二次函数的顶点和对称轴公式,会利用描点法画函数的图象,会求函数标轴的交点坐标.8.(10分)一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.考点:解三角形的实际应用.专题:应用题.分析:根据题意可分别可知AC,∠BAC和∠ABC,进而利用正弦定理求得BC.解答:解:由已知条件及图可得AC=20海里,∠BAC=45°,∠ABC=30°.由正弦定理可得(海里).答:船和灯塔的距离CB为20海里.点评:本题主要考查了解三角形的实际应用.解题的方法一般是利用三角函数中的基本公式,如正弦定理,余弦定理,勾股定理,面积公式等建立数学模型,然后求得问题的解.9.(10分)有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD•AE=AC•AB.考点:相似三角形的性质;与圆有关的比例线段。
北京卷,高考文科数学试卷
2010年普通高等学校招生全国统一考试·文科数学(北京卷)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2010北京,文1)集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M 等于()A.{1,2} B.{0,1,2}C.{1,2,3} D.{0,1,2,3}答案:B2.(2010北京,文2)在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i 答案:C3.(2010北京,文3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是()A.54B.53 C.52 D.51答案:D4.(2010北京,文4)若a ,b 是非零向量,且a ⊥b ,|a |≠|b |,则函数f (x )=(x a +b )·(x b -a )是()A.一次函数且是奇函数 B.一次函数但不是奇函数C.二次函数且是偶函数 D.二次函数但不是偶函数答案:A5.(2010北京,文5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如下图所示,则该几何体的俯视图为()正(主)视图 侧(左)视图A BC D答案:C6.(2010北京,文6)给定函数①y =21x ,②y =21log (x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是()A.①②B.②③C.③④D.①④答案:B7.(2010北京,文7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成.该八边形的面积为A.2sin α-2cos α+2B.sin α-3cos α+3C.3sin α-3cos α+1D.2sin α-cos α+1答案:A8.(2010北京,文8)如图,正方体ABCD —A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零) ,则三棱锥P —EFQ 的体积()1A.与x ,y 都有关B.与x ,y 都无关C.与x 有关,与y 无关D.与y 有关,与x 无关答案:C第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9.(2010北京,文9)已知函数y =⎩⎨⎧<−≥.2,2,2,log 2x x x x 下图表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写________________;②处应填写________________.答案:x <2y =log 2x10.(2010北京,文10)在△ABC 中,若b =1,c =3,∠C =3π2,则a =________________.答案:111.(2010北京,文11)若点P (m ,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y <3表示的平面区域内,则m =________________.答案:-312.(2010北京,文12)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________________.0.0.0.0.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________________.答案:0.030313.(2010北京,文13)已知双曲线22a x -22b y =1的离心率为2,焦点与椭圆252x +92y =1的焦点相同,那么双曲线的焦点坐标为________________;渐近线方程为________________.答案:(±4,0)3x ±y =014.(2010北京,文14)如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点P (x ,y )的纵坐标与横坐标的函数关系式是y =f (x ),则f (x )的最小正周期为________________;y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________________.说明:“正方形PABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动指的是先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.类似地,正方形PABC 可以沿x 轴负方向滚动.答案:4π+1三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.(2010北京,文15)已知函数f (x )=2cos2x +sin 2x .(1)求f (3π)的值;(2)求f (x )的最大值和最小值.解:(1)f (3π)=2cos 3π2+sin 23π=-1+43=-41. (2)f (x )=2(2cos 2x -1)+(1-cos 2x )=3cos 2x -1,x ∈R .因为cos x ∈[-1,1],所以,当cos x =±1时,f (x )取最大值2;当cos x =0时,f (x )取最小值-1.16.(2010北京,文16)已知{a n }为等差数列,且a 3=-6,a 6=0.(1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.解:(1)设等差数列{a n }的公差为d . 因为a 3=-6,a 6=0, 所以⎩⎨⎧=+−=+.05,6211d a d a解得a 1=-10,d =2.所以a n =-10+(n -1)·2=2n -12. (2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =qq b n −−1)1(1=4(1-3n ) .17.(2010北京,文17)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF=1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .证明:(1)设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =21AC =1, 所以四边形AGEF 为平行四边形. 所以AF ∥EG .因为EG ⊂平面BDE ,AF 平面BDE , 所以AF ∥平面BDE . (2)连结FG .因为EF ∥CG ,EF =CG =1,且CE =1, 所以四边形CEFG 为菱形. 所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC . 又因为平面ACEF ⊥平面ABCD , 且平面ACEF ∩平面ABCD =AC , 所以BD ⊥平面ACEF . 所以CF ⊥BD .又BD ∩EG =G ,所以CF ⊥平面BDE .18.(2010北京,文18)设函数f (x )=3a x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式;(2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.解:由f (x )=3a x 3+bx 2+cx +d 得f ′(x )=ax 2+2bx +c . 因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4, 所以⎩⎨⎧=−++=−++.036816,092c b a c b a (*)(1)当a =3时,由(*)式得⎩⎨⎧=++=−+.0128,062c b c b 解得b =-3,c =12.又因为曲线y =f (x )过原点,所以d =0. 故f (x )=x 3-3x 2+12x . (2)由于a >0,所以“f (x )=3a x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.由(*)式得2b =9-5a ,c =4a .又Δ=(2b )2-4ac =9(a -1)(a -9),解⎩⎨⎧≤−−=∆>,0)9)(1(9,0a a a 得a ∈[1,9],即a 的取值范围是[1,9].19.(2010北京,文19)已知椭圆C 的左、右焦点坐标分别是(-2,0)、(2,0),离心率是36.直线y =t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆P ,圆心为P .(1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标;(3)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值.解:(1)因为a c =36,且c =2,所以a =3,b =22c a −=1. 所以椭圆C 的方程为32x +y 2=1.(2)由题意知P (0,t )(-1<t <1).由⎪⎩⎪⎨⎧=+=,13,22y x t y 得x =±)1(32t −. 所以圆P 的半径为)1(32t −. 当圆P 与x 轴相切时,|t |=)1(32t −.解得t =±23.所以点P 的坐标是(0,±23). (3)由(2)知,圆P 的方程为x 2+(y -t )2=3(1-t 2) .因为点Q (x ,y )在圆P 上, 所以y =t ±22)1(3x t −−≤t +)1(32t −.设t =cos θ,θ∈(0,π),则t +)1(32t −=cos θ+3sin θ=2sin(θ+6π). 当θ=3π,即t =21,且x =0时,y 取最大值2.20.(2010北京,文20)已知集合S n ={X |X =(x 1,x 2,…,x n ),x i ∈{0,1},i =1,2,…,n }(n ≥2).对于A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n )∈S n ,定义A 与B 的差为A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |);A 与B 之间的距离为d (A ,B )=∑=−ni i ib a1||.(1)当n =5时,设A =(0,1,0,0,1),B =(1,1,1,0,0),求A -B ,d (A ,B );(2)证明:A ,B ,C ∈S n ,有A -B ∈S n ,且d (A -C ,B -C )=d (A ,B );(3)证明:A ,B ,C ∈S n ,d (A ,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数.(1)解:A -B =(|0-1|,|1-1|,|0-1|,|0-0|,|1-0|)=(1,0,1,0,1). d (A ,B )=|0-1|+|1-1|+|0-1|+|0-0|+|1-0|=3.(2)证明:设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n . 因为a i ,b i ∈{0,1},所以|a i -b i |∈{0,1}(i =1,2,…,n ). 从而A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n - b n |)∈S n . 又d (A -C ,B -C )=∑=−−−ni i i i ic b c a1|||||,由题意知a i ,b i ,c i ∈{0,1}(i =1,2,…,n ). 当c i =0时,||a i -c i |-|b i -c i ||=|a i -b i |;当c i =1时,||a i -c i |-|b i -c i ||=|(1-a i )-(1-b i )|=|a i -b i |. 所以d (A -C ,B -C )=∑=−ni i ib a1||=d (A ,B ).(3)证明:设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n , d (A ,B )=k ,d (A ,C )=l ,d (B ,C )=h . 记O =(0,0,…,0)∈S n ,由(2)可知d (A ,B )=d (A -A ,B -A )=d (O ,B -A )=k , d (A ,C )=d (A -A ,C -A )=d (O ,C -A )=l , d (B ,C )=d (B -A ,C -A )=h .所以|b i -a i |(i =1,2,…,n )中1的个数为k ,|c i -a i |(i =1,2,…,n )中1的个数为l . 设t 是使|b i -a i |=|c i -a i |=1成立的i 的个数,则h =l +k -2t , 由此可知,k ,l ,h 三个数不可能都是奇数,即d (A ,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数.。
2011年北京高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试数学(文)(北京卷)一.选择题共8小题,每小题5分,共40分.在每小题列出四个选项中,选出符合题目要求的一项.1. 已知全集,集合,那么().A. ()B. ()C.(-1,1)D.【测量目标】集合的含义、基本运算.【考查方式】解不等式,求解补集.【参考答案】D【试题解析】,,故选D.2. 复数().A. B.C. D.【测量目标】复数代数形式的四则运算.【考查方式】复数的除法运算,直接计算出结果.【参考答案】A【试题解析】,选A.3. 如果,那么().A. B.C. D.【测量目标】对数函数的性质、函数值比较.【考查方式】由对数函数增减性,求解定义域.【参考答案】D【试题解析】,,即故选D.4. 若是真命题,是假命题,则().A.是真命题B.是假命题C.是真命题D.是真命题【测量目标】命题的概念.【考查方式】命题的真假判断.【参考答案】D【试题解析】:或()一真必真,且()一假必假,非()真假相反,故选D.5. 某四棱锥的三视图如图所示,该四棱锥的表面积是().A.32B.16+C.48D.【测量目标】由三视图求几何体的表面积.【考查方式】由三视图想象出四棱锥结构,进而计算其表面积.【参考答案】B【试题解析】由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为,表面积故选B.如图所示的程序框图,若输入的值为2,则输出的值为().A.2B.3C.4D.5【测量目标】循环结构的程序框图.【考查方式】由循环语句、条件语句执行程序,直至结束.【参考答案】C【试题解析】执行三次循环,成立,(步骤1),,成立,(步骤2),,成立,(步骤3),,不成立,(步骤4)输出,故选C.(步骤5)7. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产件,则平均仓储间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储用之和最小,每批应生产产品().A.60件B.80件C.100件D.120件【测量目标】一元二次函数的实际应用.【考查方式】一元二次函数的实际应用,解方程.【参考答案】B【试题解析】仓储费用,每件产品的生产费用与仓储费用之和:,当且仅当即时,上式取等号.每批应生产产品80件,故选B.8.已知点.若点在函数的图象上,则使得的面积为2的点的个数为().A.4B.3C.2D.1【测量目标】二次函数德尔图像和性质.【考查方式】由二次函数的性质和点到直线的距离公式求解.【参考答案】A【试题解析】设的直线方程为即,由得即,(步骤1)由点到直线的距离公式得,即解得,,或,或故选A.(步骤2)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 在中,若,则 .【测量目标】解三角形、正弦定理.【考查方式】由正弦定理,直接求出答案.【参考答案】【试题解析】由正弦定理得,又..10. 已知双曲线的一条渐近线的方程为,则 .【测量目标】双曲线的标准方程和简单的几何性质.【考查方式】双曲线的渐近线与题中渐近线比较法得出结果.【参考答案】2【试题解析】由得渐近线的方程为即,由一条渐近线的方程为得2.11. 已知向量.若与共线,则= .【测量目标】向量的坐标运算.【考查方式】共线向量中,由对应坐标成比例求解.【参考答案】1【试题解析】由与共线得12. 在等比数列中,若则公比;.【测量目标】等比数列的基本性质和前n项和.【考查方式】由通项公式求解公比和求和公式.【参考答案】2;【试题解析】由是等比数列得,又所以,.13. 已知函数若关于的方程有两个不同的实根,则实数的取值范围是 . 【测量目标】分段函数.【考查方式】画出分段函数,找到单调区间,比较法.【参考答案】(0,1)【试题解析】单调递减且值域为(0,1],单调递增且值域为,有两个不同的实根,则实数k的取值范围是(0,1).14. 设).记为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则;的所有可能取值为 .【测量目标】平行四边形的性质定理.【考查方式】由点坐标得出范围,一一求解.【参考答案】6 ;6,7,8.【试题解析】在, , 时分别对应点为6,8,7.在平面直角坐标系中画出平行四边形,其中位于原点,位于正半轴;(步骤1)设与边的交点为,与边的交点为,四边形内部(不包括边界)的整点都在线段上,(步骤2)线段上的整点有3个或4个,,不难求得点,(步骤3)①当为型整数时,都是整点,,(步骤4)②当为型整数时,,都不是整点,,(步骤5)③当为型整数时,,都不是整点,(以上表述中为整数)(步骤6)上面3种情形涵盖了的所有整数取值,所以的值域为{6,7,8 }.(步骤7)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.【测量目标】三角函数最值问题.【考查方式】同名三角函数化简,进而求解周期、最值.【试题解析】(Ⅰ).(步骤1)的最小正周期为.(步骤2)(Ⅱ)(步骤3)当即时,取得最大值2;(步骤4)当,即,取得最小值.(步骤5)16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中经X表示.(Ⅰ)如果,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差其中为,,的平均数)【测量目标】茎叶图.【考查方式】由样本容量求解平均数、方差和概率.【试题解析】(Ⅰ)当时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为(步骤1)方差为(步骤2)(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为(步骤3)17.(本小题共14分)如图,在四面体中,点分别是棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:四边形为矩形;(Ⅲ)是否存在点,到四面体六条棱的中点的距离相等?说明理由.【测量目标】空间立体中线面平行的判定,立体几何中的探索性问题.【考查方式】线面平行定理的应用,反证法求解.【试题解析】证明:(Ⅰ)分别为的中点,//,平面,(步骤1)//平面.(步骤2)(Ⅱ)分别为的中点,// //, // //,(步骤3)四边形为平行四边形,(步骤4)又,所以,所以四边形为矩形.(步骤5)(Ⅲ)存在点满足条件,理由如下:连接设为的中点,由(Ⅱ)知,且(步骤6)分别取、的中点,连接.与(Ⅱ)同理,可证四边形为矩形,其对角线点为的中点且,所以为满足条件的点.(步骤7)18.(本小题共13分)已知函数.(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最小值.【测量目标】利用导数求函数的单调区间和最值.【考查方式】函数求导,由函数值变化判断单调区间,进而求解最值.【试题解析】(Ⅰ)令,得.(步骤1)与的情况如下:()(—0+↗↗骤2)的单调递减区间是();单调递增区间是.(步骤3)(Ⅱ)当,即时,函数在[0,1]上单调递增,在区间[0,1]上的最小值为(步骤4)当时,由(Ⅰ)知在上单调递减,在上单调递增,在区间[0,1]上的最小值为;(步骤5)当时,函数在[0,1]上单调递减,在区间[0,1]上的最小值为(步骤6)19.(本小题共14分)已知椭圆的离心率为,右焦点为.斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积.【测量目标】椭圆的标准方程及简单的几何性质.【考查方式】利用离心率、焦点坐标计算出椭圆方程进而设出直线,与椭圆方程联立,求解.【试题解析】(Ⅰ)由已知得(步骤1)解得又(步骤2)椭圆G的方程为(步骤3)(Ⅱ)设直线的方程为由得(步骤4)设的坐标分别为中点为,则.(步骤5)是等腰的底边,所以,的斜率解得.此时方程①为解得(步骤6).此时,点到直线:的距离所以的面积(步骤7)20.(本小题共13分)若数列满足,则称为数列.记.(Ⅰ)写出一个数列满足;(Ⅱ)若,证明:数列是递增数列的充要条件是;(Ⅲ)在的数列中,求使得成立的的最小值. 【测量目标】数列通项公式的整理变形;充分必要条件的概念.【考查方式】使用列举法、观察法求得答案(Ⅰ);充分和必要分开进行论证解决答案(Ⅱ);由首相为4可求得后面的每一项,使用列举法列出,再根据题设要求,求解.【试题解析】(Ⅰ)是一组满足条件的数列.(答案不唯一;都是满足条件的数列).(步骤1)(Ⅱ)必要性:因为数列是递增数列,所以所以此数列为首项为12,公差为1的等差数列. 所以.(步骤2)充分性:因为所以即.(步骤3)又因为,所以.故,即时递增数列.综上,结论得证.(步骤4)(Ⅲ)对首项为4的数列,由于,(步骤5)所以对任意首项为4的数列,若,则必有.(步骤6)又的数列:满足.所以的最小值是9.(步骤7)。
全国高考文科数学试题及答案-北京卷
2009年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至9页,共150分。
考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将答题卡上的姓名、准考证号用黑色字迹的签字笔填写,用2B 铅笔将准考证号对应的信息点涂黑。
2.每小题选出答案后,将答题卡上对应题目的答案选中涂满涂黑,黑度以盖住框内字母为准,修改时用橡皮擦除干净。
在试卷上作答无效。
一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤C .{|2}x x <D .{|12}x x ≤<【答案】A 【解析】本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运算的考查.∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}AB x x =-≤<,故选A.2.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d ,那么A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 【答案】D【解析】本题主要考查向量的共线(平行)、向量的加减法. 属于基础知识、基本运算的考查. ∵a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B.若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--,即c //d 且c 与d 反向,排除C ,故选D3.若4(1,a a b =+为有理数),则a b += ( ) A .33 B . 29 C .23 D .19 【答案】B【解析】本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查.∵(4123401234444441C C C C C =++++112417=++=+由已知,得17a +=+171229a b +=+=.故选B. 4.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度 【答案】C【解析】本题主要考查函数图象的平移变换. 属于基础知识、基本运算的考查. A .()()lg 31lg103y x x =++=+,B .()()lg 31lg103y x x =-+=-,C .()3lg 31lg10x y x +=+-=, D .()3lg 31lg 10x y x -=--=.故应选C.5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A .8B .24C .48D .120 【答案】C 【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查.2和4排在末位时,共有122A =种排法,其余三位数从余下的四个数中任取三个有3443224A =⨯⨯=种排法, 于是由分步计数原理,符合题意的偶数共有22448⨯=(个).故选C. 6.“6πα=”是“1cos 22α=”的 A . 充分而不必要条件 B .必要而不充分条件 C . 充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】本题主要考查本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断. 属于基础知识、基本运算的考查. 当6πα=时,1cos 2cos32πα==, 反之,当1cos 22α=时,有()2236k k k Z ππαπαπ=+⇒=+∈,或()2236k k k Z ππαπαπ=-⇒=-∈,故应选A.7.若正四棱柱1111ABCD A BC D -的底面边长为1,1AB 与底面ABCD 成60°角,则11AC 到底面ABCD 的距离为 ( )A .3B . 1C .D 【答案】D【解析】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念.属于基础知识、基本运算的考查. 依题意,160B AB ︒∠=,如图,11tan60BB ︒=⨯,故选D.8.设D 是正123P P P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( ) A . 三角形区域 B .四边形区域C . 五边形区域D .六边形区域 【答案】D 【解析】本题主要考查集合与平面几何基础知识. 本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力. 属于创新题型. 如图,A 、B 、C 、D 、E 、F 为各边三等分点,答案是集合S 为六边形ABCDEF ,其中,()021,3i P A P A PA i =≤= 即点P 可以是点A.第Ⅱ卷(110分)注意事项:1.用铅笔或圆珠笔将答案直接写在试卷上。
2022年全国高考甲卷数学(文)试题(解析版)
2022年普通高等学校招生全国统一考试(全国甲卷文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎩⎭∣,则A B = ()A.{}0,1,2 B.{2,1,0}-- C.{0,1}D.{1,2}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3.若1i z =+.则|i 3|z z +=()A. B. C. D.【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15 B.13C.25D.23【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A.1-B.12-C.12D.1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则()A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D== ,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan 2c BAE a ∠==,所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.5104【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C.11.已知椭圆2222:1(0)x y C a a b+=>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y += B.22198x y += C.22132x y += D.2212x y +=【答案】B 【解析】【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.12.已知910,1011,89m m m a b ==-=-,则()A.0a b >>B.0a b >> C.0b a >> D.0b a>>【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【答案】34-##0.75-【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++=【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==≤c e a又因为1e >,所以1e <≤,故答案为:2(满足1e <≤皆可)16.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.【答案】1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥--,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m=.1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.18.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析;(2)78-.【解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n +-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF //EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.【小问1详解】如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =(2143V =⨯⨯⨯==.20.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ;(2)求a 的取值范围.【答案】(1)3(2)[)1,-+∞【解析】【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+0-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.21.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【答案】(1)24y x =;(2):4AB x =+.【解析】【分析】(1)由抛物线的定义可得=2pMF p +,即可得解;(2)设点的坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角的正切公式及基本不等式可得2AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 12tan 11tan tan 1242k k k k αβαβαβ--===≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【答案】(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 的普通方程;(2)将曲线23,C C 的方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。
2019年北京市高考数学试卷(文科)以及答案解析
绝密★本科目考试启用前2019年普通高等学校招生全国统一考试(北京卷)文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)2.(5分)已知复数z=2+i,则z•=()A.B.C.3D.53.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y=4.(5分)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.45.(5分)已知双曲线﹣y2=1(a>0)的离心率是,则a=()A.B.4C.2D.6.(5分)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.18.(5分)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β,图中阴影区域的面积的最大值为()A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ二、填空题共6小题,每小题5分,共30分。
2019年高考数学北京卷文(附详解)
'
! "
@"@"9*:
-$76+
! "
@"@
"9*:
-%76+
! "
@"@""
第7题图!
'"9*:-$76+"9*:-%76+/ '"9*:-$76+"9*:!"#)") -$76"+/ '"9*:-$76)"9*:!"+ -$76"+/ '"9*:-$76)"!9*:"&539-$76+539"&9*:-$76"
!7!$本小题满 分 !$ 分%改 革 开 放 以 来#人 们 的 支 付 方 式 发 生 了巨大转变!近年来#移动支付 已 成 为 主 要 支 付 方 式 之 一! 为了解某校学生上个月 *#, 两 种 移 动 支 付 方 式 的 使 用 情 况 #从 全 校 所 有 的 !### 名 学 生 中 随 机 抽 取 了 !## 人 #发 现 样 本中 *#, 两种支付方式都不使用的有"人#样本中仅使 用 *和仅使用,的学生的支付金额分布情况如下,
7!在天文学中#天体的明暗程度 可 以 用 星 等 或 亮 度 来 描 述!两
颗 星 的 星 等 与 亮 度 满 足 D$ (D! ' " $1344!$ #其 中 星 等 为 D? 的星的亮度为4?$?'!#$%!已知太阳的星等是($&!7#天 狼 星 的 星 等 是 (!!)"#则 太 阳 与 天 狼 星 的 亮 度 的 比 值 为
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2003年高考.北京卷.文科数学试题及答案
其中 c 、 c 分别表示上、下底面
cos cos 1 [cos( ) cos( )] 2
周长, l 表示斜高或母线长.
sin sin 1 [cos( ) cos( )] 2
球体的体积公式:
V球
4 R3 ,其中 R 3
表示球的半径.
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一
皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束,监考人将本试卷和答题卡一并收回.
参考公式:
三角函数的积化和差公式:
正棱台、圆台的侧面积公式
sin cos 1 [sin( ) sin( )] 2
S台侧
1 (c 2
c)l
cos sin 1 [sin( ) sin( )] 2
项是符合要求的.
1.设集合 A {x | x 2 1 0}, B {x | log 2 x 0 |},则A B 等于
()
A.{x | x 1}
C.{x | x 1}
2.设
y1
40.9 ,
y2
80.44 ,
y3
( 1 ) 1.5 ,则 2
B.{x | x 0} D.{x | x 1或x 1}
()
A.若 m∥α,α∩β=n,则 m//n
B.若 m∥n,α∩β=n,则 n⊥α
C.若 m⊥α,m⊥β,则α∥β
D.若 m⊥α, m ,则α⊥β
5.如图,直线 l : x 2 y 2 0 过椭圆的左焦点 F1 和
一个顶点 B,该椭圆的离心率为
A. 1 5
B. 2 5
()
5
C.
5
25
D.
2022年北京高考数学(文科)试题及答案
2022年北京高考数学(文科)试题及答案文科数学第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合A0,1,2,4,B1,2,3,则AB ()A.0,1,2,3,4B.0,4C.1,2D.32.下列函数中,定义域是R且为增函数的是()A.ye某B.y某C.yln某D.y某3.已知向量a2,4,b1,1,则2ab()A.5,7B.5,9C.3,7D.3,94.执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15开始否是输出结束5.设a、b是实数,则“ab”是“ab”的()A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件226log2某,在下列区间中,包含f某零点的区间是()某A.0,1B.1,2C.2,4D.4,6.已知函数f某7.已知圆C:某3y41和两点Am,0,Bm,0m0,若圆C上存在点22P,使得APB90,则m的最大值为()A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2btc(a、b、c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟p0.80.70.5O二、填空题共6小题,每小题5分,共30分。
9.若某ii12i某R,则某.10.设双曲线C的两个焦点为2,0,345t第2部分(非选择题共110分)2,0,一个顶点式1,0,则C的方程为.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.22正(主)视图111侧(左)视图俯视图12.在ABC中,a1,b2,coC1,则c;inA.4y113.若某、y满足某y10,则z3某y的最小值为.某y1014.顾客请一位工艺师把A、B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件颜料先由徒弟完成粗加工,学科网再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间粗加工精加工原料915原料A6原料B21则最短交货期为工作日.三、解答题共6小题,共80分。
2023北京高考文科数学试卷
高考数学试卷一、单选题1.下列计算正确的是 A.()22x y x y +=+ B.()2222x y x xy y -=-- C.()()2111x x x +-=-D.()2211x x -=- 2.函数21x y x +=-的定义域为( )A .{|21}x x x >-≠且 B .{|21}x x x ≥-≠且 C .)[(21,1,)-⋃+∞ D .)((21,1,)-⋃+∞3.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2a cos A ,则cos A =( )A .13B .24C .33D .63 5.已知函数()2,01ln ,0x x f x x x-⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞6.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤ 7.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件8.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( ) A.∅ B.{}3,1,0,4-- C.{}2,3 D.{}0,2,39.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( ) A.{} 2345,,, B.{}234,, C.{}345,, D.{}34,10.已知函数()11f x x x=--,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)11.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .56二、填空题14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知cos tan 0θθ<g ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.02⎛ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.12⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=L ,,,,则此数列的通项公式为 .11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =o,1BC =,则AB = .13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.OCADB(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案1.∵ ,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。
2.函数()3(02)xf x x =<≤的反函数的定义域为原函数的值域,原函数的值域为(19],,∴ 选B 。
3.函数()sin 2cos 2f x x x =-)4x π-,它的最小正周期是π,选B 。
4.椭圆22221(0)x y a b a b +=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若2||2a MN c =,12||2F F c =,12MN F F 2≤,则22a c c≤,该椭圆离心率e ≥22,取值范围是12⎫⎪⎪⎣⎭,选D 。
A.102⎛⎤⎥⎝⎦,B.02⎛ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.12⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()2142610C A 个,选A 。
6.如图,不等式组502x y x -+0⎧⎨⎩≥,≤≤表示的平面区域是一个梯形,它的一个顶点坐标是(2,7),用平行于x 轴的直线y ≥a 截梯形得到三角形,则a 的取值范围是57a <≤,选C 。
7.平面α∥平面β的一个充分条件是存在两条异面直线a b a a b αβα⊂,,,∥,∥,选D.8.对于函数①()2f x x =+,函数(2)|4|f x x +=+不是偶函数,对于函数③()cos(2)f x x =-,是一个周期函数,周期是2π,不可能在()-∞2,上是减函数,在(2)+∞,上是增函数;所以函数①③都不符合条件,只有函数②2()(2)f x x =-,能使命题甲、乙均为真,选C 。
9.()f x '是3()213f x x x =++的导函数,2'()2f x x =+,则(1)f '-=3. 10.若数列{}n a 的前n 项和210(123)n S n n n =-=L ,,,,数列为等差数列,数列的通项公式为1n n n a S S -=-=211n -.11.已知向量2411a b ()()r r ,,,==.向量(2,4)a b λλλ+=++r r ,()b a b λ⊥r r r+,则2+λ+4+λ=0,实数λ=-3. 12.在ABC △中,若1tan 3A =,150C =o ,∴ A 为锐角,sin A =1BC =,则根据正弦定理AB =sin sin BC C A⋅=2。
. 13.图中小正方形的面积为1,大正方形的面积为25,∴ 每一个直角三角形的面积是6,设直角三角形的两条直角边长分别为a , b ,则2225162a b ab ⎧+=⎪⎨=⎪⎩,∴ 两条直角边的长分别为3,4,直角三角形中较小的锐角为θ,cos θ=54,cos2θ=2cos 2θ-1=725。
14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g =(3)1f =;当[()]2g f x =时,()2f x =,x =1. 三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<.(II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >, 即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,L L1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=L . 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=L ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+=L ,,. 17.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =Q I ,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴==OCADBE又12DE AO == ∴在Rt CDE △中,tan CE CDE DE ===∴异面直线AO 与CD所成角的大小为arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,(01D ,(00OA ∴=u u u r ,,(21CD =-u u u r,cos OA CDOA CD OA CD∴<>=u u u r u u u ru u u r u u u r g u u u r u u u r g ,4==. ∴异面直线AO 与CD所成角的大小为 18.(共13分)解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥.(II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上, 所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.x(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b ==从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=.················ ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得k > (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故12k x -==k > 1x 是关于k 的减函数,所以1x的取值范围是(0.t 是关于1x的增函数,定义域为(0,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。