合肥市2019届高三调研性检测理科数学试卷(word版含答案)

合集下载

安徽省合肥市2019届高三第三次教学质量检测数学理科试题(解析版)

安徽省合肥市2019届高三第三次教学质量检测数学理科试题(解析版)

1.已知 R 是实数集,集合 A = {-1,0,1}, B = {x 2 x - 1 ≥ 0},则 A ( B )= (B. {1}C. ⎢ ,1⎥D. -∞, ⎪ 镲x 铪镲x 铪2.已知 i 是实数集,复数 z 满足 z + z ⋅ i = 3 + i ,则复数 z 的共轭复数为(合肥市 2019 高三第三次教学质量检测数学试题(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的 .R)A. {-1,0}⎡ 1 ⎤⎣ 2 ⎦ ⎛ 1 ⎫ ⎝ 2 ⎭【答案】A【解析】【分析】先求出集合 B 的补集再与集合 A 进行交集运算。

【详解】禳 1 B = 睚 | x ? 镲 2禳1 \ C B = 睚 | x < R 镲2即 A ? (C RB){- 1,0}故选 A 。

【点睛】考查描述法的定义,以及交集、补集的运算.在解题过程中,正确求出补集和交集是关键。

.. )A. 1+ 2i【答案】C【解析】【分析】B. 1- 2iC. 2 + iD. 2 - i将 z + z ⋅ i = 3 + i 化为 z = 3 + i 1 + i,对其进行化简得到 z = 2 - i ,利用共轭复数的性质得到 z = 2 + i 。

【详解】 z + z ⋅ i = 3 + i 可化 z =3 + i1 + iz = 3 + i 【详解】输入 x = -1 , y = ⨯ (-1)+ 1 = .3 74 4 3 19 74 16 16(3 + i )(1- i) 4 - 2i = = =2- i1+ i (1+ i )(1- i) 2∴ z 的共轭复数为 z = 2 + i故选 C 。

【点睛】在对复数的除法进行化简时,要采用分子分母同时乘以分母的共轭复数,使分母“实数化”。

3.执行如图所示 程序框图,若输入 x = -1 ,则输出的 y = ()的A.1 4B.3 4C.7 16D.19 16【答案】D【解析】【分析】按程序框图指引的顺序依次执行,写出各步的执行结果即可得到答案1 33 , | x - y |= -1 - = < 1 不成立, x = ;4 4 41 3 19 19 y = ⨯ + 1 = , | x - y |= - = < 1 成立,跳出循环,输出 y = .故选 D.4 4 16 16【点睛】本题考查循环结构程序框图的输出结果.当程序执行到判断框时要注意判断循环条件是否成立,是A. 149C.20D. 7⎪ 1⎪⎩ 6 2⎪⎪ 1 9 ⎪d = 2 . ⎪9a 12继续下一次循环,还是跳出循环.4.已知 S n 是等差数列{a n }的前 n 项和,若 a 1 + a 2 + a 3 = 4 , S 6 = 10 ,则 a 3 = ()9 B.163【答案】A【解析】【分析】列出关于 a 1,d 的方程组并解出,即可求得 a 3的值.【详解】设等差数列{a n}的公差为 d .⎧a + a + a = 3a + 3d = 4, 2 3 1 由题意得 ⎨ 6 ⨯ 5 S = 6a + d = 10, 1解得 ⎨ ⎩ 9⎧ 10a = ,所以 a = a + 2d = 1431.故选 A.【点睛】本题考查等差数列的通项公式和前 n 项和. a 1,d 等差数列的通项公式和前 n 项和公式中的基本量,等差数列的相关问题往往要通过列关于 a 1,d 的方程组来求 a 1,d .5.某企业的一种商品的产量与单位成本数据如下表:产量 x (万件) 1416 18 2022单位成本 y (元/件)1073若根据表中提供的数据,求出 y 关于 x 的线性回归方程为 y = -1.15x + 28.1,则 a 的值等于( )A. 4.5B. 5C. 5.5D. 6【详解】 x = 14 +16 +18 +20 +22 6.若直线 y = k (x + 1)与不等式组 ⎨3x - y ≤ 3 表示的平面区域有公共点,则实数 k 的取值范围是( )⎪2x + y ≥ 2 ˆ ˆx ,y ˆ ˆˆ画出不等式组 ⎨3x - y ≤ 3 表示的平面区域,直线 y = k (x + 1)过定点 A(-1,0) ,数形结合得出 0 #k ⎪2x + y ≥ 2【答案】B【解析】【分析】求出 x , y 将其代入线性回归方程 y = -1.15x + 28.1,即可得出 a 的值。

合肥市2019年高三第一次教学质量检测数学试题(理)(含答案解析)

合肥市2019年高三第一次教学质量检测数学试题(理)(含答案解析)

合肥市2018年高三第一次教学质量检测,数学试题(理)(考试时间:120分钟满分:150分)注窻事项:1.答趙前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号疾备佘的答题区域作答,超出答题区域书写的答案无效,在试题卷、萆稿纸上答题无效第I卷(满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项t,只有一项是符合题目要求的),则=A.{4,5}B. {1,4,5}C.{3,4,5}D.{1,3,4,5}3. 已知命题p:若(x-1)(x-2) ≠0则x ≠1且x ≠2命题q:存在实数x。

,使2x<0下列选项中为真命题的是()A p⌝∨ D.q⌝ B. q p⌝∧ C. p q4. 一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是()长,此双曲线的离心率等于()数的图象与函数y=f(x)的图象关于-轴对称,则ω的值不可能是()A.2B. 4C. 6D. 107-将包含甲、乙两队的8支队伍平均分成2个小组参加某项比赛,则甲、乙两队被分在不同 小组的分组方案有()A.20 种B.35 种C.40 种D.60 种8以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等 关系不一定成立的是()A.2a 3>3a 4B. 5a 5>a 1+6a 6C.a 5+a 4-a 3<0D. a 3+a 6+a 12<2a 79执行右边的程序框图,输出的结果是()A.63B. 64C. 65D.6610函数f(x)=e x +x 2+x+1图象L 关于直线 2x-y-3 =0对称的图象为M,P 、Q 分别是 两图象上的动点,则||PQ 的最小值为()第II 卷(满分100分)二、填空题(本大題共5小题,每小题5分,共25分.把答案填在答題卡的相应位里)14. 在梯形ABCD 中,Ab//CD ,AB=2CD ,M 、N 分别为CD 、BC 的中点,若AB AM AN λμ=+, 则λμ+=_____15 已知函数f(x)=xlnx ,且x 2>x 1>0,则下列命题正确的是_______(写出所有正确命题的编号).①1212().(()()0x x f x f x --< ②1212()()1f x f x x x -<-; ③1222()()()f x f x x f x +<; ④2112.().()x f x x f x <;⑤当lnx 1=-1时,112221.()()2()x f x x f x x f x +>.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步驟)16(本小题满分12分)(I)求函数f(x)的最小正周期和单调递增区间;(II)在ΔABC 中,角A ,B,C 所对的边是a ,b ,c.若.f(A)=1,b=2,sinA=2sinC ,求边c 的长17 (本题满分12分)某地统计部门对城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,共收到1万 份答卷.其统计结果如下表(表中人数保留1位小数):(I)根据表1画出频率分布直方图;(II)对幸福指数评分值在[50,60]分的人群月平均收人的统计结果如表2,根据表2按 月均收入分层抽样,从幸福指数评分值在[50,60 ]分的人群中随机抽取10人,再从这10 人中随机抽取6人参加“幸福愿景”座谈会.记6人中月均收人在[1000,3000)元的人数 为随机变量X ,求随机变量X 的分布列与期望.18(本题满分13分)已知数列{a n }的前》项和为S n ,且2S n +3=3a n (*n N ∈)(I)求数列{a n }的通项公式;19(本題满分13分)已知函数2()2ln(1)()f x x x ax a R =+++∈.(I)若函数f(x)的图象上任意一点P 处的切线的倾斜角均为锐角,求实数a 的取值范 围;(I I )求函数f(x)的单调区间.20(本题满分12分)如图,四棱锥P-ABCD 的底面四边形ABCD 是边长 为2的正方形,PA =PB ,O 是AB 的中点, PO 丄 AD,PO=2.(I)求二面角O-PC-B 的余弦值; (II)设M为PA的中点,N为四棱银P-ABCD内部或表面上的一动点,且MN//平面PDC,请你判断满足条件的所有的N 点组成的几何图形(或几何体)是怎样的几何图形(或几何体),并说明你的理由.21•(本題满分13分):的焦点,点(I)试求椭圆C1的方程;(II)若直线l与椭圆C1相交于A,B两点(A,B不是上下顶点),且以AB为直径的圆过椭圆C1的上顶点.求证:直线l过定点.。

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}12M x x =-<<,{}13N x x =≤≤,则M N =(A)(]1,3- (B)(]1,2- (C)[)1,2 (D)(]2,3 (2)已知复数122iz i-=-(i 为虚数单位),则||z = (A)15 (B)35 (C)45(D)1(3)右图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.已知图中直角三角形两条直角边的长分别为2和3.若从右图内随机取一点,则该点取自阴影区域的概率为(A)23 (B)89(C)1213 (D)2425(4)已知实数x y ,满足条件00220x y x y x y -≤⎧⎪+≥⎨⎪+-≤⎩,则2z x y =-的取值范围是(A)26 3⎡⎤-⎢⎥⎣⎦, (B)20 3⎡⎤⎢⎥⎣⎦, (C)[)6 -+∞,(D)[)0 +∞, (5)已知直线:50l x y +-=与圆222:(2)(1)(0)C x y r r -+-=>相交所得的弦长为22,则圆C 的半径r =(A)2 (B)2 (C)22 (D)4(6)执行右面的程序框图,若输出的结果为15,则判断框中的条件是 (A)4?i < (B)5?i < (C)6?i < (D)7?i <(7)已知tan 3α=,则sin cos 22ππαα⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭的值为(A)310 (B)310- (C)35(D)35-(8)已知双曲线2222:1(00)x y M a b a b-=>>,的焦距为4,两条渐近线的夹角为60o ,则双曲线M 的标准方程是(A)2213x y -= (B)2213x y -=或2213y x -=(C)221124x y -= (D)221124x y -=或221412x y -=(9)已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于(A)488π+ (B)484π+ (C)648π+ (D)644π+(10)若将函数()()()2cos 1cos 1cos f x x x x =+-图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则函数()y g x =的单调递减区间为(A)()2k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (B)() 2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(C)()11 844k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (D)()11 484k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(11)已知函数()2cos x x f x e e x -=++,其中e 为自然对数的底数,则对任意a R ∈,下列不等式一定成立的是(A)()()212f a f a +≥ (B)()()212f a f a +≤ (C)()()211f a f a +≥+ (D)()()21f a f a +≤ (12)在ABC ∆中,90o CAB ∠=,1AC =,3AB =.将ABC ∆绕BC 旋转至另一位置P (点A 转到点P ),如图,D 为BC 的中点,E 为PC 的中点. 若32AE =,则AB 与平面ADE 所成角的正弦值是(A)38 (B)36 (C)34(D)33第Ⅱ卷二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上相应的位置.(13)若a 与b 的夹角为135o ,1a =,2b =,则a b +=__________.(14)已知数列{}n a 的前n 项和为n S ,11a =,()*12n n S S n N +=∈,则10a = .(15)将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在33⨯方格图所在正方形的同一条对角线上,则不同放法共有___________种.(16)已知()241x x x af x e x a ⎧-≤=⎨->⎩,,(其中0a <,e 为自然对数的底数),若()()g x f f x =⎡⎤⎣⎦在R 上有三个不同的零点,则a 的取值范围是___________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知等比数列{}n a 各项都是正数,其中3234 a a a a +,,成等差数列,532a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记数列{}2log n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .(18)(本小题满分12分)已知:在ABC ∆中,a b c ,,分别是角A B C ,,所对的边长,()0cos cos a bA C A+=+.(Ⅰ)判断ABC ∆的形状;(Ⅱ)若6C π=,62c =-,求ABC ∆的面积.(19)(本小题满分12分)统计学中,经常用环比、同比来进行数据比较.环比是指本期统计数据与上期比较,如2017年7月与2017年6月相比.同比是指本期数据与历史同时期比较,如2017年7月与2016年7月相比.=100%⨯数数环长数本期-上期比增率上期,=100%⨯数数长数本期-同期同比增率同期.下表是某地区近17个月来的消费者信心指数的统计数据:序号x 12345678时间2017年 1月 2017年 2月 2017年 3月 2017年 4月 2017年 5月 2017年 6月 2017年 7月 2017年8月消费者信心指数y107.2108.6 108.4 109.2 112.6 111 113.4 112 910111213141516172017年 9月 2017年 10月 2017年 11月 2017年 12月 2018年 1月 2018年 2月 2018年 3月 2018年 4月 2018年 5月 113.3114.6114.7118.6123.9121.3122.6122.3124(Ⅰ)(ⅰ)求该地区2018年5月消费者信心指数的同比增长率(百分比形式下保留整数); (ⅱ)除2017年1月以外,该地区消费者信心指数月环比增长率为负数的有几个月?(Ⅱ)由以上数据可判断,序号x 与该地区消费者信心指数y 具有线性相关关系,写出y 关于x 的线性回归方程ˆˆˆybx a =+(ˆˆa b ,保留2位小数),并依此预测该地区2018年6月的消费者信心指数(结果保留1位小数,参考数据与公式:17118068i i i x y =≈∑,17211785ii x==∑,9115x y =≈,,1221ˆni i i ni i x y n x yx nx b ==--∑=∑)(20)(本小题满分12分)如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,60ABE ∠=︒,G 为BE 中点.(Ⅰ)求证:平面ACG ⊥平面BCE ;(Ⅱ)若3AB BC =,求二面角B CA G --的余弦值.(21)(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)经过点M(2,1),且离心率32e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设A 、B 分别是椭圆C 的上顶点与右顶点,点P 是椭圆C 在第三象限内的一点,直线AP 、BP 分别交x 轴、y 轴于点M 、N ,求四边形AMNB 的面积.(22)(本小题满分12分)已知()()21axx f x e +=(其中a R ∈,e 为自然对数的底数).(Ⅰ)求()f x 的单调区间;(Ⅱ)若12x x ,分别是()f x 的极大值点和极小值点,且12x x >,求证:()()1212f x f x x x +>+.合肥市2019届高三调研性检测数学试题(理科)参考答案及评分标准题号 1 2 3 4 56 7 8 9 10 11 12 答案CDCABCBBDAAB二、填空题:本大题共4小题,每小题5分.(13)1 (14)256 (15)24 (16))2⎡-⎣,三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(Ⅰ)设等比数列{}n a 的公比为q ,由已知得233452()32a a a a a +=+⎧⎨=⎩,,,即2311141232.a q a q a q a q ⎧+=⎪⎨=⎪⎩,∵0n a >,∴0q >,解得12,2.q a =⎧⎨=⎩∴2n n a =. ……………………5分(Ⅱ)由已知得,21222(1)log log log 2n n n n S a a a +=+++=, ∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111122122311n n T n n n ⎡⎤⎛⎫⎡⎤⎛⎫=-+-++-=⎪ ⎪⎢⎥⎢⎥++⎝⎭⎣⎦⎝⎭⎣⎦.…………………10分(18)(本小题满分12分)(Ⅰ)()00cos cos cos cos cos cos a b a ba Ab B A C A B A+=⇒+=⇒=+-,∴sin2sin2A B =.∵A B ,是ABC ∆的内角,∴A B =,或2A B π+=,∴ABC ∆为等腰三角形或直角三角形. ………………………5分(Ⅱ)由(Ⅰ)及6C π=知,ABC ∆为等腰三角形,a b =.根据余弦定理2222cos a b ab C c +-=,得(223843a =-,解得24a =,∴2a =,∴ABC ∆的面积111sin 221222S ab C ==⨯⨯⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)(ⅰ)该地区2018年5月份消费者信心指数的同比增长率为124112.6100%10%112.6-⨯≈;(ⅱ)由已知环比增长率为负数,即本期数<上期数,从表中可以看出,2017年3月、2017年6月、2017年8月、2018年2月、2018年4月共5个月的环比增长率为负数. ……………………5分(Ⅱ)由已知计算得:17117221ˆ 1.16i ii ii x yn xy bxn x ==-=≈-⋅∑∑,ˆˆ104.56ay bx =-=,∴线性回归方程为ˆ 1.16104.56yx =+. 当18x =时,ˆ125.4y=,即预测该地区2018年6月份消费者信心指数约为125.4. ……………12分(20)(本小题满分12分)(Ⅰ)证明:∵平面ABCD ⊥平面ABEF ,CB AB ⊥,平面ABCD 平面ABEF AB =,∴CB ⊥平面ABEF ,∴CB AG ⊥. 在菱形ABEF 中,60ABE ∠=,可知ABE ∆为等边三角形,G 为BE 中点,∴AG BE ⊥.∵BE CB B =,∴AG ⊥平面BCE .∵AG ⊂平面ACG ,∴平面ACG ⊥平面BCE .…………5分 (Ⅱ)由(Ⅰ)知,AD ⊥平面ABEF ,AG BE ⊥,∴AG AF AD ,,两两垂直,以A 为原点,如图建立空间直角坐标系.设2AB =,则233BC =,()()()230 0 03 0 03131 03A G C B ⎛⎫-- ⎪ ⎪⎝⎭,,,,,,,,,,,. 设()m x y z =,,为平面ABC 的法向量,由00m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩得3023303x y x y z ⎧-=⎪⎨-+=⎪⎩, 取()1 3 0m =,,,同理可求平面ACG 的法向量()0 2 3n =,,, ∴2321cos 727m n m n m n⋅===⨯,,即二面角B CA G --的余弦值等于217.……………12分(21)(本小题满分12分)(Ⅰ)由椭圆的离心率为32得,32c a =,∴2a b =. 又∵椭圆C 经过点(2,1),∴224114b b+=,解得22b =,∴椭圆C 的方程为22182x y+=. ……………………5分(Ⅱ)由(Ⅰ)可知,A (0 2,),B (22 0,).设()00P x y ,,则 直线002:2y AP y x x -=+ ,从而002 02x M y ⎛⎫- ⎪ ⎪-⎝⎭,; 直线00:(22)22y BP y x x =--,从而00220 22y N x ⎛⎫- ⎪ ⎪-⎝⎭,. ∴四边形AMNB 的面积00002221122222222y x S AN BM x y ⎛⎫⎛⎫=⋅=+⋅+ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭()()()222000000000000022244428282224222x y x y x y x y x y x y xy+-++--+==--+--.∵2200182x y +=,∴00000000844282842224x y x y S x y x y +--+==--+. …………………12分(22)(本小题满分12分)(Ⅰ)⑴当0a =时,()()21f x x =+,()f x 的单调增区间是(1)-+∞,,单调减区间是(1)-∞-,;⑵当0a ≠时,()()211axa x x a f x e ⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦'=.①当0a <时,由()0f x '>解得1x >-或21x a <-;由()0f x '<解得211x a-<<-,∴()f x 的单调增区间是2 1a ⎛⎫-∞- ⎪⎝⎭,和(1)-+∞,,单调减区间是21 1a ⎛⎫-- ⎪⎝⎭,; ②当0a >时,由()0f x '>解得211x a-<<-;由()0f x '<解得21x a >-或1x <-,∴()f x 的单调增区间是21 1a ⎛⎫-- ⎪⎝⎭,,单调减区间是(1)-∞-,和21a ⎛⎫-+∞ ⎪⎝⎭,.………5分(Ⅱ)由已知和(Ⅰ)得,当0a >时满足题意,此时121x a=-,21x =-.()()1212f x f x x x +>+22422a e a a-⇔>-22422a e a a -⇔>-2220a e a a -⇔+->.令()222a g a e a a -=+-(0a >),则()2221a g a e a -'=+-.令()2221a h a e a -=+-(0a >),则()2220a h a e -'=+>恒成立, ∴()2221a h a e a -=+-(0a >)在(0 )+∞,上单调递增.∵()222132823212110102084422h h e e e e ⎡⎤⎛⎫⎛⎫=-<=->-=->⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,, ∴030 8a ⎛⎫∃∈ ⎪⎝⎭,,使()00h a =,即()020212 a e a -=-*.从而,当0(0)a a ∈,时,()0g a '<;当0()a a ∈+∞,时,()0g a '>,∴()g a 在0(0)a ,上单调递减,在0( )a +∞,上单调递增,∴()022000()2a g a g a e a a -≥=+-,将 (*)式代入得2000()()31g a g a a a ≥=-+.∵20031y a a =-+在30 8⎛⎫ ⎪⎝⎭,上单调递减,∴2200331313108864a a ⎛⎫-+>-⋅+=> ⎪⎝⎭,∴0()()0g a g a ≥> ,即2220a e a a --+>,∴1212()()f x f x x x +>+. ……………………12分合肥市2019届高三调研性检测数学试题(文科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABDCDCDBABCD二、填空题:本大题共4小题,每小题5分.(13)3 (14)2或-1 (15)(] 1-∞,(16)163π三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(Ⅰ)设等差数列{}n a 的公差为d ,由36a =,420S =得11262310a d a d +=⎧⎨+=⎩,解得12,2.d a =⎧⎨=⎩∴2n a n =. …………………………5分(Ⅱ)由(Ⅰ)得,()()2212n n n S n n +==+,从而()111111n S n n n n ==-++, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. …………………………10分(18)(本小题满分12分)(Ⅰ)由已知得 cos cos 2cos a C c A b B +=,由正弦定理得 sin cos sin cos 2sin cos A C C A B B +=, 即()sin 2sin cos A C B B +=.∵A C B π+=-,∴()sin sin A C B +=,∴sin 2sin cos B B B =. 由于sin 0B >,∴1cos 2B =. ∵B ∈(0π,),∴3B π=. ………………………5分(Ⅱ)由3ABC S B ∆=得1sin 32ac B B =, 由(Ⅰ)知,3B π=,代入上式得2ac =.由余弦定理得222222cos 3b a c ac B a c ac =+-=+-=,∴()2339a c ac +=+=,∴3a c +=,∴ABC ∆的周长为33………………………12分(19)(本小题满分12分)(Ⅰ)(ⅰ)月销售额在[14 16),内的频率为()120.030.120.180.070.020.020.12-⨯+++++=; (ⅱ)若70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据频率分布直方图知,[)12 14,和[)14 16,两组频率之和为0.18,月销售额目标应定为0.12162170.24+⨯=(万元); ………………………5分(Ⅱ)根据直方图可知,销售额为[)22 24,和[]24 26,的频率之和为0.08, 由500.084⨯=可知待选的推销员一共有4人,设这4人分别为1212A A B B ,,,,则4人依次有以下不同的选择:121112A A A B A B ,,;2122A B A B ,;12B B ,一共有6种不同的情况,每一种结果都是等可能的,而4人来自同一组的情况有2种,∴选定的推销员来自同一个小组的概率是2163P ==. ………………………12分(20)(本小题满分12分)(Ⅰ)∵平面ABCD ⊥平面ABEF ,DA AB ⊥,平面ABCD 平面ABEF AB =,∴DA ⊥平面ABEF ,∴DA EG ⊥.在菱形ABEF 中,60AFE ∠=︒,可知AEF ∆为等边三角形,G 为AF中点,∴AF EG ⊥. ∵DA AF A =, ∴EG ⊥平面DAF . ……………………5分(Ⅱ)如图,取AB 的中点为H ,连接EH ,易证EH AB ⊥.由面面垂直的性质可知,EH ⊥平面ABCD ,由(Ⅰ)知,EG ⊥平面DAF ,∴()1339363322BCE ADF E ABCD E ADF V V V ---=+=⨯⨯+=. ……………………12分(21)(本小题满分12分)(Ⅰ)由椭圆的离心率为32得,32c a =,∴2a b =.又∵椭圆C :22221x y a b +=(0a b >>)经过点13 2⎛⎫ ⎪⎝⎭,,∴2231144b b+=,解得21b =, ∴椭圆C 的方程为2214x y +=. ……………………5分(Ⅱ)设点()()000020 10P x y x y -<<-<<,,.由(Ⅰ)知,()()0 12 0A B ,,,, ∴直线AP 的方程为0011y y x x -=+. 令0y =得,001M xx y =-. 直线BP 的方程为()0022y y x x =--.令0x =得,0022N yy x =-. ∴00000222122y x y AN x x --=-=--,0000022211x x y BM y y --=-=--, ∴()()()200000000002222222121x y x y x y AN BM x y x y ------⋅=⋅=----()220000000000000000004224448442222x y x y x y x y x y x y x y x y x y --+++--+===--+--+,是一个确定的定值.…………………12分(22)(本小题满分12分)(Ⅰ)∵()()2322ln 13f x x x ax =--,∴()24ln 2f x x x ax '=-.由()126f a '=-=-,解得3a =. ………………………5分(Ⅱ)∵12x x ≠,不妨设12x x >,()()()()()()()121212112212202022f x f x f x f x x x f x x f x x x x -+<⇔-+-<⇔+<+-.设()()2g x f x x =+,则()g x 在()1+∞,单调递减,∴()0g x '≤在()1+∞,恒成立. 由(Ⅰ)知,()24ln 2f x x x ax '=-,()24ln 22g x x x ax '=-+,HGFED CB A∴22ln 1x a x x≥+在()1+∞,恒成立. 令()22ln 1x h x x x=+,则()()32ln 1x x x h x x --'=, 令()ln 1F x x x x =--,()ln F x x '=-,∴当()1 x ∈+∞,时,()0F x '<,即()F x 在()1+∞,单调递减,且()()10F x F <=, ∴()0h x '<在()1+∞,恒成立, ∴()h x 在()1+∞,单调递减,且()()11h x h <=, ∴1a ≥. ……………………12分。

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

合肥市2019届高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共 小题,每小题 分 在每小题给出的四个选项中,只有一项是符合题目要求的设复数z 满足41iz i=+,则z 在复平面内的对应点位于 ✌第一象限 第二象限 第三象限 第四象限若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B =✌[)22-,(]11-, ☎, ✆ ☎, ✆.已知双曲线22221x y a b-=☎00a b >>,✆的一条渐近线方程为2y x =,且经过点P ✆,则双曲线的方程是✌221432x y -= 22134x y -= 22128x y -=2214y x -=在ABC ∆中,12BD DC =,则AD = ✌ 1344AB AC +  2133AB AC +  1233AB AC + 1233AB AC - 下表是某电器销售公司 年度各类电器营业收入占比和净利润占比统计表:...✌该公司 年度冰箱类电器销售亏损该公司 年度小家电类电器营业收入和净利润相同 该公司 年度净利润主要由空调类电器销售提供剔除冰箱类电器销售数据后,该公司 年度空调类电器销售净利润占比将会降低将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12☎纵坐标不变✆得到函数()g x 的图象,则下列说法正确的是✌函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 函数()g x 的周期是2π函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 函数()g x 在0 6π⎛⎫⎪⎝⎭,上最大值是已知椭圆22221x y a b+=☎0a b >>✆的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是✌ 33  23  3222某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有✌种∙∙∙∙∙∙∙ 种∙∙∙∙∙∙ 种∙∙∙∙∙ ∙ 种 函数()2sin f x x x x =+的图象大致为如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有✌对 对 对 对❽垛积术❾☎隙积术✆是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等 某仓库中部分货物堆放成如图所示的❽茭草垛❾:自上而下,第一层 件,以后每一层比上一层多 件,最后一层是n 件.已知第一层货物单价 万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为✌  函数()121x x f x e e b x -=---在☎, ✆内有两个零点,则实数b 的取值范围是✌()()11 e ee e---,, ()()1 00 1e e --,, ()()1 00 1e e --,,()()1 1e e e e ---,,第♋卷本卷包括必考题和选考题两部分 第 题 第 题为必考题,每个试题考生都必须作答 第 题、第 题为选考题,考生根据要求作答二、填空题:本大题共 小题,每小题 分 把答案填在答题卡上的相应位置设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =♉♉♉♉♉♉♉♉♉♉ 若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=♉♉♉♉♉♉♉♉♉♉♉♉♉若0a b +≠,则()2221a b a b +++的最小值为♉♉♉♉♉♉♉♉♉已知半径为 的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为♉♉♉♉♉♉♉♉♉♉♉♉三、解答题:解答应写出文字说明、证明过程或演算步骤. ☎本小题满分 分✆在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=,ABC ∆的面积S abc =☎♊✆求角C ;☎♋✆求ABC ∆周长的取值范围☎本小题满分 分✆如图,三棱台ABC EFG==,BF CF-的底面是正三角形,平面ABC⊥平面BCGF,2CB GF ☎♊✆求证:AB CG⊥;☎♋✆若BC CF=,求直线AE与平面BEG所成角的正弦值☎本小题满分 分✆某种大型医疗检查机器生产商,对一次性购买 台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金 元,在延保的两年内可免费维修 次,超过 次每次收取维修费 元;方案二:交纳延保金 元,在延保的两年内可免费维修 次,超过 次每次收取维修费 元某医院准备一次性购买 台这种机器。

2019届合肥新高三7月调研性数学检测理科数学(解析版)

2019届合肥新高三7月调研性数学检测理科数学(解析版)

11
所以r 2 .
6.执行右面的程序框图,若输出的结果为 15,则判断框中的条件是( )
A.i 4?
B.i 5?
C.i 6?
D.i 7 ?
6.答案:C
解析:由程序框图可知,该程序框图的功能是计算
i(i 1)
S 1 23i
的值,又S 15 ,
2
所以i 5 ,当i 1 6 时退出循环,结合选项
则该几何体的表面积等于( )
A.48 8
B.48 4
C.64 8
D.64 4
9.答案:D 解析:由三视图可知,该几何体是由一个半球和一个直四棱柱的组合体, 根据图中数据可知,表面积为
4 4 2 22 4 2 4 1 4 22 64 4 2
10.若将函数 f (x) cos2 x(1 cos x)(1 cos x) 图象上所有点的横坐标伸长为原来的 2 倍(纵坐标不变),得到函

2
12
1 1

Sn
n(n 1)
2
n
n
1

1
1 1 1 1 1 2n
∴ Sn
的前n
项和Tn
2 1
2
2
3
n
n
1
n 1
.…………………10 分
18.(本小题满分 12 分)
a
b
已知:在△ABC 中,a,b,c 分别是角 A,B,C 所对的边长,
0.
cos( A C) cos A
2
2
连接BF ,则BF 平面 AED ,连接 AF ,则BAF 为 AB 与平面 ADE 所成的角,所以
1
BF sin BAF
2

合肥市2019年度高三三模理科数学试题及答案解析

合肥市2019年度高三三模理科数学试题及答案解析

合肥市2019年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)—、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)1. 设集合M={R x ∈|x 2<4},N={-1,1,2},则M I N =( ) A{-1,1,2} B.{-1,2} C.{1,2} D{-1,1}2. 已知(1+i)(a-2i)= b-ai(其中a,b 均为实数,i 为虚数单位),则a+b =( ) A. -2B.4C.2D.03. 等比数列{a n }中,a 2=2,a 5 =41,则a 7 =( ) A.641 B. 321 C. 161 D. 81 4. “ m < 1 ”是“函数f(x) = x 2-x+41m 存在零点”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 5. 右边程序框图,输出a 的结果为( ) A.初始值a B.三个数中的最大值 C. 二个数中的最小值 D.初始值c6. 已知⎪⎩⎪⎨⎧≥+-≤--≥+033206322y x y x y x ,且z=x 2+y+,则z 的最小值是( )A.4B.1C. 18D.y7. P 是正六边形ABCDEF 某一边上一点,AF y AB x AP +=, 则x+y 的最大值为( )A.4B.5C.6D.78. 右图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面 积为( )A.20 + 17πB.20 + 16πC. 16 + 17πD. 16 + l6π9. 五个人负责一个社团的周一至周五的值班工作, 每人一天,则甲同学不值周一,乙同学不值周五,且甲,乙不相邻的概率是( )A.103 B. 207 C. 52 D. 301310.定义域为R 的函数f(x)的图像关于直线x= 1对称,当a ∈[0,l]时,f(x) =x,且对任意R x ∈只都有f(x+2) = -f(x),g(x)= ⎩⎨⎧<--≥)0)((log )0)((2013x x x x f ,则方程g(x)-g(-x) =0实数根的个数为( )A. 1006B. 1007C. 2018D.2018第II 卷(满分100分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.已知抛物线的准线方程是x=21,则其标准方程是______12.关于x 的不等式log 2|1-x| > 1的解集为_______ 13.曲线C 的极坐标方程为: θρcos 2=,曲线T 的参数方程为⎩⎨⎧+=+-=121t y t x (t 为参数),则曲线C 与T 的公共点有______个.14.如图,一栋建筑物AB 高(30-103)m ,在该建筑 物的正东方向有一个通信塔CD.在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处 测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m.15.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P ,Q,R 分 别是棱BC,CD,DD 1的中点.下列命题:①过A 1C 1且与CD 1平行的平面有且只有一个; ②平面PQR 截正方体所得截面图形是等腰梯形; ③AC 1与平面PQR 所成的角为60°;④线段EF 与GH 分别在棱A 1B 1和CC 1上运动,且EF + GH = 1,则三棱锥E - FGH 体积的最大值是121 ⑤线段MN 是该正方体内切球的一条直径,点O 在正 方体表面上运动,则ONOM .的取值范围是[0,2].其中真命题的序号是______(写出所有真命题的序号).三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知函数f(x)=Asin())2,0(,0,0(),πϕωϕω∈>>+A x 部分图像如图所示.(I)求函数f(x)的解析式; (II)已知)2,0(π∈a ),且32cos =a ,求f(a).17.(本小题满分13分)如图BB1,CC1,DD1均垂直于正方形AB1C1D1所在平面A、B、C、D四点共面.(I)求证:四边形ABCD为平行四边形;(II)若E,F分别为AB1,D1C1上的点,AB1=CC1=2BB1=4,AE = D1F =1.(i)求证:CD丄平面DEF;(ii)求二面角D-EC1-D1的余弦值.18.(本小题满分12分)已知f(x) = log a x- x +1( a>0,且a ≠1).(I)若a=e,求f(x)的单调区间;(II)若f(x)>0在区间(1,2)上恒成立,求实数a的取值范围.19.(本小题满分13分)根据上级部门关于开展中小学生研学旅行试点工作的要求,某校决定在高一年级开展中小学生研学旅行试点工作.巳知该校高一年级10个班级,确定甲、乙、丙三 条研学旅行路线.为使每条路线班级数大致相当,先制作分别写有甲、乙、丙字样的签 各三张,由高一(1)〜高一(9)班班长抽签,再由高一(10)班班长在分别写有甲、乙、 丙字样的三张签中抽取一张.(I)设“有4个班级抽中赴甲路线研学旅行”为事件A ,求事件A 的概率P(A);(II )设高一(l)、高一(2)两班同路线为事件B,高一(1)、高一(10)两班同路线为事 件C ,试比较事件B 的概率P(B)与事件C 的概率P( C)的大小;(III)记(II)中事件B 、C 发生的个数为ξ,求随机变量ξ的数学期望E ξ20.(本小题满分12分)平面内定点财(1,0),定直线l:x=4,P 为平面内动点,作PQ 丄l ,垂足为Q ,且||2||PM PQ =.(I)求动点P 的轨迹方程;(II )过点M 与坐标轴不垂直的直线,交动点P 的轨迹于点A 、B ,线段AB 的垂直平分 线交x 轴于点H ,试判断||||AB HM -是否为定值.21.(本小题满分13分)设数列{a n }的前n 项和为S n ,且对任意的*N n ∈,都有a n >0,S n = 33231...n a a a +++(I)求a 1,a 2的值; (II)求数列{a n }的通项公式a n(III)证明:ln2≤a n ·ln(1+)1na <ln3。

安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解

安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解

C. 2
D.
【分析】 本道题结合复数的运算,化简
z,计算虚部,即可。
【详解】
, 故虚部即为 i 的系数,为 -2 ,故选 D。
【点睛】本道题看考查了复数的化简,关键在于化简
z,属于较容易的题。
2. 集合

,则
=( )
A.
B.
C.
D.
【答案】 C
【分析】
先化简集合 A,B ,结合并集计算方法,求解,即可。
,所以结合
,可得
【点睛】本道题考查了等差数列的性质,关键抓住
难度中等。
5. 已知偶函数 在
上单调递增,则对实数
( ).
-2-
,代入,即可。
,而因为该数列为正项数列,可得
,故选 D。
,即可,
,“
”是“
”的
A. 充分不必要条件 C. 充要条件 【答案】 A
B. 必要不充分条件 D. 既不充分也不必要条件
A. 互联网行业从业人员中 90 后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的
20%
C. 互联网行业中从事运营岗位的人数 90 后比 80 前多
D. 互联网行业中从事技术岗位的人数 90 后比 80 后多
【答案】 D
【分析】 本道题分别将各个群体的比例代入,即可。 【详解】 A 选项,可知 90 后占了 56%,故正确; B 选项,技术所占比例为 39.65%, 故正确;
可 , 属于较容易的题 .
6. 某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、
90 后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是
( ).
注:90 后指 1990 年及以后出生, 80 后指 1980-1989 年之间出生, 80 前指 1979 年及以前出生 .

2019年合肥市高三教学质量检测理科数学试卷(含答案)

2019年合肥市高三教学质量检测理科数学试卷(含答案)

高三数学试题(理科)答案 第1 页(共4页)合肥市2019年高三第一次教学质量检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.13.()1 6-, 14.115.⎭16.222433n n ⎛⎫-⋅+ ⎪⎝⎭三、解答题:17.(本小题满分12分)(I)∵()11cos 22cos 22cos 2sin 2226f x x x x x x x π⎛⎫=-=+=+ ⎪⎝⎭, ∴函数()f x 的最小正周期为T π=.…………………………5分(II)由()13f α=可得1sin 263πα⎛⎫+= ⎪⎝⎭. ∵0,2πα⎛⎫∈ ⎪⎝⎭, ∴72 666πππα⎛⎫+∈ ⎪⎝⎭,. 又∵110sin(2, 632πα<+=<∴ 2+,,62ππαπ⎛⎫∈ ⎪⎝⎭∴ cos 263πα⎛⎫+=- ⎪⎝⎭,∴ cos 2cos 2cos 2cos sin 2sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ………………………12分18.(本小题满分12分)(I)取CD 的中点M ,连结EM ,BM .由已知得BCD ∆为等边三角形,∴BM CD ⊥.∵2,AD AB BD ===,∴30,ADB ABD ∠=∠=︒∴90,ADC ∠=︒∴//BM AD .又∵BM ⊄平面PAD ,AD ⊂平面PAD ,∴BM ∥平面PAD .∵E 为PC 的中点,M 为CD 中点,∴EM ∥PD .又∵EM ⊄平面PAD ,PD ⊂平面PAD .∴EM ∥平面PAD .∵EM BM M = ,∴平面BEM ∥平面PAD , 题号 1 2 3 4 5 6 7 8 9 10 11 12答案D C C D A D D D C C B A高三数学试题(理科)答案 第2 页(共4页)∵BE ⊂平面BEM ,∴BE ∥平面PAD . …………………………5分 (II)连结AC ,交BD 于点O ,连结PO . 由对称性知,O 为BD 中点,且AC BD ⊥,BD PO ⊥ 平面PBD ⊥平面ABCD ,PO BD ⊥, ∴PO ⊥平面ABCD ,1PO AO ==,3CO =.以O 为坐标原点,的方向为x 轴正方向,建立空间直角坐标系O xyz -. 则D (0,,0),C (3,0,0),P (0,0,1).易知平面PBD 的一个法向量为()11,0,0n = .设平面PCD 的法向量为()2n x y z = ,,, 则n ⊥2,n ⊥2,∴ ⎪⎩⎪⎨⎧=⋅=⋅0022n n . ∵)0,3,3(=,)1,3,0(=,∴⎩⎨⎧=+=+03033z y y x . 令3=y ,得3,1-=-=z x ,∴)3,3,1(2--=n∴1313131-=-==n n 设二面角B PD C --的大小为θ,则cos 13θ=. ………………………12分 19.(本小题满分12分) (I)0.06340.18380.20420.28460.16500.10540.025844.7245x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈;…………………………5分(II)由题意知,39.2 50.8μσμσ-≈+≈,,()39.250.80.6826P t <<=,所以估计该人群中一周睡眠时间在区间()39.2 50.8,的人数约为100000.68266826⨯=(人); …………………………12分20.(本小题满分12分)(I)设椭圆的半焦距为c ,由椭圆的离心率为2知,b c a ==,,则椭圆方程为222212x y b b+=.易求得)0A,则点在椭圆上,所以222212b b +=, 解得2263a b ⎧=⎨=⎩,所以椭圆方程为22163x y +=. …………………………5分 (II)当过点P 且与圆O相切的切线斜率不存在时,不妨设切线方程为x =1)知,M N ,,0OM ON OM ON ==⋅= ,,,∴ OM ON ⊥. 当过点P 且与圆O 相切的切线斜率存在时,可设切线方程为y kx m =+,高三数学试题(理科)答案 第3 页(共4页)()()1122M x y N x y ,,,,=,即()2221m k =+. 联立直线和椭圆的方程得()2226x kx m ++=,∴ ()222124260k x kmx m +++-=,得122212204212621km x x k m x x k ⎧⎪∆>⎪⎪+=-⎨+⎪⎪-=⎪+⎩. ∵()()1122 OM x y ON x y == ,,,, ∴()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++ ()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++()()()()2222222222222126421322663660212121k m k m m k k k m k k k k +--+++----====+++, ∴ OM ON ⊥.综上所述,圆O 上任意点P 处的切线交椭圆C 于点M N ,,都有OM ON ⊥.在Rt OMN ∆中,由OMP ∆与NOP ∆相似,可得22OP PM PN =⋅=为定值.…………………………12分21.(本小题满分12分)(I)易知1x >-,且()11x f x e x '=-+. 令()11x h x e x =-+, 则()()2101x h x e x '=+>+,∴ 函数()11x h x e x =-+在()1x ∈-+∞,上单调递增,且()()000h f '==.可知,当()1 0x ∈-,时,()()0h x f x '=<,()()ln 1x f x e x =-+单调递减; 当()0x ∈+∞,时,()()0h x f x '=>,()()ln 1x f x e x =-+单调递增. ∴函数()f x 的单调递减区间是()1 0-,,单调递增区间是()0+∞,.……………………5分(II)∵()()()ln 1x g x f x ax e x ax =-=-+-,∴()()g x f x a ''=-.由(I)知,()g x '在()1x ∈-+∞,上单调递增, 当1x →-时,()g x '→-∞;当x →+∞时,()g x '→+∞,则()0g x '=有唯一解0x . 可知,当()01x x ∈-,时,()0g x '<,()()ln 1x g x e x ax =-+-单调递减; 当()0x x ∈+∞,时,()0g x '>,()()ln 1x g x e x ax =-+-单调递增, ∴ 函数()g x 在0x x =处取得极小值()()0000ln 1x g x e x ax =-+-,且0x 满足0011x e a x -=+. ∴ ()()()0000011ln 111x g x x e x x =--++-+.高三数学试题(理科)答案 第4 页(共4页)max 2S =2312πθ=令()()()11ln 111xx x e x x ϕ=--++-+,则()()211x x x e x ϕ⎡⎤'=-+⎢⎥+⎢⎥⎣⎦. 可知,当()1 0x ∈-,时,()0x ϕ'>,()x ϕ单调递增;当()0x ∈+∞,时,()0x ϕ'<,()x ϕ单调递减, ∴ ()()max 01x ϕϕ==. ∴ 函数()g x 极小值的最大值为1. …………………………12分22.(本小题满分10分)(I)221:1C x y +=,2:=2cos C ρθ,则2=2cos ρρθ,∴ 222x y x +=.联立方程组得222212x y x y x ⎧+=⎪⎨+=⎪⎩,解得11122x y ⎧=⎪⎪⎨⎪=⎪⎩,22122x y ⎧=⎪⎪⎨⎪=⎪⎩,∴ 所求交点的坐标为12⎛ ⎝⎭,1 2⎛ ⎝⎭,.………………………5分 (II)设()B ρθ,,则=2cos ρθ,∴AOB ∆的面积11sin 4sin 4cos sin 2233S OA OB AOB ππρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=+ ⎪⎝⎭, ∴ 当 时, ………………………10分23.(本小题满分10分)(I)()22f x x +>,即1>22x x +-⇔10101>221>22x x x x x x+≥+<⎧⎧⎨⎨+----⎩⎩或13x ⇔>∴ 实数x 的取值范围是1 3⎛⎫+∞ ⎪⎝⎭. ………………………5分 (II)∵ 1a >,∴ 11a -<-,()()()(1)211(1)1112a x x g x a x x a a x x a ⎧⎪-+-∈-∞⎪⎪⎡⎤=-∈--⎨⎢⎥⎣⎦⎪⎪⎛⎫++∈-+∞⎪ ⎪⎝⎭⎩, ,-, ,, ,, 易知函数()g x 在1x a ⎛⎫∈-∞- ⎪⎝⎭,时单调递减,在1x a ⎛⎫∈-+∞ ⎪⎝⎭,时单调递增,则()min 111g x g a a ⎛⎫=-=- ⎪⎝⎭. ∴ 1112a -=,解得2a =. …………………………10分。

合肥市2019届高三调研性检测数学试题-理科含答案

合肥市2019届高三调研性检测数学试题-理科含答案

立的是
(A) f a2 1 f 2a (B) f a2 1 f 2a (C) f a2 1 f a 1 (D) f a2 1 f a
(12)在 ABC 中, CAB 90o , AC 1 , AB 3 .将 ABC 绕 BC 旋转至另一位置 P (点 A 转到点 P ),
………………………5 分
解得 a2 4 ,∴ a 2 ,
∴ ABC 的面积 S 1 ab sin C 1 2 2 1 1 .
2
2
2
……………………12 分
(19)(本小题满分 12 分)
124 112.6 100% 10%
(Ⅰ)(ⅰ)该地区2018年5月份消费者信心指数的同比增长率为 112.6
17
17
小数,参考数据与公式: xi yi 18068 , xi2 1785 , x 9上
i 1
i 1
n
bˆ y 115 ,
xi yi n x y
i1
n
xi2 nx 2
)
i1
(20)(本小题满分 12 分) 如图,矩形 ABCD 和菱形 ABEF 所在的平面相互垂直, ABE 60 , G 为 BE 中点. (Ⅰ)求证:平面 ACG 平面 BCE ; (Ⅱ)若 AB 3BC ,求二面角 B CA G 的余弦值.

的前
n
项和
Tn
.
(18)(本小题满分 12 分)
已知:在 ABC 中, a,b,
c 分别是角 A,B,
C
所对的边长,
cos
a
A

C


b cos
A

0

安徽省合肥市2019届高三第二次教学质量检测数学(理科)试题(含答案)

安徽省合肥市2019届高三第二次教学质量检测数学(理科)试题(含答案)

合肥市2019届高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足41iz i=+,则z 在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B =I ( )A.[)22-,B.(]11-,C.(-1,1)D.(-1,2) 3.已知双曲线22221x y a b-=(00a b >>,)的一条渐近线方程为2y x =,且经过点P 64),则双曲线的方程是( )A.221432x y -=B.22134x y -=C.22128x y -=D.2214y x -= 4.在ABC ∆中,12BD DC =u u u r u u u r ,则AD =u u u r( )A. 1344AB AC +u u u r u u u rB. 2133AB AC +u u u r u u u rC. 1233AB AC +u u u r u u u rD. 1233AB AC -u u ur u u u r5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类 冰箱类 小家电类 其它类 营业收入占比90.10% 4.98% 3.82% 1.10% 净利润占比95.80%-0.48%3.82%0.86%则下列判断中不正确...A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A.函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 B.函数()g x 的周期是2πC.函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增D.函数()g x 在0 6π⎛⎫⎪⎝⎭,上最大值是17.已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是( ) 32328.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有( ) A.36种 B.44种 C.48种 D.54种 9.函数()2sin f x x x x =+的图象大致为( )10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( ) A.2对 B.3对 C.4对 D.5对11.“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一910.若这堆货层货物单价1万元,从第二层起,货物的单价是上一层单价的物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为( )12.函数()121x x f x e e b x -=---在(0,1)内有两个零点,则实数b 的取值范围是( )A.()() 11 e e e e ---U,,B.()()1 00 1e e --U ,,C.()()1 00 1e e --U ,, D.()()1 1e e e e ---U ,,第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13.设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =__________. 14.若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=_____________.15.若0a b +≠,则()2221a b a b +++的最小值为_________.16.已知半径为4的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为____________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=, ABC ∆的面积S abc =. (Ⅰ)求角C ;(Ⅱ)求ABC ∆周长的取值范围.18.(本小题满分12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =. (Ⅰ)求证:AB CG ⊥;(Ⅱ)若BC CF =,求直线AE 与平面BEG 所成角的正弦值.19.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

合肥市2019届高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足41iz i=+,则z 在复平面内的对应点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B =A.[)22-,B.(]11-,C.(-1,1)D.(-1,2)3.已知双曲线22221x y a b-=(00a b >>,)的一条渐近线方程为2y x =,且经过点P 4),则双曲线的方程是A.221432x y -=B.22134x y -=C.22128x y -=D.2214y x -= 4.在ABC ∆中,12BD DC =,则AD = A.1344AB AC + B. 2133AB AC + C. 1233AB AC + D. 1233AB AC - 5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:...A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A.函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 B.函数()g x 的周期是2πC.函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增D.函数()g x 在0 6π⎛⎫⎪⎝⎭,上最大值是17.已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是A.33 B. 23 C. 32D. 228.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有A.36种B.44种C.48种D.54种 9.函数()2sin f x x x x =+的图象大致为10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有A.2对B.3对C.4对D.5对11.“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为A.7B.8C.9D.1012.函数()121x x f x e e b x -=---在(0,1)内有两个零点,则实数b 的取值范围是A.()()11 e e e e ---,, B.()()1 00 1e e --,,C.()()1 00 1e e --,,D.()()1 1e e e e ---,,第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13.设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =__________. 14.若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=_____________.15.若0a b +≠,则()2221a b a b +++的最小值为_________.16.已知半径为4的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为____________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=,ABC ∆的面积S abc =.(Ⅰ)求角C ;(Ⅱ)求ABC ∆周长的取值范围.18.(本小题满分12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(Ⅰ)求证:AB CG ⊥;(Ⅱ)若BC CF =,求直线AE 与平面BEG 所成角的正弦值.19.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。

安徽省合肥市2019届高三第一次教学质量检测数学(理)试题Word版含答案

安徽省合肥市2019届高三第一次教学质量检测数学(理)试题Word版含答案
2 2
0.06 34 0.18 38 0.20 42 0.28 46 0.16 50 0.10 54 0.02 58 44.72 45 ; …………………………
6826 ( 人 ) ; …………………………
c ,由椭圆的离心率为
2 知, b 2
c, a
2b ,
x
2 2
合肥市 2019 届高三第一次教学质量检测数学试题
(理科 )
参考答案及评分标准
一、选择题:本大题共 题号 答案 1 D 2 C 12 小题,每小题 3 C 4 D 5 A 5 分. 3, 13 2
4
5 分. 6 D 7 D 8 D 9 C 10 C 11 B 12 A
二、填空题:本大题共 13. 1, 6 14.1
合肥市 2019 届高三第一次教学质量检测
数学试题 ( 理科 )
( 考试时间: 120 分钟 满分: 150 分 )
第Ⅰ 卷
一、选择题:本大题共 题目要求的 . 1. 已知 i 为虚数单位, A. 2i B. x x
2
12 小题,每小题 4
5 分 .在每小题给出的四个选项中,只有一项是符合
z 2i
,则复数 z 的虚部为 ( 1 i C.2 D. 2
组数据用该组区间的中点值代替,结果精确到 个位 ) ; ( Ⅱ ) 由直方图可以认为, 人的睡眠时间 t 近似服从正态分布
2 2 2
N

2
,其中
近似地等
于样本平均数 x , s ,s 33.6 . 假设该辖区内这一年龄层次共有 近似地等于样本方差 10000 人,试估计该人群中一周睡眠时间位于区间 (39.2 , 50.8) 的人数 . 附: 33.6 P 2 Z 5.8 .若随机变量 Z 服从正态分布 2 0.9544 .

合肥市2019高三三模理科数学试题及答案

合肥市2019高三三模理科数学试题及答案

合肥市2019年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)—、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)1. 设集合M={R x ∈|x 2<4},N={-1,1,2},则M I N =( )A{-1,1,2} B.{-1,2} C.{1,2} D{-1,1}2. 已知(1+i)(a-2i)= b-ai(其中a,b 均为实数,i 为虚数单位),则a+b =( )A. -2 .43. 等比数列{a n }中,a 2=2,a 5 =41,则a 7 =( ) A. 641 B. 321 C. 161 D. 81 4. “ m < 1 ”是“函数f(x) = x 2-x+41m 存在零点”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件5. 右边程序框图,输出a 的结果为( )A.初始值aB.三个数中的最大值C. 二个数中的最小值D.初始值c6. 已知⎪⎩⎪⎨⎧≥+-≤--≥+033206322y x y x y x ,且z=x 2+y+,则z 的最小值是( ) B.1 C. 187. P 是正六边形ABCDEF 某一边上一点,AF y AB x AP +=,则x+y 的最大值为( ).58. 右图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面 积为( )+ 17π + 16πC. 16 + 17πD. 16 + l6π9. 五个人负责一个社团的周一至周五的值班工作, 每人一天,则甲同学不值周一,乙同学不值周五,且甲,乙不相邻的概率是( ) A. 103 B. 207 C. 52 D. 3013 10.定义域为R 的函数f(x)的图像关于直线x= 1对称,当a ∈[0,l]时,f(x) =x,且对任意R x ∈只都有f(x+2) = -f(x),g(x)= ⎩⎨⎧<--≥)0)((log )0)((2013x x x x f ,则方程g(x)-g(-x) =0实数根的个数为( ) A. 1006 B. 1007 C. 2018第II 卷(满分100分) 二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11.已知抛物线的准线方程是x=21,则其标准方程是______12.关于x 的不等式log 2|1-x| > 1的解集为_______13.曲线C 的极坐标方程为: θρcos 2=,曲线T 的参数 方程为⎩⎨⎧+=+-=121t y t x (t 为参数),则曲线C 与T 的公共点有______个.14.如图,一栋建筑物AB 高(30-103)m ,在该建筑 物的正东方向有一个通信塔CD.在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处 测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m.15.如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,P ,Q,R 分 别是棱BC,CD,DD 1的中点.下列命题: ①过A 1C 1且与CD 1平行的平面有且只有一个;②平面PQR 截正方体所得截面图形是等腰梯形;③AC 1与平面PQR 所成的角为60°;④线段EF 与GH 分别在棱A 1B 1和CC 1上运动,且EF + GH = 1,则三棱锥E - FGH 体积的最大值是121 ⑤线段MN 是该正方体内切球的一条直径,点O 在正 方体表面上运动,则ON OM .的取值范围是[0,2].其中真命题的序号是______(写出所有真命题的序号).三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知函数f(x)=Asin())2,0(,0,0(),πϕωϕω∈>>+A x 部分图像如图所示.(I)求函数f(x)的解析式;(II)已知)2,0(π∈a ),且32cos =a ,求f(a).17.(本小题满分13分)如图BB 1,CC 1 ,DD 1均垂直于正方形AB 1C 1D 1所在平面A 、B 、C 、D 四点共面.(I)求证:四边形ABCD 为平行四边形;(II)若E,F 分别为AB 1 ,D 1C 1上的点,AB 1 =CC 1 =2BB 1 =4,AE =D 1F =1.(i)求证:CD 丄平面DEF;(ii)求二面角D-EC 1-D 1的余弦值.18.(本小题满分12分)已知f(x) = log a x- x +1( a>0,且 a ≠ 1).(I)若a=e,求f(x)的单调区间;(II)若f(x)>0在区间(1,2)上恒成立,求实数a 的取值范围.19.(本小题满分13分)根据上级部门关于开展中小学生研学旅行试点工作的要求,某校决定在高一年级开展中小学生研学旅行试点工作.巳知该校高一年级10个班级,确定甲、乙、丙三 条研学旅行路线.为使每条路线班级数大致相当,先制作分别写有甲、乙、丙字样的签 各三张,由高一(1)〜高一(9)班班长抽签,再由高一(10)班班长在分别写有甲、乙、 丙字样的三张签中抽取一张.(I)设“有4个班级抽中赴甲路线研学旅行”为事件A ,求事件A 的概率P(A);(II )设高一(l)、高一(2)两班同路线为事件B,高一(1)、高一(10)两班同路线为事 件C ,试比较事件B 的概率P(B)与事件C 的概率P( C)的大小;(III)记(II)中事件B 、C 发生的个数为ξ,求随机变量ξ的数学期望E ξ20.(本小题满分12分)平面内定点财(1,0),定直线l:x=4,P 为平面内动点,作PQ 丄l ,垂足为Q ,且||2||PM PQ =.(I)求动点P 的轨迹方程;(II )过点M 与坐标轴不垂直的直线,交动点P 的轨迹于点A 、B ,线段AB 的垂直平分 线交x 轴于点H ,试判断||||AB HM -是否为定值.21.(本小题满分13分)设数列{a n }的前n 项和为S n ,且对任意的*N n ∈,都有a n >0,S n =33231...n a a a +++ (I)求a 1,a 2的值;(II)求数列{a n }的通项公式a n(III)证明:ln2≤a n ·ln(1+)1na <ln3。

安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解

安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解

2019年4月安徽省合肥市2019届高三第一次教学质量检测数学理试题(考试时间:120分钟满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,则复数的虚部为( ).A. B. C. 2 D.【答案】D【分析】本道题结合复数的运算,化简z,计算虚部,即可。

【详解】,故虚部即为i的系数,为-2,故选D。

【点睛】本道题看考查了复数的化简,关键在于化简z,属于较容易的题。

2.集合,,则=( )A. B.C. D.【答案】C【分析】先化简集合A,B,结合并集计算方法,求解,即可。

【详解】解得集合,所以,故选C。

【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小。

3.执行如图所示的程序框图,则输出的值为( ).A. 63B. 47C. 23D. 7【答案】C【分析】本道题不断的代入i,n,直到,退出循环,即可。

【详解】n=15,i=2不满足条件,继续循环,得到n=11,i=3不满足条件 ,继续循环,n=23,i=4,满足条件,退出循环,输出n,即可。

故选C。

【点睛】本道题考查了程序框图的意义,关键找出当对应的n,输出,即可,难度较容易。

4.已知正项等差数列的前项和为(),,则的值为( ).A. 11B. 12C. 20D. 22【答案】D【分析】本道题结合等差数列性质,结合,代入,即可。

【详解】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,故选D。

【点睛】本道题考查了等差数列的性质,关键抓住,即可,难度中等。

5.已知偶函数在上单调递增,则对实数,“”是“”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【分析】本道题结合偶函数满足以及单调递增关系,前后推导,即可.【详解】结合偶函数的性质可得,而当,所以结合在单调递增,得到,故可以推出.举特殊例子,,但是,故由无法得到,故是的充分不必要条件,故选A.【点睛】本道题考查了充分不必要条件的判定,关键结合偶函数的性质以及单调关系,判定,即可,属于较容易的题.6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】D【分析】本道题分别将各个群体的比例代入,即可。

合肥市2019高三三模理科数学试题及答案

合肥市2019高三三模理科数学试题及答案

合肥市2019年高三第三次教学质量检测数学试题(理)(考试时间:120分钟满分:150分)第I 卷(满分50分)―、选择题(本大题共 10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一 项是符合题目要求的)_ 21. 设集合 M={xR |x <4},N={-1,1,2}, 贝UM N=() A{-1 , 1, 2} B.{-1 , 2} C.{1 , 2} D{-1 , 1}2. 已知(1+i)(a-2i)= b-ai(A.-2 .43. 等比数列{a n }中,a 2=2, a s = 1,则 a ?=()4C.必要不充分条件D.既不充分也不必要条件5. 右边程序框图,输出 a 的结果为() A.初始值a B.三个数中的最大值 C.二个数中的最小值 D.初始值cx 2y 26. 已知 3x y 60,且z=x 2+y+,则z 的最小值是( 2x 3y 3B. 1C. 187. P 是正六边形 ABCDEF 某一边上一点,其中a,b 均为实数,i 为虚数单位),则a+b =()1 111 A.B.C. D.64321684.”是 “函数f(x) = x1m < 1 -x+ m 存在零点的4A.充分不必要条件B.充要条件AP xAB yAF,则x+y的最大值为().58. 右图为一个简单组合体的三视图,其中正视图由一个半+ 17 C. 16 + 17D. 16 + 169. 五个人负责一个社团的周一至周五的值班工作, 同学不值周五,且甲,乙不相邻的概率是()10.定义域为R 的函数f (x )的图像关于直线 x= 1对称,当a € [0,1]时,f (x ) =x,且对任意 x R 只都有 f(x+2) = -f(x),g(x)=根的个数为()A. 1006B. 1007C. 2018第II 卷(满分100分)二、填空题(本大题共 5小题,每小题5分,共25分,把答案填在答题卡的相应位置)111.已知抛物线的准线方程是 x=丄,则其标准方程是212. 关于x 的不等式log 2|1-x| > 1 的解集为 ________13. 曲线C 的极坐标方程为: 2COS ,曲线T 的参数x t 1方程为(t 为参数),则曲线 C 与T 的公共点有y 2t 1______ 个.14. 如图,一栋建筑物 AB 高(30-103 )m ,在该建筑 物的正东方向有一个通信塔 CD •在它们之间的地面 皿点(B 、M D 三点共线)测得对楼顶 A 、塔顶C 的仰角分别是15°和60 ° 仰角为30。

合肥市2019届高三第二次教学质量检测理科数学

合肥市2019届高三第二次教学质量检测理科数学
2 2 2 2
1 4. 在△ABC中, BD DC , 则 AD ( B ) 2 1 3 2 1 A. AB AC B. AB AC 4 4 3 3 1 2 1 2 C . AB AC D. AB AC 3 3 3 3
1 AD AB BD AB BC 3 1 AB AC AB 3 2 1 AB AC B 3 3
A.36种 B.44种 C.48种 D.54种
若任务A排在第一位, 则B, C可以选择的位置组合有3种,
2 2 此时共有排列方法3 A2 A2 12 A
E
若任务A排在第二位, 则B, C可以选择的位置组合有4种,
2 2 此时共有排列方法4 A2 A2 16
A
E
若任务A排在第三位, 则B, C可以选择的位置组合有4种, 此时共有排列方法4 A A 16
P B
2 D. 2
所以F2 B BF1 , 所以△F1 F2 B是 等腰直角三角形, 所以椭圆的 c OF2 2 离心率e a BF2 2
F1 O F2 A
8.某部队在一次军演中要先后执行六项不同的任务, 要求是:任务A必须排在前三项执行,且执行任务A之 后需立即执行任务E,任务B、任务C不能相邻,则不 B 同的执行方案共有( )
合肥市2019届高三第二次教学质量检测
数学试题(理科)
一、选择题:本大题共12小题,每小题5分.在每小 题给出的四个选项中,只有一项是符合题目要求的.
4i 1. 设复数z满足z , 则z在复平面内对应的点位于 1 i ( A ) A.第一象限 B. 第二象限 C . 第三象限 D. 第四象限
x2 由 ≤ 0, 可得( x 2)( x 1) ≤ 0且x 1 0, x 1 解得 2 ≤ x 1, 所以A { x | 2 ≤ x 1}, 又B { x | 1 x 2}, 所以A B ( 1,1)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版) - 副本

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版) - 副本

合肥市2019届高三第二次教学质量检测数学试题(理科)一、选择题.1.设复数z 满足41i z i =+,则z 在复平面内的对应点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B = A.[)22-, B.(]11-, C.(-1,1) D.(-1,2) 3.已知双曲线22221x y a b-=(00a b >>,)的一条渐近线方程为2y x =,且经过点P (6,4),则双曲线的方程是 A.221432x y -= B.22134x y -= C.22128x y -= D.2214y x -= 4.在ABC ∆中,12BD DC =,则AD = A. 1344AB AC + B. 2133AB AC + C. 1233AB AC + D. 1233AB AC - 5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类 冰箱类 小家电类 其它类 营业收入占比90.10% 4.98% 3.82% 1.10% 净利润占比 95.80% -0.48% 3.82% 0.86%则下列判断中不正确...的是 A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A.函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 B.函数()g x 的周期是2π C.函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 D.函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上最大值是1 7.已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是A. 33B. 23C. 32D. 22 8.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有A.36种B.44种C.48种D.54种9.函数()2sin f x x x x =+的图象大致为10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有A.2对B.3对C.4对D.5对11.“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n ⎛⎫- ⎪⎝⎭万元,则n 的值为 A.7 B.8 C.9 D.10 12.函数()121x x f x e e b x -=---在(0,1)内有两个零点,则实数b 的取值范围是 A.()() 11 e e e e ---,, B.()()1 00 1e e --,, C.()()1 00 1e e --,, D.()()1 1e e e e ---,,二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置. 13.设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =__________.14.若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=_____________. 15.若0a b +≠,则()2221a b a b +++的最小值为_________.16.已知半径为4的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为____________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=,ABC ∆的面积S abc =. (Ⅰ)求角C ;(Ⅱ)求ABC ∆周长的取值范围.18.(本小题满分12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(Ⅰ)求证:AB CG ⊥;(Ⅱ)若BC CF =,求直线AE 与平面BEG 所成角的正弦值.19.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。

安徽省合肥市2019届高三第一次教学质量检测数学试卷(理)(含解析)

安徽省合肥市2019届高三第一次教学质量检测数学试卷(理)(含解析)

安徽省合肥市2019届高三第一次教学质量检测数学试题(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,则复数的虚部为().A. B. C. 2 D.【答案】D【解析】,故虚部即为i的系数,为-2,故选D。

2.集合,,则=( )A. B.C. D.【答案】C【解析】解得集合,所以,故选C。

3.执行如图所示的程序框图,则输出的值为( ).A. 63B. 47C. 23D. 7【答案】C【解析】n=15,i=2不满足条件,继续循环,得到n=11,i=3不满足条件,继续循环,n=23,i=4,满足条件,退出循环,输出n,即可。

故选C。

4.已知正项等差数列的前项和为(),,则的值为( ).A. 11B. 12C. 20D. 22【答案】D【解析】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,故选D。

5.已知偶函数在上单调递增,则对实数,“”是“”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】结合偶函数的性质可得,而当,所以结合在单调递增,得到,故可以推出.举特殊例子,,但是,故由无法得到,故是的充分不必要条件,故选A.6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】D【解析】A选项,可知90后占了56%,故正确;B选项,技术所占比例为39.65%,故正确;C选项,可知90后明显比80多前,故正确;D选项,因为技术所占比例,90后和80后不清楚,所以不一定多,故错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市2019届高三调研性检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}12M x x =-<<,{}13N x x =≤≤,则M N =(A)(]1,3- (B)(]1,2- (C)[)1,2 (D)(]2,3 (2)已知复数122iz i-=-(i 为虚数单位),则||z = (A)15 (B)35 (C)45(D)1(3)右图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.已知图中直角三角形两条直角边的长分别为2和3.若从右图内随机取一点,则该点取自阴影区域的概率为(A)23 (B)89(C)1213 (D)2425(4)已知实数x y ,满足条件00220x y x y x y -≤⎧⎪+≥⎨⎪+-≤⎩,则2z x y =-的取值范围是(A)26 3⎡⎤-⎢⎥⎣⎦, (B)20 3⎡⎤⎢⎥⎣⎦, (C)[)6 -+∞,(D)[)0 +∞, (5)已知直线:50l x y +-=与圆222:(2)(1)(0)C x y r r -+-=>相交所得的弦长为C 的半径r =(6)执行右面的程序框图,若输出的结果为15,则判断框中的条件是 (A)4?i < (B)5?i < (C)6?i < (D)7?i <(7)已知t a n 3α=,则s in c o s 22ππαα⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭的值为(A)310 (B)310- (C)35(D)35-(8)已知双曲线2222:1(00)x y M a b a b-=>>,的焦距为4,两条渐近线的夹角为60o ,则双曲线M 的标准方程是(A)2213x y -= (B)2213x y -=或2213y x -=(C)221124x y -= (D)221124x y -=或221412x y -=(9)已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于(A)488π+ (B)484π+ (C)648π+ (D)644π+(10)若将函数()()()2cos 1cos 1cos f x x x x =+-图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则函数()y g x =的单调递减区间为(A)()2k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (B)() 2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(C)()11 844k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦, (D)()11 484k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,(11)已知函数()2c o s x x f x e e x -=++,其中e 为自然对数的底数,则对任意a R ∈,下列不等式一定P ),如图,D 为BC 的中点,E 为PC 的中点. 若AE =则AB与平面ADE 所成角的正弦值是第Ⅱ卷二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上相应的位置.(13)若a 与b 的夹角为135o ,1a =,2b =,则a b +=__________.(14)已知数列{}n a 的前n 项和为n S ,11a =,()*12n n S S n N +=∈,则10a = .(15)将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在33⨯方格图所在正方形的同一条对角线上,则不同放法共有___________种.(16)已知()241x x x af x e x a ⎧-≤=⎨->⎩,,(其中0a <,e 为自然对数的底数),若()()g x f f x =⎡⎤⎣⎦在R 上有三个不同的零点,则a 的取值范围是___________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知等比数列{}n a 各项都是正数,其中3234 a a a a +,,成等差数列,532a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记数列{}2l og n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .(18)(本小题满分12分)已知:在ABC ∆中,a b c ,,分别是角A B C ,,所对的边长,()0c o s c o s a bA C A+=+.(Ⅰ)判断ABC ∆的形状;(Ⅱ)若6C π=,c =ABC ∆的面积.(ⅱ)除2017年1月以外,该地区消费者信心指数月环比增长率为负数的有几个月?(Ⅱ)由以上数据可判断,序号x 与该地区消费者信心指数y 具有线性相关关系,写出y 关于x 的线性回归方程ˆˆˆybx a =+(ˆˆa b ,保留2位小数),并依此预测该地区2018年6月的消费者信心指数(结果保留1位小数,参考数据与公式:17118068i i i x y =≈∑,17211785ii x==∑,9115x y =≈,,1221ˆni i i ni i x y n x yx nx b ==--∑=∑)(20)(本小题满分12分)如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,60ABE ∠=︒,G 为BE 中点. (Ⅰ)求证:平面ACG ⊥平面BCE ;(Ⅱ)若AB ,求二面角B CA G --的余弦值.(21)(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)经过点M(2,1),且离心率e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设A 、B 分别是椭圆C 的上顶点与右顶点,点P 是椭圆C 在第三象限内的一点,直线AP 、BP 分别交x 轴、y 轴于点M 、N ,求四边形AMNB 的面积.(22)(本小题满分12分)已知()()21axx f x e +=(其中a R ∈,e 为自然对数的底数).(Ⅰ)求()f x 的单调区间;(Ⅱ)若12x x ,分别是()f x 的极大值点和极小值点,且12x x >,求证:()()1212f x f x x x +>+.合肥市2019届高三调研性检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)1 (14)256 (15)24 (16))⎡⎣三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(Ⅰ)设等比数列{}n a 的公比为q ,由已知得233452()32a a a a a +=+⎧⎨=⎩,,,即2311141232.a q a q a q a q ⎧+=⎪⎨=⎪⎩,∵0n a >,∴0q >,解得12,2.q a =⎧⎨=⎩∴2n n a =. ……………………5分(Ⅱ)由已知得,21222(1)log log log 2n n n n S a a a +=+++=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111122122311n n T n n n ⎡⎤⎛⎫⎡⎤⎛⎫=-+-++-= ⎪ ⎪⎢⎥⎢⎥++⎝⎭⎣⎦⎝⎭⎣⎦.…………………10分(18)(本小题满分12分)(Ⅰ)()00cos cos cos cos cos cos a b a ba Ab B A C A B A+=⇒+=⇒=+-,∴s i n2s i n2A B =.∵A B ,是ABC ∆的内角,∴A B =,或2A B π+=,∴ABC ∆为等腰三角形或直角三角形. ………………………5分(Ⅱ)由(Ⅰ)及6C π=知,ABC ∆为等腰三角形,a b =.根据余弦定理2222c o s a b a b C c +-=,得(228a =-,解得24a =,∴2a =,∴ABC ∆的面积111sin 221222S ab C ==⨯⨯⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)(ⅰ)该地区2018年5月份消费者信心指数的同比增长率为124112.6100%10%112.6-⨯≈;(ⅱ)由已知环比增长率为负数,即本期数<上期数,从表中可以看出,2017年3月、2017年6月、2017年8月、2018年2月、2018年4月共5个月的环比增长率为负数. ……………………5分(Ⅱ)由已知计算得:17117221ˆ 1.16i ii ii x yn xy bxn x ==-=≈-⋅∑∑,ˆˆ104.56ay bx =-=, ∴线性回归方程为ˆ 1.16104.56yx =+. 当18x =时,ˆ125.4y=,即预测该地区2018年6月份消费者信心指数约为125.4. ……………12分(20)(本小题满分12分)(Ⅰ)证明:∵平面ABCD ⊥平面ABEF ,CB AB ⊥,平面ABCD平面ABEF AB =,∴CB ⊥平面ABEF ,∴C B A G ⊥.在菱形ABEF 中,60ABE ∠=,可知ABE ∆为等边三角形,G 为BE 中点,∴A G B E ⊥.∵BE CB B =,∴AG ⊥平面BCE .∵AG ⊂平面ACG ,∴平面ACG ⊥平面BCE .…………5分 (Ⅱ)由(Ⅰ)知,AD ⊥平面ABEF ,AG BE ⊥,∴A G A F A D ,,两两垂直,以A 为原点,如图建立空间直角坐标系.设2AB =,则BC =,()))0 0 0 011 0A G C B --⎭,,,,,,.设()m x y z =,,为平面ABC 的法向量,由00m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩得00y y z ⎧-=⎪-=,取()1m =,同理可求平面ACG的法向量(0 2 n =,∴2cos 2m n m n m n⋅===⨯,,即二面角B C A G --.……………12分(21)(本小题满分12分)(Ⅰ)得,c a =,∴2a b =.又∵椭圆C 经过点(2,1),∴224114b b+=,解得22b =,∴椭圆C 的方程为22182x y+=. ……………………5分(Ⅱ)由(Ⅰ)可知,A (0),B().设()00P x y ,,则直线0:y AP y x x =,从而0M⎛⎫⎪⎪⎭; 直线:2BP y x -,从而0N ⎛⎝.∴四边形AMNB的面积1122S AN BM ⎫⎛⎫=⋅=⋅⎝2002x y +-.∵2200182x y+=,∴4S ==. …………………12分(22)(本小题满分12分)(Ⅰ)⑴当0a =时,()()21f x x =+,()f x 的单调增区间是(1)-+∞,,单调减区间是(1)-∞-,; ⑵当0a ≠时,()()211axa x x a f x e ⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦'=. ①当0a <时,由()0f x '>解得1x >-或21x a <-;由()0f x '<解得211x a-<<-,∴()f x 的单调增区间是2 1a ⎛⎫-∞- ⎪⎝⎭,和(1)-+∞,,单调减区间是2 1 1a ⎛⎫-- ⎪⎝⎭,;②当0a >时,由()0f x '>解得211x a -<<-;由()0f x '<解得21x a>-或1x <-, ∴()f x 的单调增区间是21 1a ⎛⎫-- ⎪⎝⎭,,单调减区间是(1)-∞-,和21a ⎛⎫-+∞ ⎪⎝⎭,.………5分(Ⅱ)由已知和(Ⅰ)得,当0a >时满足题意,此时121x a=-,21x =-.()()1212f x f x x x +>+22422a e a a-⇔>-22422a e a a -⇔>-2220a e a a -⇔+->.令()222a g a e a a -=+-(0a >),则()2221a g a e a -'=+-. 令()2221a h a e a -=+-(0a >),则()2220a h a e -'=+>恒成立, ∴()2221a h a e a -=+-(0a >)在(0 )+∞,上单调递增.∵()2221328232121101020844h h e e e e ⎡⎤⎛⎫⎛⎫=-<=->-=->⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,, ∴030 8a ⎛⎫∃∈ ⎪⎝⎭,,使()00h a =,即()020212 a e a -=-*.从而,当0(0)a a ∈,时,()0g a '<;当0()a a ∈+∞,时,()0g a '>,∴()g a 在0(0)a ,上单调递减,在0( )a +∞,上单调递增,∴()022000()2a g a g a e a a -≥=+-,将 (*)式代入得2000()()31g a g a a a ≥=-+.∵20031y a a =-+在30 8⎛⎫ ⎪⎝⎭,上单调递减,∴2200331313108864a a ⎛⎫-+>-⋅+=> ⎪⎝⎭,∴0()()0g a g a ≥> ,即2220a e a a --+>,∴1212()()f x f x x x +>+. ……………………12分。

相关文档
最新文档