九年级数学解直角三角形4
初三数学:解直角三角形
解直角三角形知识要点:1、 锐角三角函数:正弦、余弦、正切、余切sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠(1)平方关系:1cos sin 22=+A A ; (2)倒数关系:1cotA tanA =⋅; (3)商的关系:tanA=AAcos sin (4)互余两角的正余弦、正余切关系:如果ο90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο;tanA=cot (90°-A )=cotB2、 解直角三角形3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.已知条件解法一边及 一锐角直角边a 及锐角A B =90°-A ,b =a·tanA,c=sin a A斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA两边两条直角边a 和b,B =90°-A ,直角边a 和斜边csinA=ac,B =90°-A ,例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值.例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则CDACAB-等于().A .sin A B. cos A C . tan A D . cot A例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值.例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积.例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值.二:可解的非直角三角形的类型与解法解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31+,求△ABC各内角的度数.BA DC图1二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=33+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰∆ABC 的底边长为2,底角为75°,求腰长.五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,sinC=57,求AC 和BC 的长.相关强化练习:1.等腰三角形底边为20,面积为31003,求各角的大小.2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.CBDA BA C D图2 ACD 图4BA CD图5例题: 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。
人教版九年级数学下册课件《解直角三角形》PPT4公开课获奖课件百校联赛一等奖课件
b c
tan
A
A的对边 A的邻边
a b
例1 如图,在Rt△ABC中,∠C=90°, AC 2, BC 6
解这个直角三角形
A
解: tan A BC 6 3 AC 2
A 60
2
C
6
B
B 90 A 90 60 30
AB 2AC 2 2
例2 如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形 (精确到0.1)
解:∠A=90°-∠B=90°-35°=55°
tan B b a
a
b tan B
20 tan 35
20 0.70
28.6
sin B b c
A
c
b
35°
20
B
a
C
你还有其他 措施求出c吗?
c
b sin B
20 sin 35
20 0.57
35.1
尽量选择原 始数据,防止
累积错误
练习
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;
(2) ∠B=72°,c = 14.
B
A
c a=30
A b=20 C
c=14 b
72°
B aC
处理有关比萨斜塔倾斜旳问题.
设塔顶中心点为B,塔身中心线与垂直中心线旳夹角为A, 过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC 中,∠C=90°,BC=5.2m,AB=54.5m
b
c
(3)边角之间旳关系:
sin
A
A的对边 斜边
a c
Ca
B
cos
初三数学利用三角函数解直角三角形含答案
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
解直角三角形(5种题型)(解析版)
解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版
第一章 直角三角形的边角关系
4 解直角三角形
学习新知
检测反馈
在日常生活中,我们常常遇到与 直角三角形有关的问题,知道直 角三角形的边可以求出角,知道
角也可以求出相应的边.如图所
示,在Rt△ABC中共有几个元素? 我们如何利用已知元素求出其他 的元素呢?
学习新知
已知两条边解直角三角形
只知道角度是无法求出直角三角形的边长的.
问题2 只给出一条边长这一个条件,可以解直角三角形吗?
只给出一条边长,不能解直角三角形.
解直角三角形需要满足的条件: 在直角三角形的6个元素中,直角是已知元素,如果再知道一 条边和第三个元素,那么这个三角形的所有元素就都可以确定
下来.
1.如图所示的是教学用直角三角板,边
方法1:已知两条边的长度,可以先利用勾股定理 求出第三边,然后利用锐角三角函数求出其中一个 锐角,再根据直角三角形两锐角互余求出另外一个
锐角.
方法2:已知两条边的长度,可以先利用锐角三角函 数求出其中一个锐角,然后根据直角三角形中两锐 角互余求出另外一个锐角,再利用锐角三角函数求
出第三条边.
已知一条边和一个角解直角三角形
解析:根据图形得出点B到AO的距离是指BO的长,根据 锐角三角函数定义得出BO=ABsin 36°,即可判断A,B错误; 过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐 角三角函数定义得出AD=AOsin 36°,AO=AB·sin 54°,所以 AD=sin 36°·sin 54°,即可判断C正确,D错误.故选C.
例2 在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且b=30,∠B=25°.求这个三 角形的其他元素(边长精确到1).
初中九年级数学 解直角三角形及其应用
0.1m)?
B
A
D
C
3海里内有暗礁,一艘客轮以每小
时9海里的速度由西向东航行,行
至A处测得灯塔P在它的北偏东60°,
继续行驶20分钟后,到达B处,又
测得灯塔P在它的北偏东45°,问客
轮不改变方向,继续前进有无触礁
解:过P的点作危P险D垂?直于AB,交AB的延
P
长∵线∠于1=D60∠2=45°∴
在R°t△BDP∠PBD∠=P4AD=30°,∠PBD=45°
例l3.一铁路路基的l 横断面是等腰梯 形,路基顶部的宽为9.8米,路基高为 5.8米,斜坡与地面所成的角A为60 度.求路基低部的宽(精确到0.1米)
❖ 练习:热气球的探测器显示,从热 气球看一栋高楼顶部的仰角为30°, 看这栋高楼底部的俯角为60°,热 气球与高楼的水平距离为120m,这 栋高楼有多高?(结果精确到
3 山坡与地面成300的倾斜角,某人上坡走 60米,则他
(目标3) 上升 米,坡度是
D
C
4 如图已知堤坝的横断面为梯形,AD坡面
的水平宽度为
A
B
3√3米,DC=4米,B=600,则
(1)斜坡AD 的铅直高度是
(2)斜坡AD 的长是 (3)坡角A的
(目标3) 6 如图从山 顶A望地面的C、D 两点,俯角分别时 A
α
练习: 如图,某飞机于空中A 处探测到目标C,此时飞行高 度AC=1200米,从飞机上看低 平面控制点B的俯角α=16031/,
练习 某人在A处测得大厦的仰角∠BAC
为300 ,沿AC方向行20米至D处,测得仰角 ∠BDC 为450,求此大厦的高度BC.
B
A 300
450
D
九上数学解直角三角形知识点
九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。
例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。
2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。
例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。
3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。
4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。
5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。
这些值需要熟练记忆。
6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。
以上是九年级数学解直角三角形的主要知识点。
在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。
湘教版数学九年级上册4.3《解直角三角形》教学设计1
湘教版数学九年级上册4.3《解直角三角形》教学设计1一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。
通过本节课的学习,学生能了解直角三角形的性质,掌握解直角三角形的方法,并能运用所学知识解决实际问题。
本节课的内容为后续学习勾股定理和三角函数等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的性质,了解了三角形的分类。
在此基础上,学生需要进一步掌握直角三角形的性质,并学会解直角三角形。
此外,学生需要具备一定的观察能力、动手操作能力和逻辑思维能力,以便在学习过程中更好地理解和掌握所学知识。
三. 教学目标1.知识与技能目标:学生能掌握直角三角形的性质,了解解直角三角形的方法,并能运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生动手操作能力、观察能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:直角三角形的性质,解直角三角形的方法。
2.教学难点:解直角三角形的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过设置情境,引导学生观察、操作、思考,激发学生学习兴趣。
2.合作学习法:学生进行小组讨论、合作探究,培养学生团队合作精神。
3.启发式教学法:教师引导学生发现问题、分析问题、解决问题,培养学生的逻辑思维能力。
4.实践操作法:让学生动手操作,加深对知识的理解和记忆。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画、例题等。
2.教学道具:准备直角三角形模型、三角板等道具,以便进行实物演示。
3.练习题:挑选一些有关直角三角形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如教室的黑板、楼梯的扶手等,引导学生关注直角三角形。
湘教版九年级数学上:4.3 解直角三角形
答案: a=8 cm,
b=8 3 cm.
能力提升
1.如图,在△ABC 中,∠A=30°,∠B=45°,AC =2 3,求 AB 的长.
D
解:过点 C 作 CD⊥AB 于点 D.在 Rt△ACD 中,∵∠A
解直角三角形:在直角三角形中,由已知 元素求未知元素的过程.
例1 在Rt△ABC中,C 90, A 30 ,
a=5,求∠B,b,c.
解: B90 A 90 30 60.
又
∵
n B
= 5 tan 60 = 5 3 .
解:在 Rt△ACD 中,∵∠ADC=90°,∴tan A=CADD=A6D=32,∴AD=4, ∴BD=AB-AD=12-4=8.在 Rt△BCD 中,∵∠BDC=90°,BD=8, CD=6,∴BC= BD2+CD2=10,∴sin B=CBCD=35,cos B=BBDC=45,∴ sin B+cos B=35+45=75
=
1 3
.
设
AB=x,则
AC=
1 3
x.
又 AB2 = AC 2 + BC 2,
2
∴
x
2
=
1
x
3
+52.
解得
x1
15 4
2
,
x2
15 4
2
(舍去).
∴ AB的长为 15 2 . 4
课堂练习
1. 在Rt△ABC中, C 90, B 45 ,b=3cm, 求a,c 的长度. 答案: a = 3 cm, c = 3 2 cm.
2022秋九年级数学上册第二章直角三角形的边角关系4解直角三角形课件鲁教版五四制2022092811
答案显示
16 75°;3;2 6.
1.在 Rt△ABC 中,∠C=90°,AB=2 5,AC= 15, 则∠A 的度数为( D ) A.35° B.60° C.45° D.30°
2.如图,在三角形 ABC 中,∠B=90°,BC=2AB,
则 cos A=( D )
5
1
A. 2
B.2
25 C. 5
7.【中考·西宁】如图,在△ABC 中,∠B=90°,tan C=34, AB=6 cm.动点 P 从点 A 开始沿边 AB 向点 B 以 1 cm/s 的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以 2 cm/s 的速度移动.若 P,Q 两点分别从 A,B 两点同时出发, 在运动过程中,△PBQ 的最大面积是( C )
解:在△ABC 中,∵AD 是 BC 边上的高, ∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C= 45°,AD=1,∴DC=AD=1.在△ADB 中,∵∠ADB=90°,sin B=13,AD=1,∴AB=sAinDB=3.∴BD= AB2-AD2=2 2. ∴BC=BD+DC=2 2+1.
9.【中考·日照】如图,在直角三角形 BAD 中,延长斜
边 BD 到点 C,使 DC=12BD,连接 AC,若 tan B=53, 则 tan ∠CAD 的值为( )
3Leabharlann 311A. 3
B. 5
C.3
D.5
【点拨】如图,延长 AD.过点 C 作 CE⊥AD,垂足为 E, ∵tan B=AADB=53,∴设 AD=5x,AB=3x,x>0, ∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA, ∴CAEB=DADE=CBDD=12,∴CE=32x,DE=52x,∴AE=125x, ∴tan ∠CAD=EACE=15,故选 D. 【答案】 D
初三数学:《解直角三角形》知识点总结
初三数学:《解直角三角形》知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来精品学习网初中频道给大家整理解直角三角形知识点整理,供大家参考阅读。
1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。
这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。
否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。
(2)sinsin22是的简写,读作“sin的平方”,不能将22sin 写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。
28.2.4解直角三角形(4)
3.如图是某公路路基的设计简图,等腰梯形ABCD表示它的 横断面,原计划设计的坡角为A=22°37′,坡长AD=6. 5米,现 考虑到在短期内车流量会增加,需增加路面宽度,故改变设 计方案,将图中1,2两部分分别补到3,4的位置,使横断面 EFGH为等腰梯形,重新设计后路基的坡角为32°,全部工 程的用土量不变,问:路面宽将增加多少? 12 5 (选用数据:sin22°37′≈ ,cos22°37′ ≈ , 13 13 5 tan 22°37′ ≈ 12 , D C G H 3 4 5 tan 32° ≈ )
8
A
1 E
M
N
F
2
B
2 如图, △在ABC中, ∠ A为锐角,sina= ,AB+AC=6cm, 3 设AC=xcm, △ABC的面积为ycm2.
(1)求y关于x的函数关系式和自变量x的取值范围;
(2)何时△ABC的面积最大,最大面积为多少?
C
1 S= ab sina 2
A
B
5、如图,某人在山坡坡脚A处测得电视塔尖点 C的仰角为60o,沿山坡向上走到P处再测得点C 的仰角为45o,已知OA=100米,山坡坡度i=1:2, 且O,A,B在同一条直线上.求电视塔OC的高度 以及此人所在位置P点的铅直高度.(测倾器高 度忽略不计,结果保留根号形式)
达险坦 到勇的 光 于大在 辉 攀道科 的 登,学 顶 的只上 点 人有从 马 ,不没 克 才畏有 思 能艰平
(1)测量工具 (2)示意图如右图 (3)CD=a ,BD=b √ (4)AB = a + 3 3 b 实际应用能力提升 C D
M
30°
N
E B
测量对象:一铁塔的高度,测量工具皮尺一根教学 三角板一副高度为1.5米的测角仪(能测仰角和俯角的仪器) 一架。 请选择测量工具,并设计方案,写出必需的测量数据 (用字母表示),并画出测量图形,并用测量数据(用字母表 示)写出计算铁塔高度的算式。 A 方案2
华东师大版)九年级数学上册《24.4解直角三角形》教学设计
2.提问:“我们已经学习了勾股定理,那么如何利用勾股定理来解决直角三角形中的未知问题呢?”通过这个问题,引发学生对解直角三角形方法的思考。
3.引导学生回顾Βιβλιοθήκη 股定理的内容,为新课的学习做好知识铺垫。
c.正切函数:在直角三角形中,对于角A,正切函数定义为对边与邻边的比值,即tanA =对边/邻边。
2.通过具体实例,讲解如何运用三角函数解决直角三角形中的未知问题,如求角度和边长。
3.结合计算器,让学生学会计算三角函数的值,并解决实际问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何利用三角函数解决实际问题?
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角函数的定义和性质,特别是正弦、余弦、正切函数在实际问题中的应用。
2.能够运用勾股定理和三角函数解决直角三角形中的未知角度和边长问题,以及解决一些实际问题。
3.培养学生运用数形结合、分类讨论等数学思想方法分析和解决问题的能力。
(二)教学设想
1.教学导入:通过生活中的实例,如测量旗杆高度、楼间距等,引出解直角三角形的问题,激发学生的学习兴趣,使其认识到数学与现实生活的紧密联系。
4.教学策略:
a.分层教学:针对学生的不同水平,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
b.适时反馈:在教学过程中,及时关注学生的学习情况,给予针对性的指导和鼓励,提高学生的学习信心。
5.教学评价:
a.过程性评价:关注学生在课堂讨论、实践操作等方面的表现,鼓励学生积极参与,培养其探究精神和创新能力。
初中数学《解直角三角形》单元教学设计以及思维导图4
(4)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。 过程与方法:(1)经历探索直角三角形中边角之间关系的过程;经历探索 30º,45º,60º角的三角函数值的过程。
(2)体会数、形之间的联系,逐步学习利用数形结合思想分析问题和解决问题。 情感态度与价值观:(1)发展学生观察、分析、发现问题的能力;(2)培养学生独立思考及互相合作的习惯。
(2 课时)
专题二:用计算器求锐角三角函数
(2 课时)
专题三: 解直角三角形及其应用
(8 课时)
„„„„
其中,专题三中测量物体的高度作为研究性学 2 课时
专题学习目标
(1)理解正切、正弦、余弦的意义并能举例进行说明; (2)能够运用 tanA ,sinA ,cosA 表示直角三角形中两边的比; (3)能根据直角三角形中的边角关系,进行简单的计算。
62
25
∴BC= .
6
25 ∴cosB= BC 6 25 5 ,
AB 65 65 13 6
sinA= BC 5 AB 13
可以得出同例 1 一样的结论. ∵∠A+∠B=90°,
∴sinA:cosB=cos(90-A),即 sinA=cos(90°-A); cosA=sinB=sin(90°-A),即 cosA=sin(90°-A).
12
如图,在 Rt△ABC 中,∠C=90°,cosA= ,AC=10,AB 等于多少?sinB 呢?cosB、sinA 呢?你还能得出类似例 1 的
13
结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透 sin(90°-A)=cosA,cos
(90°-A)=sinA.
12
04-(四)解直角三角形九年级上册数学冀教版
第6题图
【解析】 如图,过点作于 是等边三角形, ,, , , .
, , , .
,, , .
7.新考法[2022河北中考]如图,某水渠的横断面是以为直径的半圆 ,其中水面截线.嘉琪在处测得垂直站立于 处的爸爸头顶的仰角为 ,点的俯角为 .已知爸爸的身高为 .
(1)求的大小及 的长;
期末提分专项
快速核答案(四)解直角三角形
1.A 2.B 3.B 4.C 5.(1) (2)8 6. 7.(1)解:由题意得 , , .,,.
(2)线段如图所示.连接,, , ., , , .在中,,,.设,则,
在中,,由勾股定理得,,,,,.答:最大水深约为2.6米.
(四)解直角三角形
第1题图
1.[2023陕西中考]如图,在 的网格中,每个小正方形的边长均为1.若点,,都在格点上,则 的值为( )
A
A. B. C. D.
【解析】 如图,连接 ,由勾股定理,得,, ,易知, (点拨:勾股定理的逆定理), .
第2题图
2.教材P120B组T2变式[2023长治潞城区月考]如图,这是某拦河坝改造前后河床的横断面示意图,,坝高 ,将原坡度的迎水坡面改为坡角为 的斜坡,此时,河坝面宽减少的长度 等于(结果精确到,参考数据: ) ( )
B
A. B. C. D.
【解析】 如图,过点A作于点,过点 作于点,, ,, 四边形 是矩形, 坡度 ,,解得 .在
中, , , .
第3题图
3.[2023唐山凤凰中学期末]如图,在矩形 中,,,是边的中点,连接 ,过点作交于点,则 的长为( )
B
A. B. C. D.
【解析】 四边形是矩形,, ,,是的中点, .在中, ,. , ,.在中, , , .
4.4解直角三角形的应用课件九年级数学上册
感悟新知
水平方向飞行 200m 到达点 Q,测得奇楼底端 B 的俯 角为 45° ,求奇楼 AB 的高度.(结果精确到 1m,参 考数据: sin 1 5 ° ≈ 0 . 26,cos 15 ° ≈ 0 . 97, tan15° ≈ 0.27) 解:如图,延长BA交PQ的 延长线于点C,则∠ACQ=90°. 由题意得,BC=225 m,PQ=200 m,
课堂新授
2. 解决实Βιβλιοθήκη 问题时,常见的基本图形及相应的关系式如下 表所示:
图形
关系式
图形
关系式
AC=BC·tanα, AG=AC+BE
BC=DC-BD= AD·(tanα -tanβ )
课堂新授
续表
图形
关系式
AB=DE= AE·tanβ, CD=CE+DE =AE·(tanα+
tanβ)
图形
关系式
感悟新知
(1) 求登山缆车上升的高度 DE; (2)若步行速度为 30m/min,登山缆车的速度为60m/min,
求 从山底 A 处到达山顶 D 处大约需要多少分钟 .(结果 精确到 0.1min,参考数据: sin53° ≈ 0.80, cos53° ≈ 0.60,tan53° ≈ 1.33)
感悟新知
课堂新授
例2
课堂新授
解题秘方:在建立的非直角三角形模型中,用 “化斜为直法”解含公共直角边的 直角三角形.
课堂新授
课堂新授
计算结果必须根据 题目要求进行保留.
课堂新授
方法点拨 解直角三角形的实际应用问题的求解方法: 1. 根据题目中的已知条件,将实际问题抽象为解直角三角
形的数学问题, 画出平面几何图形,弄清已知条件中 各量之间的关系; 2. 若条件中有直角三角形,则直接选择合适的三角函数关 系求解即可;若条件中没有直角三角形,一般需添加辅 助线构造直角三角形,再选用合适的三角函数关系求解.
1.4 解直角三角形(教案)-北师大版数九年级下册
第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。
中考数学解直角三角形
中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。
二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。
2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。
3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。
4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。
解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。
下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。
一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。
一般题型为:已知一个锐角,求其它锐角的三角函数值。
例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。
解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。
二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。
一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。
例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。
解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。
湘教版数学九年级(新)课件:4.解直角三角形
9
例题分析
2、在Rt△ABC中,∠C=90°,∠B=60°, b= 4 3 .解这个直角三角形 .
解:在Rt△ABC中,∠B=60°,b= 4 3
∴∠A=30°,c=2a
方法二:tanA a
方法一:设a=x,c=2x
ab
由勾股定理得:
2x2 x2 4
2
3
即:tan 30
3
4
a
3A
解得:x 4或x 4(舍去) 3 4 3
3.在Rt△ABC中,∠C=90°,a、b、c分别为 ∠A 、∠B、 ∠C的对边.根据已知条件, 解直角三角形. (1)c=8,∠A =60°; (2) b= 2 2, c=4;
(3)a= 2 3, b=6 ; (4)a=1, ∠B=30°.
提高练习
B
解直角三角形:(如图)
在⊿ABC中,∠C=900,
5 AB=10,那么BC=_8____,tanB=______.
例题分析
1.在Rt△ABC中,∠C=90°,AC= 2 ,BC = 6 ,
解这个直角三角形.
解:由勾股定理得:解:tanA BC 6 3
AB AB2 BC2
AC 2
A 60
22
2
6
B 90 - A
2 2
在Rt △ABC中,AB=2AC
解得:a 4
∴c=8,a=4
∴c=8
方法一
方法二
B
43 C
比较这两种 方法哪个方 法更简单?
如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的 平分线AD 4 3 ,解这个直角三角形。
解:cos CAD AC 6 3
AD 4 3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
手机电玩城可以赢钱吗
[单选]免疫荧光显微技术中,特异性最高,非特异性荧光染色因素最少的方法是()A.直接法B.间接法C.补体结合法D.双标记法E.多标记法 [单选]皮肤淀粉样变的特点是()A.苔藓状淀粉样变多见于中年妇女B.斑片状淀粉样变多见于中年男性C.苔藓状淀粉样变多发生于双侧胫前D.两型之间互相独立 [填空题]滚动轴承实现预紧的方法有两种,即()预紧和()预紧。 [单选]餐饮、商店等商业设施通过有顶棚的步行街连接,步行街两侧的建筑利用步行街进行安全疏散,且步行街采用自然排烟设施。自然排烟口的有效面积不应小于其地面面积的()%。A.2B.5C.10D.25 [单选,A2型题,A1/A2型题]心理测量的误差主要来源有()A.施测条件B.主试者素质C.应试者动机D.应试者生理状态E.以上都是 [单选]每一测站前后尺子到仪器的视距差不超过()m。A.10B.15C.3~5D.20 [单选]某患者进食后发生恶心、呕吐、腹泻。如果在患者粪便标本中分离到一种菌,革兰染色阴性;其生化反应结果是:氧化酶(+),蔗糖(-),动力(+),吲哚(+),脲酶(-)。则该菌可能是()A.福氏志贺菌B.霍乱弧菌C.大肠埃希菌0157:H7D.副溶血弧菌E.蜡样芽胞杆菌 [单选]车道称重系统故障无法提供称重数据时,应提前在车道显著部位告知过往车辆。已进入车道的车辆,应驶至正常工作的计重车道实施收费;确实无法驶离的,如何计费操作。()A.按合法装载的10吨车收费标准收费B.按合法装载的5吨车收费标准收费C.先驶离车道,以U型方式从其他称重正 [单选]哲学上的第三个伟大时期不但受传统的宗教信仰的影响,同时更受到()的支配。A、科学B、神学C、宗教学 [多选]一水硬铝石的分子式为()。A、γ—AlOOHB、γ—Al2O3•H2OC、α—AlOOHD、α—Al2O3•H2O [单选]与蛋白质载体或高分子聚合物结合才具有免疫原性的物质称为()A.变应原B.完全抗原C.半抗原D.佐剂E.载体 [单选,A1型题]医师发现或怀疑胎儿异常的,应当对孕妇进行产前诊断。下述行为属于“产前诊断”的是()A.健康诊查B.胎儿发育诊查C.胎儿先天性缺陷诊查D.对孕妇进行遗传病诊查E.对孕妇进行传染病诊查 [单选]不属于MEN1的特征性组分的疾病是()。A.甲状腺功能亢进症B.垂体瘤C.胃泌素瘤D.甲状旁腺功能亢进症E.胰岛素瘤 [单选]Aself-rightingsurvivalcraftwillreturntoanuprightpositionprovidedthatallpersonnel().A.areseatedwithseatbeltsonanddoorsshutB.areseatedwithseatbeltsonanddoorsopenC.aretoshifttoonesidetorightitD.escapefromthecraft [单选,A型题]肾结石与胆囊结石的X线区别点,以下哪项正确()A.泌尿道结石大多数为透X线或阴性结石B.典型肾结石为分层状C.静脉肾盂造影诊断无明显鉴别价值,因为两者位置相似D.输尿管结石为长圆形,其长轴和输尿管长轴有成角E.腹部侧位上肾结石靠后和脊柱重叠 [问答题,简答题]打磨的作用与要求? [名词解释]履约备用信用证 [单选]教材是落实课程目标和内容的()。A.教学参照B.教学范例C.基本载体D.以上都是 [单选,A2型题,A1/A2型题]升药的功效是()A.清热解毒B.杀虫止痒C.拔毒去腐D.敛疮生肌E.消肿散结 [单选]有关顺磁反应法测定氧浓度的叙述下列哪一点不正确A.氧分子有顺磁反应性B.同时采集参比气体(空气)C.从麻醉环路内不断采集气样检测D.耐用,无需经常更换氧电池E.氧浓度的测定值易受麻醉气体干扰 [单选,A1型题]《母婴保健法》规定的孕产期保健服务不包括()A.胎儿保健B.孕妇、产妇保健C.母婴保健指导D.胎儿性别诊断E.新生儿保健 [问答题,简答题]国际家庭日是哪天? [单选,A2型题,A1/A2型题]生命伦理学研究的主要内容是()A.义务论B.公益论C.公平理论D.生命道德理论E.生命科学 [单选,A1型题]下列哪项不是臀位剖宫产的指征()A.骨盆入口轻度狭窄B.巨大儿C.软产道异常D.高龄初产妇E.第二产程、脐带脱垂、胎儿存活 [单选,A1型题]乳腺癌患者乳腺皮肤出现“酒窝征”的原因是()。A.肿瘤侵犯了胸大肌B.肿瘤侵犯了Cooper韧带C.瘤细胞堵塞了局部皮下淋巴管D.肿瘤侵犯了周围腺体E.肿瘤侵犯了局部皮肤 [单选,A2型题,A1/A2型题]在自杀的社会学因素的叙述不正确的是()A.自杀不仅是个人决定的行为,也受社会环境影响B.独身、离婚、丧偶者自杀率高于婚姻稳定者C.高社会阶层者的自杀率最低D.国外资料显示,在自杀死亡者中,男女性别比约为3:1E.社会文化对自杀率也有影响 [单选]目前流行病学的定义可以概括为()A.研究传染病在人群中的分布及其影响因素的学科B.研究疾病和健康状况在人群中的分布的学科C.现代医学中的一门方法学D.研究慢性非传染性疾病在人群中的分布和影响分布的因素以及防制对策的学科E.研究疾病与健康状况在人群中的分布和影响分布 [单选]可以实现"门至门"运输的运输方式为()运输。A.铁路B.水路C.公路D.航空 [单选]建设工程债发生的最主要的依据是()。A.侵权B.合同C.不当得利D.无因管理 [多选]引起性病性淋巴肉芽肿的沙眼衣原体亚型是()A.L-1型B.L-2型C.L-3型D.L-4型 [单选]职业道德是适应各种职业要求而必然产生的()。A、工作流程B、法规总和C、各种法律、准则D、道德规范 [单选]卫星通信中,监视和控制卫星轨道位置及姿态的是()A.地球站分系统B.跟踪遥测指令分系统C.监控管理分系统 [多选,共用题干题]患者女,48岁,因“关节肿痛5个月,累及双手关节和双膝关节”来诊。查体:双膝关节肿胀,压痛(+),左腕关节肿胀,压痛(+),左手第二掌指关节(ⅡMCP)、右手ⅡMCP和近端指间关节(PIP)压痛(+);实验室检查:红细胞沉降率10mm/1h,C-反应蛋白5mg/L(0~8m [单选,A2型题,A1/A2型题]VEP的作用有()A.协助诊断多发性硬化B.昏迷及脑死亡预后判断C.评估视力D.判定视网膜病变E.诊断听神经瘤一后颅凹瘤 [单选]光面爆破时,应尽可能减少周边眼间的起爆时差,相邻光面炮眼的起爆间隔时问不应大于()。A.200msB.150msC.100ms [填空题]变压器()保护运行时,应紧急停用。 [单选,A4型题,A3/A4型题]26岁女性,已婚2年,G1P0,婚后一直服用短效口服避孕药避孕,但意外妊娠,于孕50天行人工流产术。患者打算2年后妊娠,希望继续避孕,下列建议正确的是()A.停用口服避孕药,改用IUD避孕B.停用口服避孕药,改用长效避孕针C.停用口服避孕药,改用皮下埋植D [单选,A1型题]冠内附着体基牙牙体预备时,窝洞空间大小与选择的附着体尺寸有关,一般窝洞的颊舌面与邻面洞壁与放置附着体轴壁之间应保留多大间隙,有利于附着体部件放置时调整就位道()A.0.5mmB.1.0mmC.1.5mmD.2.0mmE.2.5mm [多选]专利资产评估在涉及如下哪种行为必须进行登记簿副本查询()A、经济合作B、法律诉讼C、质押融资D、破产清算E、投资入股 [单选]道路运输管理机构收到道路旅客运输经营申请后,应当自受理申请之日起()内审查完毕,作出许可或者不予许可的决定。A、40日B、30日C、20日