Green Lighting 2015
绿色循环英语

绿色循环英语Green CycleWhat is green cycle?Green cycle refers to the process of using resources in a sustainable way, minimizing waste and reducing environmental impact. It involves the use of renewable resources, recycling, and energy efficiency to create a circular system that minimizes the consumption of natural resources and the generation of waste.How does green cycle work?The green cycle works by promoting the use of renewable resources, such as solar, wind, and hydroelectric power, to reduce the reliance on non-renewable resources like fossil fuels. It also involves the recycling of materials, such as paper, glass, and plastic, to reduce the amount of waste that ends up in landfills. Energy efficiency is another key aspect of the green cycle, which involves using technology and practices that minimize energy consumption and reduce greenhouse gas emissions.What are the benefits of green cycle?The benefits of green cycle are numerous. By using renewable resources and recycling materials, the green cycle helps to conserve natural resources and reduce the amount of waste that ends up in landfills. This, in turn, helps to reduce pollution and minimize the impact of human activities on the environment. Additionally, the green cycle promotes energy efficiency, which can lead to cost savings for businesses and individuals, as well as a reduction in greenhouse gas emissions.How can individuals and businesses participate in the green cycle?There are several ways that individuals and businesses can participate in the green cycle. One way is to reduce energy consumption by using energy-efficient appliances and lighting, and by implementing energy-saving practices, such as turning off lights and electronics when they are not in use. Another way is to recycle materials, such as paper, glass, and plastic, and to use products made from recycled materials. Additionally, individuals and businesses can support the use of renewable resources, such as solar andwind power, by investing in renewable energy technologies and purchasing renewable energy credits.What are some examples of green cycle in action?One example of green cycle in action is the use of solar panels to generate electricity from the sun. By harnessing the power of the sun, solar panels can provide clean, renewable energy that reduces the reliance on fossil fuels and minimizes greenhouse gas emissions. Another example is the use of electric vehicles, which produce zero tailpipe emissions and can be powered by renewable energy sources, such as solar or wind power. Additionally, the recycling of materials, such as aluminum, paper, and plastic, is a key component of the green cycle, as it helps to conserve natural resources and reduce waste.How does green cycle contribute to a sustainable future?The green cycle contributes to a sustainable future by promoting the responsible use of resources and the reduction of waste and pollution. By using renewable resources, recycling materials, and promoting energy efficiency, the green cycle helps to minimize the impact of human activities on the environment and conserve naturalresources for future generations. Additionally, the green cycle can help to create new economic opportunities, such as the development of renewable energy technologies and the creation of green jobs.绿色循环什么是绿色循环?绿色循环是指以可持续的方式利用资源,最小化浪费和减少环境影响的过程。
高一英语建筑术语单选题50题

高一英语建筑术语单选题50题1.The walls of this building are made of _____.A.steelsB.steelC.stonesD.stone答案:B。
本题考查建筑材料的名词用法。
steel 表示“钢”,是不可数名词,A 选项steels 错误;stone 表示“石头”,通常用作可数名词复数stones 或者不可数名词“stone”表示材料,但是题干中说的是墙的材料,应该用steel,因为钢是一种常用的建筑材料,而且是不可数名词。
2.This bridge is constructed with _____.A.concretesB.concreteC.woodsD.wood答案:B。
concrete 表示“混凝土”,是不可数名词,A 选项concretes 错误;wood 表示“木材”,通常用作不可数名词,但是表示“树林”时是可数名词,题干中说的是桥的建筑材料,应该用concrete,混凝土是建造桥梁常用的材料。
3.The roof of this house is covered with _____.A.tileB.tilesC.glassD.glasses答案:B。
tile 表示“瓦片”,是可数名词,A 选项tile 应该用复数形式;glass 表示“玻璃”,是不可数名词,题干中说的是屋顶覆盖的材料,通常是瓦片,所以用tiles。
4.This building has a foundation made of _____.A.bricksB.brickC.steelsD.steel答案:B。
brick 表示“砖”,是可数名词,但是在这里表示材料,用单数形式;steel 表示“钢”,通常不用来做建筑的基础材料,所以用brick。
5.The walls of this ancient building are made of _____.A.stonesB.stoneC.woodsD.wood答案:A。
高功率密度激发荧光材料的反常热猝灭效应

1456㊀发㊀㊀光㊀㊀学㊀㊀报第42卷[8]HAGEMANN V,SEIDL A,WEIDMANN G.Ceramic phosphor wheels for high luminance SSL-light sources with>500Wof laser power for digital projection[C].Proceedings of SPIE10940,Light-Emitting Devices,Materials,and Applications, San Francisco,2019:1094017-1-16.[9]YANG Y,ZHUANG S L,KAI B.High brightness laser-driven white emitter for Etendue-limited applications[J].Appl.Opt.,2017,56(30):8321-8325.[10]金伟其,王霞,廖宁放,等.辐射度光度与色度及其测量[M].第2版.北京:北京理工大学出版社,2016.JIN W Q,WANG X,LIAO N F,et al.Photometry,Radiometry,Colorimetry&Measurement[M].2nd ed.Beijing:Beijing Institute of Technology Press,2016.(in Chinese)[11]ZHENG P,LI S X,WANG L,et al.Unique color converter architecture enabling phosphor-in-glass(PiG)films suitable forhigh-power and high-luminance laser-driven white lighting[J].ACS Appl.Mater.Interfaces,2018,10(17):14930-14940.㊀[12]WANG J C,TANG X Y,ZHENG P,et al.Thermally self-managing YAGʒCe-Al2O3color converters enabling high-bright-ness laser-driven solid state lighting in a transmissive configuration[J].J.Mater.Chem.C,2019,7(13):3901-3908.[13]YOU S H,LI S X,ZHENG P,et al.A thermally robust La3Si6N11ʒCe-in-glass film for high-brightness blue-laser-drivensolid state lighting[J].Laser Photonics Rev.,2019,13(2):1800216-1-10.[14]ZHENG P,LI S X,WEI R,et al.Unique design strategy for laser-driven color converters enabling superhigh-luminance andhigh-directionality white light[J].Laser Photonics Rev.,2019,13(10):1900147-1-10.[15]SONG Y H,JI E K,JEONG B W,et al.High power laser-driven ceramic phosphor plate for outstanding efficient white lightconversion in application of automotive lighting[J].Sci.Rep.,2016,6:31206-1-7.[16]SONG Y H,JI E K,JEONG B W,et al.Design of laser-driven high-efficiency Al2O3/YAGʒCe3+ceramic converter for au-tomotive lighting:fabrication,luminous emittance,and tunable color space[J].Dyes Pigm.,2017,139:688-692. [17]SONG Y H,KWON S B,JUNG M K,et al.Fabrication design for a high-quality laser diode-based ceramic converter for alaser headlamp application[J].Ceram.Int.,2018,44(1):1182-1186.[18]XU Y R,LI S X,ZHENG P,et al.A search for extra-high brightness laser-driven color converters by investigating thermal-ly-induced luminance saturation[J].J.Mater.Chem.C,2019,7(37):11449-11456.[19]SHCHEKIN O B,SCHMIDT P J,JIN F H,et al.Excitation dependent quenching of luminescence in LED phosphors[J].Phys.Status Solidi(RRL),2016,10(4):310-314.[20]KRASNOSHCHOKA A,THORSETH A,DAM-HANSEN C,et al.Investigation of saturation effects in ceramic phosphors forlaser lighting[J].Materials(Basel),2017,10(12):1407-1-9.[21]XU J,THORSETH A,XU C,et al.Investigation of laser-induced luminescence saturation in a single-crystal YAGʒCe phos-phor:towards unique architecture,high saturation threshold,and high-brightness laser-driven white lighting[J].J.Lu-min.,2019,212:279-285.[22]KANG J,ZHANG L,LI Y B,et al.Luminescence declining behaviors in YAGʒCe transparent ceramics for high power laserlighting[J].J.Mater.Chem.C,2019,7(45):14357-14365.[23]XU J,YANG Y,GUO Z Q,et parative study of Al2O3-YAGʒCe composite ceramic and single crystal YAGʒCephosphors for high-power laser lighting[J].Ceram.Int.,2020,46(11):17923-17928.[24]WIEG A T,PENILLA E H,HARDIN C L,et al.Broadband white light emission from CeʒAlN ceramics:high thermal con-ductivity down-converters for LED and laser-driven solid state lighting[J].APL Mater.,2016,4(12):126105-1-8.[25]YOU S H,LI S X,WANG L,et al.Ternary solid solution phosphors Ca1-x-y Li x Al10-x-y Si1+x+y N3-y O yʒCe3+with enhancedthermal stability for high-power laser lighting[J].Chem.Eng.J.,2021,404:126575-1-11.[26]LI S X,ZHU Q Q,TANG D M,et al.Al2O3-YAGʒCe composite phosphor ceramic:a thermally robust and efficient colorconverter for solid state laser lighting[J].J.Mater.Chem.C,2016,4(37):8648-8654.[27]LI S X,ZHU Q Q,WANG L,et al.CaAlSiN3ʒEu2+translucent ceramic:a promising robust and efficient red color converterfor solid state laser displays and lighting[J].J.Mater.Chem.C,2016,4(35):8197-8205.[28]KANG T W,PARK K W,RYU J H,et al.Strong thermal stability of Lu3Al5O12ʒCe3+single crystal phosphor for laserlighting[J].J.Lumin.,2017,191:35-39.[29]PARK J,KIM J,KWON H.Phosphor-aluminum composite for energy recycling with high-power white lighting[J].Adv.Opt.Mater.,2017,5(19):1700347-1-6.㊀第10期郑㊀鹏,等:Ce 3+和Eu 2+掺杂荧光材料的光猝灭机理研究进展1457㊀[30]LENEF A,KELSO J,ZHENG Y,et al .Radiance limits of ceramic phosphors under high excitation fluxes [C].Proceedings of SPIE 8841,Current Developments in Lens Design and Optical Engineering ⅩⅣ,San Diego ,2013:884107-1-20.[31]LENEF A,RAUKAS M,WANG J,et al .Phosphor performance under high intensity excitation by InGaN laser diodes [J].ECS J.Solid State Sci.Technol .,2020,9(1):016019-1-16.[32]JANSEN T,BÖHNISCH D,JÜSTEL T.On the photoluminescence linearity of Eu 2+based LED phosphors upon high excita-tion density [J].ECS J.Solid State Sci.Technol .,2016,5(6):R91-R97.[33]VAN DER HEGGEN D,JOOS J J,SMET P F.Importance of evaluating the intensity dependency of the quantum efficien-cy:impact on LEDs and persistent phosphors [J].ACS Photonics ,2018,5(11):4529-4537.[34]BICANIC K T,LI X Y,SABATINI R P,et al .Design of phosphor white light systems for high-power applications [J].ACS Photonics ,2016,3(12):2243-2248.[35]SIJBOM H F,JOOS J J,MARTIN L I D J,et al .Luminescent behavior of the K 2SiF 6ʒMn 4+red phosphor at high fluxes and at the microscopic level [J].ECS J.Solid State Sci.Technol .,2015,5(1):R3040-R3048.[36]NITTA M,NAGAO N,NOMURA Y,et al .High-brightness red-emitting phosphor La 3(Si,Al)6(O,N)11ʒCe 3+for next-generation solid-state light sources [J].ACS Appl.Mater.Interfaces ,2020,12(28):31652-31658.[37]ZHENG P,LI S X,TAKEDA T,et al .Unraveling the luminescence quenching of phosphors under high-power-density exci-tation [J].Acta Mater .,2021,209:116813.[38]BRIL A.On the saturation of fluorescence with cathode-ray excitation [J].Physica ,1949,15(3-4):361-379.[39]DE LEEUW D M,HOOFT G W T.Method for the analysis of saturation effects of cathodoluminescence in phosphors;ap-plied to Zn 2SiO 4ʒMn and Y 3Al 5O 12ʒTb [J].J.Lumin .,1983,28(3):275-300.[40]JACOBS R R,KRUPKE W F,WEBER M J.Measurement of excited-state-absorption loss for Ce 3+in Y 3Al 5O 12and impli-cations for tunable 5d ң4f rare-earth lasers [J].Appl.Phys.Lett .,1978,33(5):410-412.[41]MINISCALCO W J,PELLEGRINO J M,YEN W M.Measurements of excited-state absorption in Ce 3+ʒYAG [J].J.Appl.Phys .,1978,49(12):6109-6111.[42]OWEN J F,DORAIN P B,KOBAYASI T.Excited-state absorption in Eu +2ʒCaF 2and Ce +3ʒYAG single crystals at 298and 77K [J].J.Appl.Phys .,1981,52(3):1216-1223.[43]HAMILTON D S,GAYEN S K,POGATSHNIK G J,et al .Optical-absorption and photoionization measurements from the excited states of Ce 3+ʒY 3Al 5O 12[J].Phys.Rev .B,1989,39(13):8807-8815.[44]LAWSON J K,PAYNE S A.Excited-state absorption of Eu 2+-doped materials [J].Phys.Rev .B,1993,47(21):14003-14010.[45]AUZEL F.Upconversion and anti-Stokes processes with f and d ions in solids [J].Chem.Rev .,2004,104(1):139-174.[46]VAN DER HEGGEN D,JOOS J J,BURBANO D C R,et al .Counting the photons:determining the absolute storage capacity ofpersistent phosphors [J].Materials (Basel ),2017,10(8):867-1-13.[47]STRUCK C W,FONGER W H.Unified model of the temperature quenching of narrow-line and broad-band emissions [J].J.Lumin .,1975,10(1):1-30.[48]BLEIJENBERG K C,BLASSE G.QMSCC calculations on thermal quenching of model phosphor systems [J].J.Solid State Chem .,1979,28(3):303-307.[49]DORENBOS P.Thermal quenching of Eu 2+5d-4f luminescence in inorganic compounds [J].J.Phys .:Condens.Mat-ter .,2005,17(50):8103-8111.[50]UEDA J,DORENBOS P,BOS A J J,et al .Insight into the thermal quenching mechanism for Y 3Al 5O 12ʒCe 3+through ther-moluminescence excitation spectroscopy [J].J.Phys.Chem .C,2015,119(44):25003-25008.[51]BACHMANN V,RONDA C,MEIJERINK A.Temperature quenching of yellow Ce 3+luminescence in YAGʒCe [J].Chem.Mater .,2009,21(10):2077-2084.郑鹏(1991-),男,安徽亳州人,博士研究生,2014年于北京科技大学获得硕士学位,主要从事激光照明与显示用荧光材料的研究㊂E-mail:zheng_peng@foxmail.com解荣军(1969-),男,江苏镇江人,博士,教授,1998年于中国科学院上海硅酸盐研究所获得博士学位,主要从事稀土发光材料㊁量子点和发光器件的研究㊂E-mail:rjxie@第42卷㊀第10期2021年10月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.42No.10Oct.,2021文章编号:1000-7032(2021)10-1458-24㊀㊀收稿日期:2021-06-02;修订日期:2021-07-01㊀㊀基金项目:国家自然科学基金(61975070,51902143,61971207);江苏省高校优势学科建设项目(PAPD);江苏省重点研发项目(BE2018062,BE2019033);江苏省自然科学基金(BK20191467);江苏省国际科技合作项目(BZ2019063,BZ2020045,BZ2020030);徐州市技术创新专项(KC19250,KC20201,KC20244);江苏省研究生科研与实践创新计划项目(SJCX21_1137)资助Supported by National Natural Science Foundation of China(61975070,51902143,61971207);Priority Academic Program Devel-opment of Jiangsu Higher Education Institutions (PAPD );Key Research and Development Project of Jiangsu Province (BE2018062,BE2019033);Natural Science Foundation of Jiangsu Province(BK20191467);International S&T Cooperation Pro-gram of Jiangsu Province (BZ2019063,BZ2020045,BZ2020030);Special Project for Technology Innovation of Xuzhou City (KC19250,KC20201,KC20244);Postgraduate Research &Practice Innovation Program of Jiangsu Province(SJCX21_1137)高功率密度激发荧光材料的反常热猝灭效应张曦月1,张㊀乐1∗,孙炳恒2,马跃龙1,3,康㊀健1,侯㊀晨1,姜本学2∗,刘永福4∗,陈㊀浩1(1.江苏师范大学物理与电子工程学院,江苏省先进激光材料与器件重点实验室,江苏徐州㊀221116;2.中国科学院上海光学精密机械研究所,上海㊀201800;3.江苏大学机械工程学院,江苏镇江㊀212013;㊀4.中国科学院宁波材料技术与工程研究所,浙江宁波㊀315201)摘要:荧光转换材料普遍存在的发光强度随温度升高而降低的热猝灭现象严重影响了器件的性能,限制了其在高功率发光二极管(LED)/激光二极管(LD)照明中的应用㊂然而,部分荧光材料却会出现随着温度升高发光强度增大的现象,即反常热猝灭效应㊂反常热猝灭作为提升发光材料及其器件应用性能的有效途径得到了广泛研究㊂本文总结了目前反常热猝灭效应在发光领域的研究现状及应用,阐述了发光反常热猝灭的机理,并对其未来发展趋势进行了展望,以期开发出具有更优反常热猝灭特性的新型发光材料,满足高效高功率LED /LD 照明器件的应用需求㊂关㊀键㊀词:高功率密度;LED /LD 照明;热猝灭现象;反常热猝灭效应中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI :10.37188/CJL.20210202Abnormal Thermal Quenching Effect ofHigh Power Density Excited Fluorescent MaterialsZHANG Xi-yue 1,ZHANG Le 1∗,SUN Bing-heng 2,MA Yue-long 1,3,KANG Jian 1,HOU Chen 1,JIANG Ben-xue 2∗,LIU Yong-fu 4∗,CHEN Hao 1(1.Jiangsu Key Laboratory of Advanced Laser Materials and Devices ,School of Physics Electronic Engineering ,Jiangsu Normal University ,Xuzhou 221116,China ;2.Shanghai Institute of Optics Fine Mechanics ,Chinese Academy of Sciences ,Shanghai 201800,China ;3.School of Mechanical Engineering ,Jiangsu University ,Zhenjiang 212013,China ;4.Ningbo Institute of Materials Technology &Engineering ,Chinese Academy of Sciences ,Ningbo 315201,China )∗Corresponding Authors ,E-mail :zhangle @ ;jiangsic @ ;liuyongfu @Abstract :Thermal quenching is a phenomenon that the luminescence intensity of fluorescent con-version materials decreases with the increase of temperature,and it seriously affects the performance of the devices and limits the applications in high power LED /LD lighting.However,the lumines-cence intensity of some fluorescent materials often increases with the rise of temperature,which is named as the abnormal thermal quenching effect.As an effective way to improve the performance ofluminescent materials and devices,the abnormal thermal quenching effect has been widely studied.㊀第10期张曦月,等:高功率密度激发荧光材料的反常热猝灭效应1459㊀In this paper,the research status and application of fluorescent materials with abnormal thermal quenching effect was reviewed,the mechanism of abnormal thermal quenching effect was illustrated, and its future development trend was prospected.This review will help to develop new luminescent materials with better abnormal thermal quenching characteristics to meet the application requirements of high efficiency and high power LED/LD lighting devices.Key words:high power density;LED/LD lighting;thermal quenching phenomenon;abnormal thermal quenching effect1㊀引㊀㊀言白光发光二极管(Light emitting diodes,LED)作为第四代照明光源,在固态照明与显示领域已经得到了长时间的发展与应用[1-13]㊂相比LED,基于激光二极管(Laser diode,LD)芯片的照明技术因其体积小㊁亮度高㊁照射距离远等优点在高功率照明㊁显示和光通讯等众多领域具有广泛的应用前景[14-17]㊂目前,蓝光芯片搭配黄色荧光材料是白光LED/LD的主流实现方案[18],荧光材料作为LD器件的主要组成部分,其性能直接决定了照明器件的品质㊂然而,在激光照明等应用场景中,高功率密度激发会引起荧光材料温度上升,导致发光离子的激发态电子非辐射分布增加[1,19],在150~200ħ的范围内发射强度降低至其初始状态60%~70%以下,即产生显著的热猝灭(Ther-mal quenching,TQ)现象㊂高功率密度激发下温度上升带来的热猝灭行为严重影响着LED/LD用荧光材料的服役稳定性,包括发光强度降低㊁色度漂移㊁发光饱和等一系列问题,从而导致目前已有荧光材料的商业应用受到限制[20]㊂因此,解决荧光材料的热猝灭问题,寻找和开发在高功率密度激发下拥有更优耐热特性的荧光材料以缓解高功率密度激发下热效应带来的不利影响,将成为新的研究热点㊂反常热猝灭效应,即在一定温度范围内,随着工作温度上升,荧光材料的发射强度保持不变或逐渐增加的发光现象㊂在高功率密度激发下,荧光材料的反常热猝灭效应有利于提高材料的发光量子效率和热稳定性,避免由于光转换过程中积累的热量带来的荧光材料运行温度不断升高,最终引起激光照明器件的发光强度达到峰值,并开始骤降的问题;亦可以缓解由于功率增加造成的色光比例改变,导致色温㊁色坐标㊁显色指数发生显著变化的问题,提升高功率密度激发下荧光材料的发光品质㊂自从2017年Kim等[13]发现了一种在200ħ温度下仍能保持室温发射强度100%的蓝光Na3Sc2(PO4)3ʒ0.03Eu2+荧光粉,反常热猝灭荧光材料便受到了广泛关注㊂在高功率密度激发下出现反常热猝灭效应㊁保持优越的发光性能的荧光材料无疑具有非常光明的发展前景㊂本文从材料组分掺杂改性㊁复合结构设计方面概述了近年来反常热猝灭效应机理的研究进展,对几种典型的反常热猝灭体系的结构㊁发光性质及其实际应用进行了详细介绍,并讨论了目前本领域研究中存在的问题及发展趋势,以期可以采用新的方法与角度更好地理解高功率密度激发下荧光材料的反常热猝灭效应,设计开发出新型的无热猝灭或负热猝灭的高效荧光材料,满足其在高功率密度激发照明与显示等领域的应用㊂2㊀反常热猝灭效应机理相关研究一般来说,热猝灭现象与高温工作状态下激活离子激发态和基态能级间的交叉弛豫㊁热离化等过程密切相关[19,21-22]㊂研究表明,较大的电离能(激活剂离子的发射能级和导带底之间的能量差)㊁较大的热猝灭活化能㊁较宽的禁带宽度等条件下更容易抑制热猝灭现象,减少无辐射跃迁过程[23-24]㊂科研人员对于缓解热猝灭效应做出的诸多努力催生了荧光材料中反常热猝灭效应的发现,有效改善了高功率密度激发下荧光材料的发光性能㊂全面分析荧光材料的电子结构和光学性质有助于认识热猝灭现象的形成机制,更深入理解反常热猝灭效应的作用机理,并指导开发热猝灭性能更加良好的新型荧光材料㊂结合存在反常热猝灭效应荧光材料的相关文献报道,增强反常热猝灭效应的工作主要围绕材料组分设计(掺杂改性)和复合结构设计两个途径开展㊂因此,本文对反常热猝灭机理的解释将按照以上两个方面进行归纳总结㊂1460㊀发㊀㊀光㊀㊀学㊀㊀报第42卷2.1㊀荧光材料组分设计目前LED /LD 用稀土荧光材料主要是使用稀土发光离子中属于非禁戒的f-d 电子跃迁的激活剂,包括Eu 2+㊁Ce 3+和Yb 2+㊂由于其5d 轨道裸露在4f 电子层外,极易受到外部环境的影响,因此通过调节基质的晶体结构可以实现荧光材料性能的调节和优化[25]㊂对稀土荧光材料进行离子掺杂或原子取代调整其化学结构组分,调控影响其热稳定性的关键参数,利用不同的作用机制实现反常热猝灭效应㊂目前通过荧光材料组分设计实现反常热猝灭效应的机制可以分为下述5种㊂2.1.1㊀缺陷能级到发光中心激发能级的能量转移对于下转移或下转换发光,其过程是在短波激发下,发光离子的基态电子跃迁至激发态,随后跃迁至基态并产生长波发射㊂然而,在高功率密度激发特别是激光照明应用中,过高的工作温度与过强的激发光泵浦密度使得处于激发态能级的电子二次跃迁至导带上,随后以无辐射跃迁的形式回到基态,造成热猝灭现象㊂图1为荧光材料中典型的缺陷能级向发光中心激发能级能量传递示意图㊂在低温范围内,通过在荧光材料中引入缺陷作为陷阱能级,部分电子被诱导捕获并存储在陷阱能级里㊂热刺激后,被捕获电子从陷阱能级跃出,随后通过导带转移到发光离子的激发态能级从而实现发光过程㊂因此,电子被陷阱能级俘获与电子从陷阱解俘的过程达到动态平衡,此时便出现零猝灭甚至负猝灭现象[26]㊂从陷阱到发光中心发生了有效的能量转移,形式上为发光离子提供了额外的激发能,从图1㊀缺陷能级向发光中心激发能级的能量传递示意图Fig.1㊀Schematic diagram of energy transfer from defect levelto excitation level of emission center而产生更强的发光㊂因此,陷阱能级的深度和浓度成为影响反常热猝灭效应的关键㊂在荧光材料中,充当电子陷阱的缺陷能级可以通过以下方式引入:(1)离子非等价取代引入缺陷作为电子陷阱晶格内部离子半径相近的情况下易发生非等价取代,即高价离子取代低价离子形成正缺陷,或低价离子取代高价离子形成负缺陷㊂而非等价的格点取代导致的电荷不平衡会诱导带电属性相反的缺陷产生,增加电子陷阱深度和数量,在热激活下充当陷阱的晶格缺陷释放载流子,抑制热猝灭现象的出现㊂北京科技大学夏志国教授团队[23]采用Eu 2+离子取代K +离子产生正缺陷Eu ㊃K ,加之制备过程中存在的V ㊃㊃O ,都会诱导负缺陷Vᶄk 的产生,合成的K 2BaCa(PO 4)2ʒ3%Eu 2+蓝光荧光粉在275ħ时TQ 为零㊂如图2所示,结合PBE0杂化泛函的密度泛函(DFT)计算得到的缺陷转变能级与热释光谱的测量结果,推测在零热猝灭的初始上升阶段所涉及的缺陷最有可能是基体材料中的氧空位㊂氧空位作为导带的电子陷阱中心捕获电子,通过能量传递补偿热猝灭效应㊂之后,该团队[27]将Li +掺杂进NaAlSiO 4ʒEu实现了量子效率(QE)的提高㊁光致发光(PL)特性的可调谐和热稳定性的提升,当N ѲASOʒy Li,Eu 中(Ѳ表示V NA )y =0.15时,在150ħ时仍能保持室温条件下94.6%㊂DFT 计算结果表明,Li 倾向的占位为Li Al -2Li VNa ,Li 含量越多,发光热稳定性越高㊂这是由于Li 的相关陷阱(如位于V Na 格点的Li)受热释放出更多电子与Eu 2+重组,传递至Eu 2+的5d 激发态能级㊂兰州大学王育华教授团队[28]采用Eu 2+离子取代K +离子,Sc 3+离子取代Hf 4+离子形成缺陷Eu ㊃K 和ScᶄHf ,进而分别诱导产生负空位缺陷Vᶄk 和正空位缺陷V ㊃㊃O 以保持电中性㊂合成的近紫外和蓝光激发绿光荧光粉K 2HfSi 3O 9ʒ2%Eu 2+,6%Sc 3+在200ħ时仍不存在发光损耗㊂结合25~250ħ的热释光谱和衰减曲线分析,陷阱能级的存在使其与Eu 2+的5d 能级之间发生能量转移㊂之后,该团队[29]采用Ce 3+离子不等价取代Li 2CaSi 2N 4的Ca 2+格点,产生Ce ㊃Ca 和VᵡCa 缺陷㊂合成的Li 2CaSi 2N 4ʒCe 3+荧光粉在200ħ时零热猝㊀第10期张曦月,等:高功率密度激发荧光材料的反常热猝灭效应1461㊀图2㊀(a)KBCPʒ3%Eu 2+的热释光曲线;(b)DFT 计算KBCP 中V K2,3和V O1,2的热力学转变能级示意图[23]㊂Fig.2㊀(a)TL curve and its deconvolutions of KBCPʒ3%Eu 2+.(b)Schematic representation of calculated thermodynamiccharge transition levels for V K2,3and V O1,2in KBCP using the DFT-PBE0method [23].灭㊂在150ħ时,Li 2CaSi 2N 4ʒ0.05Ce 3+在507nm 和557nm 处的发射峰仍然保持初始强度的95%和104%,表现出良好的热稳定性㊂昆明理工大学邱建备教授团队[30]通过在Sr 3SiO 5ʒEu 2+中引入Tm 3+占据Sr 2+格点,Tm 3+的引入产生了一种具有更深陷阱深度的缺陷结构,可以有效地捕获载流子,从而抑制了非辐射过程中声子形式的能量损失㊂热扰动产生的载流子补偿了热猝灭行为,在120ħ内仍零猝灭㊂西北农林科技大学周文明教授团队[31]采用Eu 3+离子取代Ca 2+离子的格点,不平衡的电荷取代导致了空位缺陷(VᵡCa )缺陷和间隙缺陷(Oᵡi )的产生,晶格缺陷作为电子陷阱受热释放载流子,补偿了热猝灭效应㊂合成的红色荧光粉Ca 2InSbO 6ʒEu 3+在207ħ时的发射强度是27ħ时的1.1倍㊂因此,采取非等价取代引入缺陷作为电子陷阱是一种有效的方法㊂然而,过高的非等价取代浓度会对晶格结构产生不利影响㊂同时,缺陷浓度增大也将不可避免地会造成发光湮灭,反而达不到捕获电荷的效果㊂(2)阳离子无序化增加陷阱的深度和数量通过引入阳离子取代晶格中部分初始阳离子的格位,实现一定程度的阳离子无序化,实际上改变了平均离子半径,以调整晶格应变㊂引入阳离子无序化不仅会导致材料结构刚性的变化,通过破坏晶格振动来抑制无辐射过程,而且导致作为电子陷阱的缺陷数量和深度增加㊂在有序化合物中,有序度可以用来表征不同原子在晶格格点中的优先占位情况㊂在固溶体A 1-xB x 中,有序度η根据以下公式计算[32-33]:η=O CC A A -O CC B A =O CC B B -O CC AB ,(1)O CC A A ㊁O CC B A ㊁O CC B B 和O CC AB 表示A 原子和B 原子分别占据A 格点或B 格点㊂刘泉林教授团队[33]计算了在(Ba 1-x Sr x )2SiO 4ʒEu 2+中Sr 2+取代Ba 2+的阳离子有序度,当x 为0.5时,其在150ħ时的发射光强度仍保持在90%以上㊂中国台湾大学刘如熹教授团队[34]通过Ca 0.55Ba 0.45组合取代Sr 1.98Si 5N 8ʒEu 0.02中的Sr 2+,在一定程度上引入阳离子创造无序环境,在25~200ħ工作温度范围内,发光强度增加了20%~26%㊂在此基础上,Kim 等[35]通过在固溶体荧光粉Lu 2.8Ca 0.1Ce 0.1Al 1.8Ba 0.2Al 2.7Si 0.3O 12中掺杂Ba 2+部分取代Al 3+引入阳离子无序效应,将其发光强度提升至商用LuAG ʒCe 3+(Lu 3Al 5O 12ʒCe 3+)的116%㊂引入阳离子无序化可以增加陷阱的深度和数量,有效抑制无辐射过程㊂相比异价离子取代,同价离子取代的浓度可相对较高㊂然而,当引入的阳离子与晶格中初始阳离子半径差值超过一定值时会在晶格中产生杂相,且原子占位的优先级往往不易调控㊂此外,引入阳离子无序化在产生电子陷阱的同时有可能对晶格结构刚性产生负面影响㊂因此,该方法研究相对较少㊂(3)特定温度下的结构相变形成空位等缺陷当阳离子无序化增大到一定阶段时,晶格将产生结构相变㊂随着温度的升高,荧光材料从有序到无序的相变带来的结构差异导致电导率㊁发射强度和缺陷数量都发生变化,从而影响荧光材1462㊀发㊀㊀光㊀㊀学㊀㊀报第42卷料的性能㊂2017年,Kim等[13]将Eu2+离子掺入蓝光荧光粉合成了Na3Sc2(PO4)3ʒ0.03Eu2+,温度升高使得Na+无序化导致了α相ңβ相ңγ相的相变,增加了阳离子空位缺陷,从而形成了作为电子捕获中心的缺陷能级的产生,在200ħ时实现了零猝灭㊂这一过程可通过方程式2Na++Eu2+ңEu㊃Na+VᶄNa进行简单描述㊂这有利于能量从包含电子空穴对的陷阱到Eu2+5d能级的转移,从而补偿非辐射跃迁引起的发射损失,在温度上升时维持发射强度,展示出了零猝灭的性质㊂电子陷阱的深度可以通过如下公式估计:E=T M/500,(2)其中E代表激活能,即陷阱深度,单位为eV;T M代表热释光曲线中峰值对应的温度,单位为K[36]㊂随后,天津理工大学王达健教授团队[37]也对Na3Sc2(PO4)3ʒEu2+荧光材料中出现反常热猝灭效应进行了研究,也得到了升温过程导致相变㊁抑制无辐射跃迁过程的结论㊂荧光材料在特定温度下的结构相变有助于形成空位等缺陷,结构差异会导致作为电子陷阱的缺陷数量增加,有效补偿热猝灭效应㊂然而,研究特定温度下荧光材料的相变对其发光性能的影响相对较少,且研究的材料体系相对单一㊂目前,由于涉及缺陷态的热猝灭现象往往难以通过实验手段进行微观层面上的深度研究,而理论计算可以作为一种深入了解和分析缺陷的辅助手段㊂苏州大学孙洪涛教授团队[38]采用DFT 计算分析了(C9NH20)2SnBr4晶体的能级情况,发现引入Br1和/或Br2空位会在带隙中产生缺陷能级,而单独引入C9NH20空位则不会,这直接导致了在270nm激发下,在-268~25ħ的温度区间内仅加入溴源的(C9NH20)2SnBr4单晶出现负猝灭现象,在25~50ħ的温度区间内热猝灭现象也有明显改善㊂该材料仅在11ħ的室温下即可制备,且展现出优异的抗热猝灭性能,具有较好的应用前景㊂近期,瑞典Linderälv等[39]借助第一性原理计算得到了Ce与氧空位间电荷转移的最低能量路径,从理论层面研究了CeʒYAG中氧空位作为深度缺陷态参与发光热猝灭的复合机制㊂基于密度泛函理论的第一性原理计算可以弥补实验的不足,但是由于稀土离子4f电子具有开壳层特征,当其共掺杂入荧光材料中,会大大增加理论模拟的计算量,因此往往需要经验模型辅助,这导致理论计算存在一定的局限性㊂2.1.2㊀提升晶格结构刚性来抑制无辐射跃迁过程荧光材料的结构刚性是判断材料晶格骨架结构是否稳定的有效指标,尤其是在高功率密度激发下,高结构刚性和晶格对称性的荧光材料有利于降低晶格振动频率,抑制无辐射衰减过程,减少声子损耗㊂影响发光材料的晶格刚性主要包括晶格联通程度㊁化学键健能等㊂此外,依据 尺寸匹配原则 以及 泡利经验式I=1-exp(-Δx2/4) (Δx为泡利电负性差)[40],选取与所替换离子半径差在15%以内并且与氧原子间具有更强键能以及共价性的离子,可有效提升晶格排列紧实程度,抑制极端服役条件下由热量引发的晶格振动,缓解无辐射跃迁效应,提升发光材料的热稳定性能,这使得其在高功率密度激发下往往易出现反常热猝灭效应㊂通过实验和DFT计算得到的德拜温度(ΘD)可以作为衡量晶体结构刚性的关键参数[41-43],荧光材料的高德拜温度对应于低晶格振动频率和小斯托克斯位移[12],这往往会降低无辐射跃迁的可能性,因此德拜温度可以帮助衡量和筛选猝灭性能相对较好的基质材料㊂通过准谐德拜模型可以得到德拜温度(ΘD),可由公式(3)和(4)计算得到[44-45]:ΘD=h kB(6π2V1/2n)1/3f(σ)B s M,(3) f(σ)={32231+σ1-2σ()3/2+131+σ1-σ()3/2[]-1}1/3,(4)其中k B和h分别表示简化后的波尔兹曼常数和普朗克常数,M为原胞的相对分子质量,B s为晶体的绝热体弹模量,n是每个原胞中包含的原子数, V表示原胞的体积,σ是泊松比㊂Brgoch等[46]指出,荧光材料中多面体连通度高的晶格可以有效限制振动自由度,降低声子参与的无辐射弛豫过程,这使得这类荧光材料通常具有良好的猝灭特性㊂基于此,荧光材料中石榴石型㊁UCr4C4型和β-K2SO4型都是结构刚性较优异的结构㊂(1)石榴石型石榴石型矿物结构原型属于立方晶系,空间㊀第10期张曦月,等:高功率密度激发荧光材料的反常热猝灭效应1463㊀群为Ia 3d ㊂其一般公式是A 3B 2C 3O 12,其中A ㊁B 和C 是位于不同对称位置的阳离子㊂A 原子占据了8配位十二面体的24(c)格点,B 原子占据了6配位八面体的16(a)格点,C 原子占据了四配位四面体的24(d)格点㊂每个八面体与6个四面体相连,而每个四面体通过公共角与4个[AlO 6]八面体相连[47-50]㊂正是由于三种不同阳离子格位的存在,使得掺Ce 3+的石榴石可以通过不同阳离子的替代灵活地调整和优化特定应用场景下所需的发光性能㊂作为石榴石的主要体系,YAG 的德拜温度高达726K,这大大降低了无辐射跃迁的概率,也使其保持了较高的量子产率,从而使其在激光领域作为增益介质的基质材料具有广泛应用[51-52]㊂该结构的典型应用将在3.1部分介绍㊂(2)β-K 2SO 4型β-K 2SO 4矿物结构原型属于正交晶系,空间群为Pnam [53]㊂典型的两类包括正硅酸盐A 2SiO 4型(A =Sr,Ba)ʒEu(Eu 取代Sr 或Ba 位)和磷酸盐AB PO 4型(A 是一价阳离子如Na +,K +;B 是二价阳离子如Ca 2+,Sr 2+,Ba 2+)[43,54-55]㊂在AB PO 4型磷酸盐体系中,随着A ㊁B 离子半径的变化而有所不同,其结构也会有所不同(橄榄石结构㊁钾芒硝结构等)㊂针对该体系,苏州大学黄彦林教授团队[54]的研究表明NaSrPO 4的热猝灭温度相较KBaPO 4低了200ħ,作者认为KBaPO 4和NaSrPO 4不同的热稳定性是由于在NaSrPO 4中Eu 2+占据多个Sr 2+格位导致分布在整个晶格上的 高度无序环境 中,而KBaPO 4ʒEu 2+离子单一格位在晶格中具有较高的 有序态 ㊂β-K 2SO 4矿物结构的典型应用将在3.2部分介绍㊂(3)UCr 4C 4型UCr 4C 4矿物结构原型属于四方晶系,空间群为I 4/m ,Cr 和C 相连形成CrC 4四面体,四面体相连构成骨架,U 离子填充在四面体之间㊂其化合物通式可写为Me (A ,B )4X 4,其中Me 为碱金属或碱土金属离子,A 和B 为配位离子㊂[AX 4]和[BX 4]四面体通过共边或共顶点连接形成[001]方向的vierer 环,Me 离子位于其形成的环状结构中,其格位具有高度对称性且致密度k =(AB/X )=1,因此拥有较强的结构刚性[25,56]㊂例如Sr-LiAl 3N 4ʒEu 2+(95%@227ħ)和RbLi(Li 3SiO 4)2ʒEu 2+(103%@150ħ),它们都属于UCr 4C 4型结构[11,57]㊂该结构的典型应用将在3.3部分介绍㊂除上述体系的荧光材料外,科研人员在其他体系中也进行了诸多研究㊂图3㊀(a)石榴石矿物结构模型[58];(b)UCr 4C 4矿物结构模型[59];(c)K 2SO 4矿物结构模型[23]㊂Fig.3㊀(a)Garnet mineral structure model [58].(b)UCr 4C 4mineral structure model [59].(c)K 2SO 4mineral structure model [23].。
商务英语翻译 Unit 4

• • • • •
• • • •
(2)拟人 使宣传的产品富于人物的情感和特侦,更人性化。 如:Apple thinks different(苹果电脑,不同凡响)。 (3)仿拟 仿照人们熟知的现成的语言材料,根据表达的需要临时 创造出新的语句,使语言生动活泼。 如:Where there is a way, there is a Toyota (车到山前必有 路,有路必有丰田车),就是模仿耳熟能详的谚语Where there is a will, there is a way(有志者,事竟成)。 (4)双关 为加深语意,利用词的多义和同音,有意使语句具有双 重意义,言在此而意在彼。 如:we lead, others copy(理光打印机广告:我们领先, 他人模仿),copy一语双关,既体现打印机复印的功能, 又表现该品牌的领先地位。
• 参考译文:
• • • • • • • • • •
(1) 没有买卖,就没有杀害 (2) 开车不喝酒,喝酒不开车 (3) 因为绿色属于树木,地球才有了脉搏 (4) 保护环境识每个公民的责任与义务 (5) 使地球充满生机! (6) 胜利是不会向我走来的,我必须自己走向胜利 (7) 授人以鱼,不如授人以渔 (8谨防扒手 (9) 知识是一宝库,而实践就是开启宝库大门的钥匙 (10) 工作时工作, 玩乐是玩乐, 依此方法做, 轻松与欢 乐
• 句法特点(Sentences) • (1)多用简单句 • 广告语言必须简练,能一下子抓住人们的注意 力,引起大家的兴趣。 • 如:Nobody is perfect • Quality first. Customer supreme • (2)常用疑问句、祈使句和省略句 • 广告中采用疑问句和祈使句可激起人们的反应, 使之采取行动。 • Wouldn’t you really rather have a Buick? • to indulge • You decide
共建绿色城市英语范文

共建绿色城市英语范文Title: Building a Green City: Our Collective EndeavorIn the modern era, where urbanization and industrial growth have led to significant environmental concerns, building a green city has become an imperative goal for sustainable development. A green city is not just a beautiful vision of lush landscapes and clean air; it represents a commitment to creating healthier living conditions, reducing pollution, and safeguarding the Earth's resources for future generations. This essay discusses the importance of collective efforts in transforming our cities into sustainable, eco-friendly havens.The concept of a green city extends beyond just the presence of greenery. It encompasses a holistic approach towards urban planning and design that prioritizes environmental sustainability, resource efficiency, and quality of life for all residents. Green cities incorporate renewable energy sources, efficient waste management systems, sustainable transportation networks, and green buildings that reduce energy consumption and carbon footprints. The aim is to create a harmonious relationship between urban development and natural ecosystems, ensuring that city dwellers can enjoya cleaner and healthier environment.Achieving such a ambitious goal requires the collective effort of everyone involved in city planning, development, and maintenance. Governments, civic authorities, architects, citizens, and businesses must all work together to implement and uphold green initiatives. Herein lies the significance of shared responsibility in the journey towards a sustainable future.Governments and local authorities play a pivotal role by formulating policies and regulations that promote green practices. This includes incentives for green construction, penalties for pollution, and investments in public infrastructure that supports sustainability, such as public parks, bicycle lanes, and efficient public transport systems. Through such measures, governments can set the tone for environmental stewardship and encourage private enterprises and citizens to follow suit.Architects and urban planners are crucial in designing green spaces and buildings that minimize environmental impact. By employing innovative technologies and materials, they can help reduce energy consumption and waste generation. Green roofs, solar panels, and water recyclingsystems are just a few examples of how architectural design can contribute to the sustainability of a city.Citizens, too, bear the responsibility of preserving the environment within their communities. Simple actions like recycling, using public transport, supporting local produce, and participating in community cleanups can significantly impact a city's green endeavors. Furthermore, raising awareness and advocating for environmental causes can influence policymakers and peers to adopt more eco-friendly practices.Businesses also have a vital role in building green cities. They can adopt sustainable practices in their operations, from reducing waste and conserving energy to promoting green products and services. Corporate social responsibility (CSR) initiatives can further contribute to the betterment of the urban environment by funding green projects and sponsoring environmental education programs.Technology emerges as a powerful enabler of green city development. Smart technologies can optimize energy use, monitor environmental quality, and improve waste management. For instance, smart lighting systems can reduce energy consumption, while mobile applications can facilitatecarpooling and reduce traffic congestion.Building a green city is a multifaceted endeavor that necessitates the collaborative efforts of all stakeholders. From individual actions to large-scale policies, each contribution counts towards the creation of sustainable urban environments. As we move forward, it is imperative that we continue to innovate, educate, and participate in the collective mission of building green cities—not only for the benefit of current generations but also to ensure a sustainable future for those to come.。
LED照明客户资料

info@
/
customerservice@destinationlighting.co /
info@
/
acculamp@
/home.asp
/
carandini@
/es/index/index.ph
http://cabmedlys.pagesperso-orange.fr/
4月8日
Info@
/HomePage.c
Technical@
InternetServices@
mks@greenline.dk fn@greenline.dk kh@greenline.dk hs@greenline.dk rj@greenline.dk aske@deeco.dk auktion@auktions-salg.dk salg@eveningstar.dk sekretariat@eco-energimaerke.dk goenergimaerket@team.goenergi.dk kontakt@haandvaerkerlisten.dk kundeservice@coolstuff.dk info@coolstuff.dk sif@sif.dk shop@diodelyskilder.dk report@ info@aaplus.dk salg@medialys.dk
/
customerservice@
webmaster@
/
contacto@
/
webmaster@ sales@.au undercabinetlights@ HR@ sales@
Sales@ sales@ info@ sales@
Ecommerce@
Kichlerhospitalitygroup@
中国绿色建筑介绍英文作文

中国绿色建筑介绍英文作文英文:Green buildings in China have been gaining popularityin recent years due to the increasing awareness of environmental protection and sustainable development. These buildings are designed to reduce the negative impact on the environment and promote a healthy and comfortable living environment for occupants.One of the key features of green buildings is energy efficiency. This is achieved through the use of advanced technologies and materials that help reduce energy consumption and emissions. For example, green buildings may use solar panels, energy-efficient lighting, and HVAC systems that use less energy. This not only reduces the carbon footprint but also saves money on energy bills.Another important aspect of green buildings is water conservation. China is a country that is prone to waterscarcity, and green buildings can help reduce water consumption through the use of water-efficient fixtures and systems. For example, low-flow faucets, toilets, and showerheads can significantly reduce water usage without sacrificing performance.In addition, green buildings also prioritize indoor air quality by using non-toxic materials and providing proper ventilation. This helps reduce the risk of health problems caused by indoor air pollution.Overall, green buildings in China are an important step towards a more sustainable future. By reducing energy and water consumption, promoting healthy indoor environments, and using eco-friendly materials, these buildings are setting an example for the rest of the world.中文:近年来,随着人们对环境保护和可持续发展意识的提高,中国的绿色建筑越来越受欢迎。
环保绿色之桥的英语作文

The concept of an environmentally friendly bridge,often referred to as a green bridge,is a structure that is designed with sustainability and ecological considerations at its core.Heres a detailed essay on the topic:The Green Bridge:A Sustainable ConnectionIn the everevolving landscape of urban development,the concept of sustainability has become a cornerstone of modern infrastructure.One such manifestation of this philosophy is the green bridge,a structure that not only serves as a conduit for transportation but also as a testament to our commitment to the environment.This essay will explore the various aspects of green bridges,their importance,and the role they play in fostering a harmonious relationship between human development and the natural world. Design Principles of Green BridgesGreen bridges are designed with several key principles in mind:1.Material Efficiency:The use of sustainable and recycled materials in construction minimizes the environmental footprint and reduces waste.2.Energy Conservation:Incorporating solar panels,wind turbines,or other renewable energy sources to power lighting and other utilities.3.Biodiversity:Providing habitats for local flora and fauna,often through the integration of green spaces,such as gardens or meadows,on the bridge itself.4.Water Management:Designing the bridge to collect and filter rainwater,reducing runoff and promoting water conservation.5.Aesthetics and Integration:Ensuring that the bridge blends seamlessly with its surroundings,enhancing the visual appeal and contributing positively to the local landscape.Environmental BenefitsThe environmental benefits of green bridges are manifold:Reduced Carbon Emissions:By utilizing renewable energy sources,green bridgescontribute to a reduction in greenhouse gas emissions.Habitat Creation:Serving as ecological corridors,green bridges help maintain biodiversity by providing safe passage for wildlife across humanmade barriers.Pollution Control:Some designs include mechanisms for air and water pollution control, such as phytoremediation,where plants are used to absorb pollutants.Sustainable Transportation:Encouraging the use of nonmotorized transportation like walking and cycling,which reduces reliance on fossil fuels.Social and Economic ImpactsBeyond the environmental considerations,green bridges also have significant social and economic implications:Community Spaces:They often serve as public spaces,fostering a sense of community and providing areas for recreation and relaxation.Economic Development:Attracting investment and tourism,green bridges can stimulate local economies and enhance property values in the surrounding areas.Educational Opportunities:Acting as living laboratories,they offer opportunities for environmental education and awareness.Challenges and SolutionsDespite the numerous benefits,the implementation of green bridges faces challenges:Cost:Initial construction costs may be higher due to the incorporation of advanced technologies and sustainable materials.Maintenance:The upkeep of green spaces and renewable energy systems requires ongoing investment.Regulatory Hurdles:Navigating the complex regulatory landscape can be a barrier to the development of green bridges.To overcome these challenges,collaborative efforts between governments,private sectors, and communities are essential.Financial incentives,publicprivate partnerships,andcomprehensive planning can help make green bridges a reality.ConclusionThe green bridge is more than just a structure it is a symbol of our collective aspiration for a sustainable future.By integrating environmental,social,and economic considerations into their design,green bridges pave the way for a new era of infrastructure that respects and preserves the natural world.As we continue to urbanize, the adoption of such innovative and ecofriendly solutions will be crucial in ensuring that our cities are not only efficient and prosperous but also in harmony with the environment.This essay provides a comprehensive overview of green bridges,highlighting their design principles,environmental benefits,and the challenges faced in their implementation.It underscores the importance of such structures in creating sustainable urban environments.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ 6] 那 红 宇 ,江 豫 新 . 大 学 教 室 照 明 设 计 的 现 状 和 新 构 想 [ J ] . 光 源 与 照 明 ,2 0 0 4( 1 ) :4 - 6 . [ 7] 中华 人 民 共 和 国 住 建筑照明设计标准 [ s ] .北 京 : 中 国 建 筑 工 业 出 版
T C 2 7 4与 国际照 明委员会 ( C I E ) 在应 用领 域照 明 的标准化 形成 互补 。国 际组织 I S 0 / T C 2 7 4第 三次 全体 工 作
会议 将 于 2 0 1 5年 4月 2 1日在北 京举行 。 联合 国大 会 已宣布 2 0 1 5年 为 国际光 年 ,希 望 以此纪 念 千年 来 人类 在 光 领域 的重 大发 现 ,强 调 推动 可持 续 发展 、解决 能 源 、教 育 、农 业 和卫生 等世 界性 问题 的光技 术 的重要 性 。为 了迎接 2 0 1 5年 国际光年 的到 来 , 中国照 明学会 、国家半 导体 照明工 程研 发及 产 业 联盟 将 于 2 0 1 5年 4月 2 2日举 办 “ G r e e n L i g h t i n g 2 0 1 5( 北 京 ) 国际智 能照 明及其 标 准 化 研 讨 会 ” 。届 时 参 加 T C 2 7 4标 准 化 会 议 的 国 际专 家 将 出席 研 讨 会 ,并 发 表 演讲 。 研讨 会 以健康 的光 环境 为核 心关注 点 ,集 中探 讨 智 能照 明 的标 准化 、照 明设 计 、创新 应 用 等 焦 点话 题 。 本 次会议 由中国照 明学会 、国家半 导体 照 明工程研 发及 产业 联盟 ( C S A)主 办 。
[ 1 1 ] 范 士娟 ,杨 超 .布 灯 方 式 对 隧 道 照 明 的 影 响 [ J ] . 井
冈山 大 学 学 报
5 O, 5 3.
(自 然 科 学 版 ) ,2 0 1 3 ,3 4 ( 3) :
Gr e e n L i g h t i n g 2 0 1 5( 北 京 ) 国 际 智 能 照 明 及 其 标 准 化 研 讨 会 通 知
本 次会议 联 系方式 :
1 . 中国照 明学会
联络 咨询 :高 飞
电话 :8 6—1 0~ 6 5 8 3 0 9 9 7
2 . 国家 半导 体照 明工程 研发 及产业 联 盟 ( C S A) 联络 :李辉 ,狄 留成 ,于 海春 3 .雅式 展览 服务有 限公 司 联络 咨询 :武京 京 电话 :8 6—1 0— 5 1 2 9 3 3 6 6转 8 3 5 电话 :8 6—1 0— 8 2 3 8 2 8 8 0 / 7 3 8 0 / 6 0 8 0
7 4
照 明 工程 学 报
2 01 5年 2月
极大地 改善 了教室 内的照明环境而且 还达 到 了节 约能 源的效果 ,为对 环境更加友好 的照明方案 。
参 考 文 献
[1] 高 帅 . 教 室 光 环 境 研 究 综 述 [ J ] .照 明工 程 学 报 ,
2 0 1 3, 2 4 ( 增 刊 ):9 4 — 1 0 0 .
报 ,2 0 0 4 ,1 5( 2 ) :5 9 — 6 1 .
[ 1 O ] 房 海 明 .L E D 照 明设 计 与 案例 精 选 [ M] .北京 : 北 京
航 空 航 天 大 学 出版 社 ,2 O 1 2:2 2 0 — 2 2 2 .
[4] 李 红杰 ,鲁 顺 清 .安 全 人 机 工 程 学 [ M] .武 汉 : 中 国
社 ,2 0 1 3 .
[8] 中华 人 民共 和 国住 房 与 城 乡 建 设 部 .G B 7 7 9 3 -2 0 1 0
中小 学 校 教 室 采 光 和 照 明 卫 生 标 准 [ S ] .北 京 : 中 国
建 筑 工 业 出 版 社 ,2 0 1 0 .
[2]孔 益平 ,赵 云 胜 ,刘 磊 . 优 化 教 室 照 明 均 匀 度 的 模 型 构建与求解 [ J ] . 安 全 与 环 境 工 程 ,2 0 1 2 ,1 9( 2 ) :
在过 去 的几年 中 ,世 界见证 了半 导体 照 明的快 速发 展 。为 了更 好地 发挥 半导 体照 明 的优 势 ,满足 应用 需
求 ,促进 半导 体照 明的广 泛 应 用 ,2 0 1 2年 1 1月 I S O新成立 T C 2 7 4( 光 与 照 明 )标 准化 技 术 委 员 会 。 I S O /
61 65 .
[ 9 ]黄 欢 ,韩 学 林 ,章 道 波 . L E D 在 教 室 照 明 中 的 应 用 [ J ] .照 明工 程 学 报 ,2 0 1 1 ,2 2( 6 ) :6 9 — 7 3 .
[3] 姚 远 . 教 室 照 明 设 计 的 几 个 问 题 [ J ] . 照 明 工 程 学
地 质 大 学 出版 社 ,2 0 0 6 :1 5 0 . 1 5 5 . [ 5] 陈 小 琴 ,姚 加 飞 . 重 庆 市 部 分 中 小 学 校 教 室 光 环 境 调 查与分析 [ J ] . 照 明 工 程 学 报 ,2 0 1 1 ,2 2 ( 2) :
2 5. 3 O.