2018-2019学年最新人教版初二上册期末数学试卷及答案
人教版2018-2019八年级数学上期末试卷【精选3套】
初二数学期末复习精品资料人教版2018-2019八年级数学上册期末考试试卷后附答案一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。
2018-2019学年度第二学期八年级(上册)期末数学试卷 (有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案分别是清华、北大、人大、复旦大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列一组数:,,-,,0.080080008…(相邻两个8之间依次增加一个0)其中无理数的个数是()A. 0B. 1C. 2D. 33.蓝鲸是世界上体积最大的动物,有一只蓝鲸的体重约为1.68×105kg,1.68×105这个近似数它精确到()A. 百位B. 百分位C. 千分位D. 千位4.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比()A. 向上平移3个单位B. 向下平移3个单位C. 向右平移3个单位D. 向左平移3个单位5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 7B. 6C. 5D. 46.一次函数y=(a2+1)x-a的图象上有两点A(-1,y1),B(-2,y2),则y1与y2的大小关系为()A. B. C. D. 不能确定7.在同一平面直角坐标系中,直线y=x-2与直线y=-x-b的交点一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,共30.0分)9.分式、的最简公分母是______.10.在函数中,自变量x的取值范围是______.11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:______,使△AEH≌△CEB.12.若m为整数,且<m<,则m=______.13.若直角三角形的两直角边a,b满足+b2-12b+36=0,则斜边c上中线的长为______.14.一个正数a的平方根分别是2m-1和-3m+,则这个正数a为______.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为______.16.已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为______cm.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,则BC=______.18.已知点A(2m-1,4m+2015)、B(-n+,-n+2020)在直线y=kx+b上,则k+b值为______.三、计算题(本大题共3小题,共28.0分)19.解分式方程:(1)=+1(2)-=120.先化简代数式(-)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.21.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的函数图象如图.(1)A地与B地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点A时,甲还需多少分钟到达终点B?四、解答题(本大题共7小题,共68.0分)22.()-1-|2-|-(π-3.14)0+23.如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC向右平移3个单位得到△A1B1C1,请画出平移后的△A1B1C1;(2)将△A1B1C1沿x轴翻折得到△A2B2C2,请画出翻折后的△A2B2C2;(3)若点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标______.24.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.25.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.26.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27.在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a-6m+4=0,b+2m-8=0.(1)当a=1时,点P到x轴的距离为______;(2)若点P在第一三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是______.28.如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.(1)求证;△ACD是等边三角形;(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:-,,0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:D.根据无理数的定义即可求出答案.本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.3.【答案】D【解析】解:∵1.68×105=168000,∴近似数1.68×105是精确到千位.故选:D.把数还原后,再看首数1.68的最后一位数字8所在的位数是千位,即精确到千位.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.【答案】C【解析】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选:C.根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.【答案】C【解析】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.【答案】A【解析】∵函数y=(a2+1)x-a是一次函数,∴a2+1=1,解得:a=0,即该函数的解析式为:y=x,∵函数y=x的图象上的点y随着x的增大而增大,又∵点A(-1,y1),B(-2,y2)在该函数图象上,且-1>-2,∴y1>y2,故选:A.根据“y=(a2+1)x-a是一次函数”,得到关于a的方程,解之,得到该函数的解析式,根据该函数图象的增减性,结合点A和点B横坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】B【解析】解:∵直线y=x-2经过第一、三、四象限,直线y=-x-b,当b>0时,该直线经过第二、三、四象限,当b<0时,该直线经过第一、二、四象限,∴直线y=x-2与直线y=-x-b的交点一定不在第二象限,故选:B.根据题目中的函数解析式和一次函数的性质,可以判断直线y=x-2与直线y=-x-b的交点一定不在哪个象限,本题得以解决.本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=D5B,BD6=CD6∵△ABC是直角三角形,∴D3,D5重合,故能得到符合题意的等腰三角形5个.故选:C.首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.9.【答案】12a3b3【解析】解:分式、的最简公分母是12a3b3;故答案为:12a3b3.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,求解即可.本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.10.【答案】x≥4【解析】解:根据题意,知,解得:x≥4,故答案为:x≥4.根据被开方数为非负数及分母不能为0列不等式组求解可得.本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.【答案】AH=CB等(只要符合要求即可)【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.【答案】3【解析】解:∵4<5<9<10<16,∴2<<3<<4,则整数m=3.故答案为:3.依据2<<3<<4,即可确定出m的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.13.【答案】5【解析】解:∵+b2-12b+36=0,∴a-8=0,b-6=0,∴a=8,b=6,∴c==10,∴斜边c上的中线长为5,故答案为:5根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边长,根据斜边中线长为斜边的一半计算斜边中线长.本题考查了直角三角形中勾股定理,考查了斜边中线为斜边长的一半的性质,本题中正确的运用非负数的性质是解题的关键.14.【答案】4【解析】解:根据题意,得:2m-1+(-3m+)=0,解得:m=,∴正数a=(2×-1)2=4,故答案为:4.直接利用平方根的定义得出2m-1+(-3m+)=0,进而求出m的值,即可得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.15.【答案】9【解析】解:∵点A(m-1,-5)和点B(2,m+1),直线AB∥x轴,∴m+1=-5,解得m=-6.∴2-(-6-1)=9,故答案为:9.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.16.【答案】6【解析】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.17.【答案】1.5【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE,设BC=BE=x,∴AB=1+x,∵AC2+BC2=AB2,∴22+x2=(1+x)2,解得:x=1.5,故答案为:1.5.根据余角的性质得到∠BCD=∠A.根据角平分线的定义得到∠ACE=∠DCE.根据三角形的外角的性质得到∠BEC=∠BCE,求得BC=BE,设BC=BE=x,根据勾股定理列方程即可得到结论.本题考查了勾股定理,直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.18.【答案】2019【解析】解:把点A(2m-1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m-1)+b ①,把点B(-,-n+2020)代入直线y=kx+b得:-n+2020=k(-+)+b ②,①-②得:4m+n-5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m-1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.把点A(2m-1,4m+2015)和点B(-,-n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.19.【答案】解:(1)两边都乘以(x-1)(x+2),得:x(x-1)=2(x+2)+(x-1)(x+2),整理,得:4x+2=0,解得:x=-,经检验:x=-是原分式方程的解,所以原分式方程的解为x=-;(2)两边都乘以(x+1)(x-1),得:(x+1)2-4=(x+1)(x-1),整理,得:2x-2=0,解得:x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,则原分式方程无解.【解析】(1)方程两边都乘以(x-1)(x+2)化分式方程为整式方程,解整式方程求得x的值,再检验即可得;(2)方程两边都乘以(x+1)(x-1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.【答案】解:原式=[-]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=-1.当x=2时,原式=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【答案】24【解析】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是千米/分钟;故答案为:24,.(2)由纵坐标看出AB两地的距离是24千米,设乙的速度是x千米/分钟,由题意,得,解得:x=千米/分钟,∴甲、乙相遇时,乙所行驶的路程:(千米/分钟).(3)相遇后乙到达A地还需:(分钟),相遇后甲到达B站还需:(分钟)当乙到达终点A时,甲还需54-4=50分钟到达终点B.(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是千米/分钟;(2)根据路程与时间的关系,可得乙的速度,再根据甲、乙相遇时,乙所行驶的路程=12×乙的速度,即可解答;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】解:原式=2-(2-)-1+2=2-2+-1+2=1+.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】(m+3,-n)【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标:(m+3,-n).故答案为:(m+3,-n).(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)直接利用平移的性质以及轴对称的性质得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.【答案】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°-62°-62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【解析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=-6,即点A的坐标为:(-6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,-6-8=-14,-6+8=2,即点C的坐标为:(-14,0)或(2,0).【解析】(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.本题考查了一次函数图象上点的坐标特征,解题的关键:(1)正确掌握代入法和三角形的面积公式,(2)正确掌握三角形的面积公式.26.【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A 车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.【答案】6 m<2【解析】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.28.【答案】(1)证明:由旋转变换的性质可知,AC=AD,∠CAD=60°,∴ACD是等边三角形;(2)解:存在,a=2,理由如下:∵△OAB和△ACD都是等边三角形,∴AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAB-∠CAB=∠CAD-∠CAB,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS)∴BD=OC,∴△BCD周长=BC+BD+CD=BC+OC+CD=OB+CD,当CD最小时,△BCD周长最小,∵ACD是等边三角形,∴CD=AC,当AC⊥OB时,即OC=2,AC最小,最小值为=2,∴△BCD周长的最小值为4+2,此时a=2;(3)解:当点C在x轴的负半轴上时,∠BDC=90°,则∠ADB=30°,∵△OAC≌△BAD,∴∠ACO=∠ADB=30°,∴∠BCD=30°,∴BD=BC,∴OC=BC,∴OC=4,则a=-4;当点C在线段OB上时,∠BDC=120°,∴不存在以B、C、D为顶点的三角形是直角三角形,∴a不存在;当点C在点B的右侧时,∠BCD=90°,则∠ACO=30°,∵∠AOC=60°,∴∠OAC=90°,又∠ACO=30°,∴OC=2OA=8,∴a=8.【解析】(1)根据旋转变换的性质、等边三角形的判定定理证明;(2)证明△OAC≌△BAD,根据全等三角形的性质得到BD=OC,根据等边三角形的性质计算即可;(3)分点C在x轴的负半轴上、点C在线段OB上、点C在点B的右侧三种情况,根据直角三角形的性质计算.本题考查的是旋转变换的性质、等边三角形的判定和性质、直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
2018-2019学年人教版八年级(上)期末数学试卷新人教版含答案解析
2018-2019学年人教版八年级(上)期末数学试卷一、选择题(将题中唯一正确答案的序号填在题后的括号内.每小题3分,共18分)1.(3分)(2017•柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个2.(3分)(2018春•盐湖区期末)下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(y)(y)D.(x﹣2)(x+1)3.(3分)(2014•吉州区二模)我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于2.5微米的细颗粒物(即PM2.5),也称为可入肺颗粒物,已知2.5微米=0.0000025米,此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣6 4.(3分)(2018春•濉溪县期末)能使分式的值为零的所有x的值是()A.x=1B.x=﹣1C.x=1或x=﹣1D.x=2或x=1 5.(3分)(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE 的度数为()A.20°B.25°C.30°D.40°6.(3分)(2014•滦县一模)如图,C表示灯塔,轮船从A处出发以每时30海里的速度向正北(AN)方向航行,2小时后到达B处,测得C在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯塔C之间的距离为()海里.A.60B.80C.100D.1207.(3分)(2014•张家界)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.8.(3分)(2017秋•前郭县期末)若x2+(m﹣6)x+16是一个完全平方式,则m=.9.(3分)(2017秋•前郭县期末)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为.10.(3分)(2018秋•临河区期末)已知:10m=2,10n=3,则10m﹣n=.11.(3分)(2017秋•前郭县期末)已知关于x的方程的解大于1,则实数m的取值范围是.12.(3分)(2017秋•前郭县期末)将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的大小为度.13.(3分)(2017秋•前郭县期末)如图,在△ABC和△DEF中,点B、F、C、E在同一条直线上,BF=CE,AC∥DF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.(3分)(2018秋•西青区期末)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.15.(6分)(2018春•普宁市期末)计算:0.25×(﹣2)﹣2÷(16)﹣1﹣(π﹣3)0.16.(6分)(2017秋•前郭县期末)计算:5x2y÷(xy)(2xy2)2.17.(6分)(2017秋•前郭县期末)计算:9(a﹣1)2﹣(3a+2)(3a﹣2).18.(6分)(2017秋•前郭县期末)因式分解:x4﹣81x2y2.四、解答题(每题8分,共16分)19.(8分)(2017秋•前郭县期末)先化简再求值:(1),其中x=3.20.(8分)(2018秋•下陆区期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.五、解答题(每题9分,共18分)21.(9分)(2018秋•龙湖区期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.22.(9分)(2017秋•前郭县期末)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且P A=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.六、解答题(每题10,共20分)23.(10分)(2016•东湖区校级自主招生)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.(10分)(2017秋•前郭县期末)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)2017-2018学年人教版八年级(上)期末数学试卷参考答案与试题解析一、选择题(将题中唯一正确答案的序号填在题后的括号内.每小题3分,共18分)1.(3分)(2017•柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.2.(3分)(2018春•盐湖区期末)下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(y)(y)D.(x﹣2)(x+1)【解答】解:(A)原式=﹣(a﹣b)(a﹣b)=﹣(a﹣b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2﹣x+1,故D不能用平方差公式;故选:C.3.(3分)(2014•吉州区二模)我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于2.5微米的细颗粒物(即PM2.5),也称为可入肺颗粒物,已知2.5微米=0.0000025米,此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣6【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)(2018春•濉溪县期末)能使分式的值为零的所有x的值是()A.x=1B.x=﹣1C.x=1或x=﹣1D.x=2或x=1【解答】解:∵,即,∴x=±1,∴x=﹣1.故选:B.5.(3分)(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE 的度数为()A.20°B.25°C.30°D.40°【解答】解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.6.(3分)(2014•滦县一模)如图,C表示灯塔,轮船从A处出发以每时30海里的速度向正北(AN)方向航行,2小时后到达B处,测得C在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯塔C之间的距离为()海里.A.60B.80C.100D.120【解答】解:∵∠NBC=∠A+∠C,∠NBC=60°,∠A=30°∴∠C=30°.∴△ABC为等腰三角形.船从A到B以每小时30海里的速度走了2小时,∴AB=BC=60海里.二、填空题(每小题3分,共24分)7.(3分)(2014•张家界)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=0.【解答】解:∵点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,∴m+2=4,3=n+5,解得:m=2,n=﹣2,∴m+n=0,故答案为:0.8.(3分)(2017秋•前郭县期末)若x2+(m﹣6)x+16是一个完全平方式,则m=14或﹣2.【解答】解:∵x2+(m﹣6)x+16是一个完全平方式,∴m﹣6=±8,∴m=14或﹣2,故答案为14或﹣29.(3分)(2017秋•前郭县期末)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为15,16,17.【解答】解:设新多边形的边数是n,则(n﹣2)•180°=2520°,解得n=16,∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,∴原多边形的边数是15,16,17.故答案为:15,16,17.10.(3分)(2018秋•临河区期末)已知:10m=2,10n=3,则10m﹣n=.【解答】解:∵10m=2,10n=3,∴10m﹣n=10m÷10n=2÷3.故答案为:.11.(3分)(2017秋•前郭县期末)已知关于x的方程的解大于1,则实数m的取值范围是m<0,且m≠﹣2.【解答】解:方程两边乘x﹣2得:x+m=2﹣x,移项得:2x=2﹣m,系数化为1得:x,∵方程的解大于1,∴>1,且2,解得m<0,且m≠﹣2.故答案为:m<0,且m≠﹣2.12.(3分)(2017秋•前郭县期末)将一副直角三角尺ABC和CDE按如图方式放置,其中直角顶点C重合,∠D=45°,∠A=30°.若DE∥BC,则∠1的大小为105度.【解答】解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故答案为:10513.(3分)(2017秋•前郭县期末)如图,在△ABC和△DEF中,点B、F、C、E在同一条直线上,BF=CE,AC∥DF,要使△ABC≌△DEF,则只需添加一个适当的条件是AC =DF.(只填一个即可)【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AC=DF.14.(3分)(2018秋•西青区期末)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为7.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.三、解答题(每小题6分共24分)15.(6分)(2018春•普宁市期末)计算:0.25×(﹣2)﹣2÷(16)﹣1﹣(π﹣3)0.【解答】解:原式=0.2511=1﹣1=0.16.(6分)(2017秋•前郭县期末)计算:5x2y÷(xy)(2xy2)2.【解答】解:原式=5x2y÷(xy)•(4x2y4)=﹣15x•(4x2y4)=﹣60x3y417.(6分)(2017秋•前郭县期末)计算:9(a﹣1)2﹣(3a+2)(3a﹣2).【解答】解:9(a﹣1)2﹣(3a+2)(3a﹣2).=9a2﹣18a+9﹣9a2+4=﹣18a+13.18.(6分)(2017秋•前郭县期末)因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)四、解答题(每题8分,共16分)19.(8分)(2017秋•前郭县期末)先化简再求值:(1),其中x=3.【解答】解:当x=3时,原式•=420.(8分)(2018秋•下陆区期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.【解答】解:(1)如图所示;(2)由图可知,B′(2,1);(3)如图所示,点P即为所求点,设直线A′B1的解析式为y=kx+b(k≠0),∵A′(4,5),B1(﹣2,﹣1),∴,解得,∴直线A′B1的解析式为y=x+1.∵当y=0时,x+1=0,解得x=﹣1,∴P(﹣1,0).五、解答题(每题9分,共18分)21.(9分)(2018秋•龙湖区期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的C(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否.(填“是”或“否”)如果否,直接写出最后的结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)这个结果没有分解到最后,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:否,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.22.(9分)(2017秋•前郭县期末)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且P A=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.【解答】解:(1)如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠PFD=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE AC,∵AC=AB=2,∴DE=1.六、解答题(每题10,共20分)23.(10分)(2016•东湖区校级自主招生)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.24.(10分)(2017秋•前郭县期末)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=90度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.。
人教版2018-2019学年八年级上册数学期末考试试卷及答案
2018-2019学年八年级(上)期末数学试卷
一、选择题
1.直角三角形的两条直角边长分别是3,4,则该直角三角形的斜边长是()A.2 B.3 C.4 D.5
2.在实数﹣,0,π,,1.41中,无理数有()
A.4个 B.3个 C.2个 D.1个
3.如图,下列条件不能判断直线a∥b的是()
A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°
4.在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己
的成绩外,还需要了解全部成绩的()
A.平均数B.中位数C.众数D.方差
5.如果所示,若点E的坐标为(﹣2,1),点F的坐标为(1,﹣1),则点G 的坐标为()
A.(1,2)B.(2,2)C.(2,1)D.(1,1)
6.下列命题中,真命题有()
①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组
等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内
角;④如果a2=b2,那么a=b.
A.1个 B.2个 C.3个 D.4个。
人教版2018-2019学年八年级(上册)期末数学试卷及答案
2018-2019学年八年级(上册)期末数学试卷一、选择题(每小题3分,共24分)1.式子有意义的条件是()A.x≥3 B.x>3 C.x≥﹣3 D.x>﹣32.以下列各线段为边,能组成直角三角形的是()A.2,5,8 B.1,1,2 C.4,6,8 D.3,4,53.已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=()A.8cm B.4cm C.3cm D.2cm4.在△ABC中,BC:AC:AB=1:1:,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形5.用两个全等的等边三角形拼成的四边形是()A.正方形B.矩形 C.菱形 D.等腰梯形6.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.一组数据:6,0,4,6.这组数据的众数、中位数、平均数分别是()A.6,6,4 B.4,2,4 C.6,4,2 D.6,5,48.四个班各选10名同学参加学校1500米长跑比赛,各班选手平均用时及方差如下表:班A班B班C班D班平均用时(分钟) 5 5 5 5方差0.15 0.16 0.17 0.14各班选手用时波动性最小的是()A.A班 B.B班C.C班 D.D班二、填空题(每小题3分,共24分)9.=1﹣2x成立的x的取值范围是.10.若点(3,a)在一次函数y=2x﹣1上,则a=.11.已知a、b为两个连续的整数,且a<﹣3<b,则=.12.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是度.13.若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是.14.一场暴雨过后,垂直于地面的一棵大树在距地面1m处折断,树尖恰好碰到地面,距树的底部2m,则这棵树高.15.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=.16.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.三、解答题(共52分)17.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.18.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.19.如图所示,直线L1的解析表达式为y=﹣3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求直线L2的解析表达式;(2)求△ADC的面积;(3)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.20.如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.21.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.22.某中学八年级(8)班同学全部参加课外活动情况统计如图:(1)请你根据以上统计中的信息,填写下表:该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数(2)补全条形统计图;(3)若该学校八年级共有600名学生,根据统计图结果估计八年级参加排球活动项目的学生共有名.23.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.2018-2019学年八年级(上册)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.式子有意义的条件是()A.x≥3 B.x>3 C.x≥﹣3 D.x>﹣3【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x+3≥0,解得,x≥﹣3,故选:C.2.以下列各线段为边,能组成直角三角形的是()A.2,5,8 B.1,1,2 C.4,6,8 D.3,4,5【考点】勾股定理的逆定理;三角形三边关系.【分析】先根据三角形三边关系定理判断能否组成三角形,再根据勾股定理的逆定理判断能否组成直角三角形,即可得出选项.【解答】解:A、∵2+5<8,∴以2、5、8为边不能组成三角形,更不能组成直角三角形,故本选项错误;B、∵1+1=2,∴以1、1、2为边不能组成三角形,更不能组成直角三角形,故本选项错误;C、∵42+62≠82,∴以4、6、8为边不能组成直角三角形,故本选项错误;D、∵32+42=52,∴以3、4、5为边能组成直角三角形,故本选项正确;故选D.3.已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=()A.8cm B.4cm C.3cm D.2cm【考点】平行四边形的性质.【分析】首先由平行四边形ABCD的周长为32cm,求得AB+BC=16cm,又由△ABC的周长为20cm,即可求得AC的长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为32cm,即AB+BC+CD+AD=2AB+2BC=32cm,∴AB+BC=16cm,∵△ABC的周长为20cm,即AB+AC+BC=20cm,∴AC=4cm.故选B.4.在△ABC中,BC:AC:AB=1:1:,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形【考点】等腰直角三角形.【分析】根据题意设出三边分别为k、k、k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.【解答】解:设BC、AC、AB分别为k,k,k,∵k2+k2=(k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故选D.5.用两个全等的等边三角形拼成的四边形是()A.正方形B.矩形 C.菱形 D.等腰梯形【考点】菱形的判定.【分析】由题可知,得到的四边形的四条边也相等,得到的图形是菱形.【解答】解:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.故选:C.6.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、三、四象限,又由k>0时,直线必经过一、三象限,故知k>0.再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选B.7.一组数据:6,0,4,6.这组数据的众数、中位数、平均数分别是()A.6,6,4 B.4,2,4 C.6,4,2 D.6,5,4【考点】众数;算术平均数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列(0,4,6,6),处于中间位置的两个数的平均数是,那么由中位数的定义可知,这组数据的中位数是5;平均数是.故选D.8.四个班各选10名同学参加学校1500米长跑比赛,各班选手平均用时及方差如下表:班A班B班C班D班平均用时(分钟) 5 5 5 5方差0.15 0.16 0.17 0.14各班选手用时波动性最小的是()A.A班 B.B班C.C班 D.D班【考点】方差.【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【解答】解:由于S2D<S2A<S2B<S2C,故D班的方差小,波动小,故选D.二、填空题(每小题3分,共24分)9.=1﹣2x成立的x的取值范围是x≤.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出1﹣2x的取值范围,进而得出答案.【解答】解:∵=1﹣2x,∴1﹣2x≥0,解得:x≤.故答案为:x≤.10.若点(3,a)在一次函数y=2x﹣1上,则a=5.【考点】一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的特征代入函数关系式求出答案.【解答】解:∵点(3,a)在一次函数y=2x﹣1上,∴a=2×3﹣1=5.则a=5.故答案为:5.11.已知a、b为两个连续的整数,且a<﹣3<b,则=.【考点】估算无理数的大小.【分析】先估算出的大小,从而可得到a、b的值,然后再化简即可.【解答】解:∵25<28<36,∴5<<6.∴5﹣3<﹣3<36﹣3,即2<﹣3<3.∴a=2,b=3.∴==.故答案为:.12.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是65度.【考点】平行四边形的性质.【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°﹣130°=50°,∵DE=DC,∴∠ECD==65°,∴∠ECB=130°﹣65°=65°.故答案为65°.13.若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是a>.【考点】一次函数的性质.【分析】根据一次函数的性质得3a﹣2>0,然后解不等式即可.【解答】解:根据题意得3a﹣2>0,解得a>.故答案为a>.14.一场暴雨过后,垂直于地面的一棵大树在距地面1m处折断,树尖恰好碰到地面,距树的底部2m,则这棵树高(1+)m.【考点】勾股定理的应用.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,∵AC2+AB2=BC2,则12+22=BC2,∴BC=,则树高为:(1+)m.故答案为:(1+)m.15.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=5.【考点】菱形的性质;数轴.【分析】根据数轴上A,B在数轴上对应的数分别为﹣4和1,得出AB的长度,再根据BC=AB 即可得出答案.【解答】解:∵菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则AB=1﹣(﹣4)=5,∴AB=BC=5.故答案为:5.16.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【考点】正方形的判定;矩形的判定与性质.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或AC⊥BD等.三、解答题(共52分)17.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,进而合并同类二次根式求出答案;(2)直接利用乘法公式化简,进而求出答案.【解答】解:(1)9+7﹣5+2=9+14﹣20+=;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.18.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法求出一次函数解析式即可;(2)根据图象与函数坐标轴交点坐标求法得出a的值.【解答】解:(1)由题意得,解得.∴k,b的值分别是1和2;(2)将k=1,b=2代入y=kx+b中得y=x+2.∵点A(a,0)在y=x+2的图象上,∴0=a+2,即a=﹣2.19.如图所示,直线L1的解析表达式为y=﹣3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求直线L2的解析表达式;(2)求△ADC的面积;(3)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)利用待定系数法求直线L2的解析表达式;(2)先解方程组确定C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点P与点C到AD的距离相等,则P点的纵坐标为3,对于函数y=x﹣6,计算出函数值为3所对应的自变量的值即可得到P点坐标.【解答】解:(1)设直线L2的解析表达式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线L2的解析表达式为y=x﹣6;(2)解方程组得,则C(2,﹣3);当y=0时,﹣3x+3=0,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;(3)因为点P与点C到AD的距离相等,所以P点的纵坐标为3,当y=3时,x﹣6=3,解得x=6,所以P点坐标为(6,3).20.如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.【考点】平行四边形的性质;全等三角形的判定.【分析】根据平行四边形的性质结合题目条件可得出AE=DF及∠EAF=∠D,AF=CD,利用SAS即可证明两三角形的全等.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴AF=CD,∠EAF=∠ADC,又∵AF=AB,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.21.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.【考点】矩形的判定与性质;翻折变换(折叠问题).【分析】(1)根据翻折变换的对称性可知AE=AB,在△ADE中,利用勾股定理逆定理证明三角形为直角三角形,再根据有一个角是直角的平行四边形是矩形证明即可;(2)设BF为x,分别表示出EF、EC、FC,然后在△EFC中利用勾股定理列式进行计算即可;(3)在Rt△ABF中,利用勾股定理求解即可.【解答】(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.22.某中学八年级(8)班同学全部参加课外活动情况统计如图:(1)请你根据以上统计中的信息,填写下表:该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数50910(2)补全条形统计图;(3)若该学校八年级共有600名学生,根据统计图结果估计八年级参加排球活动项目的学生共有168名.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)根据足球16人占总体的32%,可以求得该班人数,结合条形统计图进一步求得排球人数,从而根据中位数的概念和平均数的计算方法进行求解;(2)根据(1)中求得的数据进一步补全即可;(3)先求出样本中参加排球活动项目的学生所占的百分比,再乘以600即可.【解答】解:(1)该班人数:16÷32%=50人;排球人数:50﹣9﹣16﹣7﹣4=14人;五个数据从小到大排列,即4,7,9,14,16,则中位数为9;平均数=50÷5=10;该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数50 9 10(2)条形统计图补充如下:(3)600×=168(名).故答案为50,9,10;168.23.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形.【分析】(1)连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【解答】(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BDP+∠ADP=90°∴∠ADP+∠ADQ=90°,即∠PDQ=90°,∴△PDQ为等腰直角三角形;(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形(邻边相等的矩形为正方形).2016年8月27日。
人教版初中八年级数学2018-2019学年上册期末试卷含答案
人教版初中八年级数学2018-2019学年上册期末模拟试卷含答案班级_____________姓名_____________座号________(本卷共4页,答卷时间80分钟)一.选择题(每一题3分,共30分)1.将数据0.000 015用科学记数法表示为()A.1.5×10﹣5B.1.5×10﹣4C.1.5×10﹣3D.1.5×10﹣22.式子4x2+(k﹣1)x+25是一个完全平方式,则k的值为()A.19 B.-21 C.﹣19 D.21或﹣193.下列运算中,结果正确的是()A.x3·x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y24.下列从左到右的变形是因式分解的是()A.(a-b)2=a2﹣2ab+b2B.m2﹣4m+5=(m﹣2)2+1C.a2-9b2=﹣(a+3b)(a﹣3b)D.(x﹣y)2=(x+y)2﹣4xy5.已知等腰三角形的一边长为3,另一边长为8,则它的周长是().A.14 B.19 C.16 D.19或146.一个多边形的外角和与它的内角和相等,则多边形的边数是( )A.6 B.7 C.8 D.97.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.3对B.4对C.5对D.6对8.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC的长是A .4B .5C .6D .79.揭西县友利厂经过技术改革,现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A.= B.=C.=D.=10. 如图,AB=AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上;④CF 是AB 的垂直平分线.以上结论正确的有( )个. A .1B .2C .3D .4二.填空题(每一题4分,共24分) 11.若分式11+-x x 的值等于0,则x 的值为 . 12.分解因式:3x 2y -6xy +3y= .13.化简: 的结果是 .14.如图,在等腰直角△ABC 中,∠BAC =90°,∠BAD =30°,AD =AE ,则∠EDC 的度数是 . 15.如图,已知△ABC 的周长为30,BC 边的垂直平分线交AB ,BC 于点E 、D .若△ACE 的周长为15,则BC 的长为 .16.如图,在等腰△ABC 中,AB=AC=12厘米,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA上由C点3422x x x x ++--三.解答题(共8分)1.计算:(﹣8)2018×0.1252018+(π﹣3.14)0﹣(21-)﹣12.因式分解:(a 2+1)2-4a 2.四.解答题(38分)1.(6分)先化简,再求值:(m+2+ ) ,其中m=﹣2.2.(8分)如图所示,网格的小正方形的边长为1,(1)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(2)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.3.(8分)今年“元旦节”前夕,家家乐商场根据去年的销售经验,用3000元购进第一批朱古力,上市后很快售完,接着又用5000元购进第二批这种朱古力.已知第二批所购朱古力的数量是第一批所购朱古力数量的2倍,且每盒朱古力的进价比第一批的进价少5元.求第一批朱古力每盒的进价是多少元?4.(8分)如图,△ACB 是等腰直角三角形,∠ACB=90°,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E . (1)证明:△BCE ≌△CAD ;(2)若AD=25,BE=8,求DE 的长.5.(8分)如图,在△ACB 中,∠ABC=90°,D 为AC 上一点,点D 在△DCB 的内部,DE 平分∠BDC ,且BE=CE .(1)求证:BD=CD ;(2)求证:点D 是线段AC 的中点.答案一.1.A 2.D 3.A 4.C 5.B 6.A 7.B 8.A 9.A 10.C二.11. 1 12.3y(x-1)213.2 14.15°15.15 16.2或3 三.1.解:原式=1+1+2=42.解:原式=(a+1)2(a-1)2四.1.解:原式=[+]×=×=×=﹣6﹣2m原式=﹣6﹣2×(﹣2)=﹣6+4=﹣2.2.解:(1)△ABC关于y轴对称的△A1B1C1如图所示;如图,B1(﹣3,1).(2)∵A(1,2)与A2(a,b)关于x轴对称,可得:a=1,b=﹣2,∴a﹣b=3.3.解:设第一批朱古力每盒的进价是x元,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批朱古力每盒的进价是30元.4.证明:(1)∵△ACB是等腰直角三角形,∴AC=BC, ∵BE⊥CE,AD⊥CE,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△BCE 和△CAD 中,,∴△BCE ≌△CAD ;(2)∵△BCE ≌△CAD , ∴AD=CE ,BE=CD ,∴DE=CE ﹣CD=AD ﹣BE=25﹣8=17(cm ).5.证明:(1)过点E 作EM CD ⊥于M ,EN BD ⊥于N ,DE平分BDC ∠,∴.EM EN =在Rt ECM ∆和Rt EBN ∆中,,,CE BE EM EN =⎧⎨=⎩∴Rt ECM ∆≌.Rt EBN ∆∴.MCE NBE ∠=∠ 又,BE CE =∴.ECB EBC ∠=∠∴.DCB DBC ∠=∠∴BD CD =.∴90,90.DCB A DBC ABD ∠+∠=︒∠+∠=︒ ∴.A ABD ∠=∠ ∴AD BD=. 又BD CD =.∴,AD CD = 即:点D 是线段AC 的中点.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
人教版2018-2019年八年级上期末数学试卷含答案解析
八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。
2018年人教版初二上册期末数学试题(含答案解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共16个小题,1~10每小题3分,11~16每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠3D.x≠0且x≠12.(3分)下列式子中,为最简二次根式的是()A.B.C.D.3.(3分)下列实数中,是无理数的是()A.πB.C.D.|﹣2|4.(3分)下列四个图形是四款车的标志,其中轴对称图形有几个()A.1个B.2个C.3个D.4个5.(3分)下列说法不正确的是()A.1的平方根是±1B.﹣1的立方根是﹣1C.是2的算术平方根D.3是的平方根6.(3分)如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D7.(3分)下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.88.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形9.(3分)已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对10.(3分)如图,∠AOB和线段CD,如果P点到OA,OB的距离相等,且PC=PD,则P点是()A.∠AOB的平分线与CD的交点B.CD的垂直平分线与OA的交点C.∠AOB的平分线与CD的垂直平分线的交点D.CD的中点11.(2分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12.(2分)观察图形…并判断照此规律从左到右第四个图形是()A.B.C.D.13.(2分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形14.(2分)如图,△ABC是等腰三角形,点O 是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为5,面积为12,则OE+OF的值为()A.4B.C.15D.815.(2分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形16.(2分)如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5B.5或8C.D.4或二、填空题(本大题共3个小题:17、18每小题3分,19小题4分共10分.把答案写在题中横线上)17.(3分)若二次根式有意义,则x的取值范围是.18.(3分)若代数式的值为零,则代数式(a+2)(a2﹣1)﹣24的值是.19.(3分)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三、解答题(本大题共7个小题;共68分,解答应写出文字说明、证明过程或演算步骤.)20.(16分)计算(1)﹣2(2)﹣4+3(3)(﹣2)2﹣()(2﹣)(4)先化简,再求值:÷+m+3,其中m=﹣1.21.(8分)解分式方程:.22.(8分)如图,在△ABC中,边AB,AC的垂直平分线相交于点P.求证:PB=PC.23.(8分)一船在灯塔C的正东方向8海里的A处,以20海里/时的速度沿北偏西30°方向行驶.(1)多长时间后,船距灯塔最近?(2)多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?(其中:162﹣82≈13.92)24.(9分)某市正在进行“打造宜居靓城,建设幸福之都”活动.在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?25.(9分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;当点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.26.(10分)探索研究:已知:△ABC和△CDE都是等边三角形.(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:,线段AD与BE所成的锐角度数为°;(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;灵活运用:如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1~10每小题3分,11~16每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠3D.x≠0且x≠1【分析】根据分式有意义的条件可得x(x﹣1)≠0,再解即可.【解答】解:由题意得:x(x﹣1)≠0,解得:x≠0且x≠1,故选:D.【点评】此题主要考查了分式有意义,关键是掌握分式有意义的条件是分母不等于零.2.(3分)下列式子中,为最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=2,不符合题意;B、原式为最简二次根式,符合题意;C、原式=,不符合题意;D、原式=,不符合题意,故选:B.【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.3.(3分)下列实数中,是无理数的是()A.πB.C.D.|﹣2|【分析】根据无理数的定义即可判定选择项.【解答】解:A、是无理数,故本选项符合题意;B、不是无理数,故本选项不符合题意;C、不是无理数,故本选项不符合题意;D、不是无理数,故本选项不符合题意;故选:A.【点评】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.(3分)下列四个图形是四款车的标志,其中轴对称图形有几个()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念求解.【解答】解:第2个、第3个图形是轴对称图形,共2个.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列说法不正确的是()A.1的平方根是±1B.﹣1的立方根是﹣1C.是2的算术平方根D.3是的平方根【分析】根据算术平方根、平方根和立方根的定义判断即可.【解答】解:A、1的平方根是±1,正确;B、﹣1的立方根是﹣1,正确;C、2的算术平方根是,正确;D、3是的算术平方根,错误;故选:D.【点评】此题考查算术平方根、平方根和立方根的定义问题,关键是根据算术平方根、平方根和立方根的定义解答.6.(3分)如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D【分析】根据全等三角形的对应边相等,对应角相等进行判断.【解答】解:A、由△ABC≌△CDA得到:AC=CA,故本选项不符合题意;B、由△ABC≌△CDA得到:AB=CD,故本选项符合题意;C、由△ABC≌△CDA得到:∠ACB=∠CAD,故本选项不符合题意;D、由△ABC≌△CDA得到:∠B=∠D,故本选项不符合题意;故选:B.【点评】本题考查了全等三角形的性质.解题时应注重识别全等三角形中的对应边、对应角.7.(3分)下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.8【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.【点评】此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选:B.【点评】本题考查了直角三角形的判定.9.(3分)已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.故选:B.【点评】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.10.(3分)如图,∠AOB和线段CD,如果P点到OA,OB的距离相等,且PC=PD,则P点是()A.∠AOB的平分线与CD的交点B.CD的垂直平分线与OA的交点C.∠AOB的平分线与CD的垂直平分线的交点D.CD的中点【分析】根据线段垂直平分线性质和角平分线性质得出即可.【解答】解:∵P点到OA,OB的距离相等,∴P在∠AOB的角平分线上,∵PC=PD,∴P在线段CD的垂直平分线上,∴P为∠AOB的角平分线和线段CD的垂直平分线的交点,故选:C.【点评】本题考查了线段垂直平分线性质和角平分线性质的应用,能熟记线段垂直平分线性质和角平分线性质的内容是解此题的关键.11.(2分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角【分析】利用两点之间线段最短分析并验证即可.【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选:D.【点评】此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.(2分)观察图形…并判断照此规律从左到右第四个图形是()A.B.C.D.【分析】根据题意分析图形涂黑规律,求得结果,采用排除法判定正确选项.【解答】解:观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选:D.【点评】本题考查学生根据图形,归纳、发现并运用规律的能力.注意结合图形解题的思想.13.(2分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【分析】对翻折变换及矩形四个角都是直角和对边相等的性质的理解及运用.【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.(2分)如图,△ABC是等腰三角形,点O 是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为5,面积为12,则OE+OF的值为()A.4B.C.15D.8【分析】连接AO,根据三角形的面积公式即可得到AB•OE+AC•OF=12,根据等腰三角形的性质进而求得OE+OF的值.【解答】解:连接AO,如图,∵AB=AC=5,=S△ABO+S△AOC=AB•OE+AC•OF=12,∴S△ABC∵AB=AC,∴AB(OE+OF)=12,∴OE+OF=.故选:B.【点评】本题考查了等腰三角形的性质,三角形的面积,熟记等腰三角形的性质是解题的关键.15.(2分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【分析】根据轴对称的性质,结合等边三角形的判定求解.【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.(2分)如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5B.5或8C.D.4或【分析】没有指明等腰三角形的底边,所以需要分类讨论:AP=AC,AP=PC,AC=PC.【解答】解:如图,∵在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,∴由勾股定理,得BC==6cm.①当AP=AC时,2t=8,则t=4;②当AP=PC时,过点P作PD⊥AC于点D,则AD=CD,PD∥BC,∴PD是△ABC的中位线,∴点P是AB的中点,∴2t=5,即t=;③若AC=PC=8cm时,与PC<AC矛盾,不和题意.综上所述,t的值是4或;故选:D.【点评】本题考查了等腰三角形的判定,注意要分类讨论,还要注意PC的取值范围.二、填空题(本大题共3个小题:17、18每小题3分,19小题4分共10分.把答案写在题中横线上)17.(3分)若二次根式有意义,则x的取值范围是x≥1.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.18.(3分)若代数式的值为零,则代数式(a+2)(a2﹣1)﹣24的值是﹣24.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵代数式的值为零,∴|a|﹣1=0且a2+a﹣2≠0解得:a=﹣1.∴原式=1×[(﹣1)2﹣1]﹣24=﹣24.故答案为:﹣24.【点评】本题主要考查的是分式值为的条件,熟练掌握分式值为零的条件是解题的关键.19.(3分)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.【点评】本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共7个小题;共68分,解答应写出文字说明、证明过程或演算步骤.)20.(16分)计算(1)﹣2(2)﹣4+3(3)(﹣2)2﹣()(2﹣)(4)先化简,再求值:÷+m+3,其中m=﹣1.【分析】(1)(2)先把二次根式化为最简二次根式,再合并被开方数相同的二次根式;(3)运用完全平方公式和平方差公式,可使运算简便;(4)先对分式进行化简运算,再代入求值.【解答】解:(1)原式=+2﹣4=﹣;(2)原式=×3﹣4×2+3×=2﹣8+=﹣5;(3)原式=6﹣12+12﹣[(2)2﹣2]=18﹣12﹣20+2=﹣12;(4)÷+m+3=×+m+3=(m﹣1)(m+2)+m+3=m2+m﹣2+m+3=m2+2m+1=(m+1)2当m=﹣1时,原式=(﹣1+1)2=3.【点评】本题考查了二次根式的混合运算,分式的化简求值.题目难度不大,掌握二次根式的运算法则和运算顺序是解决本题的关键.21.(8分)解分式方程:.【分析】本题考查解分式方程的能力,因为3x+3=3(x+1),所以可得方程最简公分母为3(x+1).然后去分母将方程整理为整式方程求解.注意检验.【解答】解:方程两边同乘以最简公分母3(x+1),得3x=2x﹣(3x+3),解得.检验:当时,.∴是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.(8分)如图,在△ABC中,边AB,AC的垂直平分线相交于点P.求证:PB=PC.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等证明.【解答】证明:∵边AB,AC的垂直平分线相交于点P,∴PA=PB,PA=PC.∴PB=PC.【点评】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.23.(8分)一船在灯塔C的正东方向8海里的A处,以20海里/时的速度沿北偏西30°方向行驶.(1)多长时间后,船距灯塔最近?(2)多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?(其中:162﹣82≈13.92)【分析】(1)根据方向角可知∠CAD=60°,由三角函数可求AD的长,根据时间=路程÷速度,列式计算即可求解;(2)根据题意求出AB的长,再根据时间=路程÷速度,列式计算即可求解.【解答】解:(1)如图所示,由题意可知,当船航行到D点时,距灯塔最近,此时,CD⊥AB.因为∠BAC=90°﹣30°=60°,所以∠ACD=30°.所以AD=AC=×8=4(海里).又因为4÷20=0.2(小时)=12(分钟),所以12分钟后,船距灯塔最近.(2)当船到达灯塔的正北方向的B点时,BC⊥AC.此时∠B=30°,所以AB=2AC=2×8=16(海里).所以16÷20=0.8(小时)=48(分钟).所以BC2=AB2﹣AC2=162﹣82≈13.92.所以BC≈13.9(海里).即48分钟后,船到灯塔的正北方向,此时船距灯塔有13.9海里.【点评】本题主要考查了方向角含义,三角函数,解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.25.(9分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=25°,∠DEC=115°;当点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°﹣40°﹣115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【解答】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°﹣40°﹣115°=25°;∵∠ADE=40°,∠ADB=115°,∴∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∴∠DEC=180°﹣40°﹣25°=115°,当点D从B向C运动时,∠BDA逐渐变小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点评】此题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论△ADE的形状是等腰三角形.26.(10分)探索研究:已知:△ABC和△CDE都是等边三角形.(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:相等,线段AD与BE所成的锐角度数为60°;(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;灵活运用:如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.【分析】(1)根据等边三角形的性质可得AC=BC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等可得AD=BE,根据全等三角形对应角相等可得∠ADC=∠BEC,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DPE=∠DCE;(2)证明△ACD≌△BCE(SAS),得到AD=BE,∠DAC=∠EBC,根据∠BPA=180°﹣∠ABP ﹣∠BAP=180°﹣∠ABC﹣∠BAC,即可解答.(3)如图3,以AB为边在△ABC外侧作等边△ABE,连接CE,由(2)可得:BD=CE,证明△EBC是直角三角形,利用勾股定理求出CE的长度,即可解答.【解答】解:(1)如图1,∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,由三角形的外角性质,∠DPE=∠PEA+∠DAC,∠DCE=∠ADC+∠DAC,∴∠DPE=∠DCE=60°;故答案为:相等,60;(2)如图2,∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠DAC=∠EBC,∴∠BPA=180°﹣∠ABP﹣∠BAP=180°﹣∠ABC﹣∠BAC=60°.(3)如图3,以AB为边在△ABC外侧作等边△ABE,连接CE.由(2)可得:BD=CE∴∠EBC=60°+30°=90°,∴△EBC是直角三角形∵EB=60m BC=80m,∴CE===100(m).∴水池两旁B、D两点之间的距离为100m.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟记性质与判定方法是解题的关键,难点在于(灵活运用)作出辅助线构造成等边三角形和直角三角形.24.(9分)某市正在进行“打造宜居靓城,建设幸福之都”活动.在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?【分析】(1)设乙队单独完成这项工程需x天,总工作量为单位1,根据题意列方程求解;(2)分别求出甲乙单独和甲乙合作所需要的钱数,然后比较大小.【解答】解:(1)设:甲队单独完成这项工程需要x天.由题意可列:解得:x=40经检验,x=40是原方程的解.答:甲队单独完成这项工程需要40天;(2)因为:全程用甲、乙两队合做需要:(3.5+2)×24=132万元单独用甲队完成这项工程需要:40×3.5=140万元单独用乙队完成这项工程需要:60×2=120万元,但60>50.所以,全程用甲、乙两队合做该工程最省钱.。
人教版2018-2019学年八年级(上)期末数学试卷含解析
人教版2018-2019学年八年级(上)期末数学试卷含解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)A卷1.8的立方根是()A.±2 B.2 C.﹣2 D.2.下列哪个点在第四象限()A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)3.如图,在数轴上点A所表示的实数是()A.B.C.﹣D.﹣4.某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是()A.10、6 B.10、5 C.7、6 D.7、55.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁6.如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.30°D.45°7.点A(﹣5,4)关于y轴的对称点A′的坐标为()A.(﹣5,﹣4)B.(5,﹣4)C.(5,4)D.(﹣5,4)8.下列是二元一次方程的是()A.5x﹣9=x B.5x=6y C.x﹣2y2=4 D.3x﹣2y=xy9.若一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()A.x=﹣2 B.x=﹣0.5 C.x=﹣3 D.x=﹣410.说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3 B.a=﹣2,b=3 C.a=3,b=﹣2 D.a=﹣3,b=2二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.12.某校来自甲、乙、丙、丁四个社区的学生人数分布如图,若来自甲社区的学生有120人,则该校学生总数为人.13.如图所小,若∠1+∠2=180°,∠3=100°,则∠4的大小为.14.已知方程组和方程组有相同的解,则a2﹣2ab+b2的值为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)(2)16.解方程组:.17.如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.18.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.(1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)19.如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;(2)求点C的坐标;(3)求直线CD的表达式.20.在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.(1)求证:BE∥AC;(2)求∠CAD的大小;(3)求点A到BC的距离;B卷一.填空题(共5小题)21.有理化分母:=.22.如图,把一张长方形纸片折叠,如果∠2=64°,那么∠1=.23.定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=.24.如图,有一棱长为3dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.25.如图,点C为y轴正半轴上一点,点P(2,2)在直线y=x上,PD=PC,且PD⊥PC,过点D作直线AB⊥x轴于B,直线AB与直线y=x交于点A,直线CD与直线y=x交于点Q,当∠CPA=∠PDB时,则点Q的坐标是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,乙的速度为米/分钟;(2)求点A的坐标.27.寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个中种旅行包和10个乙种旅行包共需5200元.(1)甲、乙两种旅行包的进价分别是多少元?(2)若该店恰好用了7000元购买旅行包;①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;②若该店将中种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.28.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.参考答案与试题解析一.选择题(共10小题)1.8的立方根是()A.±2 B.2 C.﹣2 D.【分析】依据立方根的定义求解即可.【解答】解:∵23=8,∴8的立方根是2.故选:B.2.下列哪个点在第四象限()A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有A符合条件,故选:A.3.如图,在数轴上点A所表示的实数是()A.B.C.﹣D.﹣【分析】根据勾股定理,可得斜线的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得斜线的为=,由圆的性质,得点表示的数为﹣,故选:D.4.某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是()A.10、6 B.10、5 C.7、6 D.7、5【分析】根据众数的定义找出出现次数最多的数,再根据极差的定义用最大值减去最小值即可得出答案.【解答】解:由条形统计图可知7出现的次数最多,则众数是7(环);这组数据的最大值是10,最小值是5,则极差是10﹣5=5;故选:D.5.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.6.如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.30°D.45°【分析】根据所给出的图形求出AB、AC、BC的长以及∠BAC的度数,根据等腰直角三角形的性质即可得到结论.【解答】解:根据图形可得:∵AB=AC==,BC==,∴∠BAC=90°,∴∠ABC=45°,故选:D.7.点A(﹣5,4)关于y轴的对称点A′的坐标为()A.(﹣5,﹣4)B.(5,﹣4)C.(5,4)D.(﹣5,4)【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点A(﹣5,4)关于y轴的对称点A′的坐标为:(5,4).故选:C.8.下列是二元一次方程的是()A.5x﹣9=x B.5x=6y C.x﹣2y2=4 D.3x﹣2y=xy【分析】根据二元一次方程的定义判断即可;【解答】解:A、含有一个未知数,不是二元一次方程;B、符合二元一次方程的定义;C、未知项的最高次数为2,不是二元一次方程;D、2x﹣3y=xy是二元二次方程.故选:B.9.若一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()A.x=﹣2 B.x=﹣0.5 C.x=﹣3 D.x=﹣4【分析】根据图象得出一次函数y=kx+b的图象与x轴的交点坐标的横坐标,即可得出方程的解.【解答】解:∵从图象可知:一次函数y=kx+b的图象与x轴的交点坐标是(﹣2,0),∴关于x的方程kx+b=0的解为x=﹣2,故选:A.10.说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3 B.a=﹣2,b=3 C.a=3,b=﹣2 D.a=﹣3,b=2【分析】反例就是满足命题的题设,但不能由它得到结论.【解答】解:当a=﹣3,b=2时,满足a2>b2,而不满足a>b,所以a=﹣3,b=2可作为命题“若a>b,则a2>b2”是假命题的反例.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).【分析】以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).12.某校来自甲、乙、丙、丁四个社区的学生人数分布如图,若来自甲社区的学生有120人,则该校学生总数为800 人.【分析】先根据百分比之和等于1求得甲的百分比,再用甲社区的人数除以其所占百分比可得总人数.【解答】解:∵甲社区人数所占百分比为1﹣(30%+20%+35%)=15%,∴该校学生总数为120÷15%=800(人),故答案为:800.13.如图所小,若∠1+∠2=180°,∠3=100°,则∠4的大小为80°.【分析】求出∠1=∠5,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠4=∠6即可.【解答】解:∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠4=∠6,∵∠3=100°,∴∠6=180°﹣∠3=80°,∴∠4=80°,故答案为:80°.14.已知方程组和方程组有相同的解,则a2﹣2ab+b2的值为 1 .【分析】根据方程组的解相同,可得新的方程组,根据解方程组,可得x、y的值,根据方程组的解满足方程,把方程组的解代入方程组,可得关于a、b的值,根据代数式求值,可得答案.【解答】解:由方程组和方程组有相同的解,可得:,把代入方程组中,可得:,解得:,把a=2,b=1代入a2﹣2ab+b2=1,故答案为:1.三.解答题(共6小题)15.计算:(1)(2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=+2﹣2=+4﹣2=3;(2)原式=1﹣2﹣(1﹣2+2)=﹣1﹣3+2=﹣4+2.16.解方程组:.【分析】用加减法,先把x的系数转化成相同的或相反的数,然后两方程相加减消元,从而求出y的值,然后把y的值代入一方程求x的值.【解答】解:①﹣②×2得:﹣5y=﹣10,解得:y=2.把y=2代入①得:x=5.所以原方程组的解为.17.如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,由AD、CD、AC的长度关系可得△ACD 为一直角三角形,AC为斜边;由此看,四边形ABCD由Rt△ACD和Rt△ABC构成,则容易求解.【解答】解:如图,连接AC,如图所示.∵∠B=90°,AB=20m,BC=15m,∴AC===25m.∵AC=25m,CD=7m,AD=24m,∴AD2+DC2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴S△ABC=×AB×BC=×20×15=150m2,S△ACD=×CD×AD=×7×24=84m2,∴S四边形ABCD=S△ABC+S△ACD=234m2.18.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.(1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.19.如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;(2)求点C的坐标;(3)求直线CD的表达式.【分析】(1)令x=0,则y=2,即:OB=2,tan∠BAO===,解得:OA=6,即可求解;(2)设:BC=AC=a,则OC=6﹣a,在△BOC中,(2)2+(6﹣a)2=a2,解得:a=4,即可求解;(3)点D时AB的中点,则点D(3,),将点C、D的坐标代入一次函数表达式,即可求解.【解答】解:(1)令x=0,则y=2,即:OB=2,tan∠BAO===,解得:OA=6,则k=﹣;(2)设:BC=AC=a,则OC=6﹣a,在△BOC中,(2)2+(6﹣a)2=a2,解得:a=4,则点C(2,0);(3)点D时AB的中点,则点D(3,),将点C、D的坐标代入一次函数:y=kx+b得:,解得:,故直线CD的表达式为:y=x﹣2.20.在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.(1)求证:BE∥AC;(2)求∠CAD的大小;(3)求点A到BC的距离;【分析】(1)先证明△ADC≌△EDB,可得∠CAD=∠BED,进而可得结论;(2)由勾股定理逆定理可得△ABE是直角三角形,∠E=90°,进而可得∠CAD=∠E=90°;(3)先由勾股定理求CD,再由AF•CD=AC•AD可求AF即可.【解答】解:(1)证明:∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴∠CAD=∠BED,∴BE∥AC.(2)∵△ADC≌△EDB,∴BE=AC=5,在△ABE中,∵AB=13,BE=5,AE=2AD=12,∴AE2+BE2=122+52=169,AB2=132=169,∴AE2+BE2=AB2∴∠E=90°,∵BE∥AC,∴∠CAD=∠E=90°;(3)如图,过点A作AF⊥BC于F,在Rt△ACD中,CD===,∵AF•CD=AC•AD,∴AF===,即点A到BC的距离为.B卷一.填空题(共5小题)21.有理化分母:=+.【分析】原式分子分母同时乘以分母的有理化因式,计算即可得到结果.【解答】解:原式==+,故答案为:+22.如图,把一张长方形纸片折叠,如果∠2=64°,那么∠1=58°.【分析】由于四边形ABCD是矩形,那么AD∥BC,利用两直线平行内错角相等,可知∠2=∠4,再根据折叠的性质可知∠1=∠3,根据平角的定义可知∠1+∠3+∠4=180°,从而易求∠1.【解答】解:如右图所示,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠4,又∵∠1折叠后与∠3重合,∴∠1=∠3,又∵∠1+∠3+∠4=180°,∴2∠1=180°﹣64°=116°,∴∠1=58°,故答案为58°.23.定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=15 .【分析】由2※3=﹣1、3※2=8可得,解之得出m、n的值,再根据公式求解可得.【解答】解:根据题意,得:,解得:,则x※y=4x﹣y2,∴4※(﹣1)=4×4﹣(﹣1)2=15,故答案为:1524.如图,有一棱长为3dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为3dm.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和D点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AD2=92+62,故AD=3dm.故答案为3.25.如图,点C为y轴正半轴上一点,点P(2,2)在直线y=x上,PD=PC,且PD⊥PC,过点D作直线AB⊥x轴于B,直线AB与直线y=x交于点A,直线CD与直线y=x交于点Q,当∠CPA=∠PDB时,则点Q的坐标是(2+2,2+2).【分析】过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),OP=2,OM=BN=PM=2,CM=t﹣2,利用旋转性质得PC=PD,∠CPD=90°,再证明△PCM≌△DPN得到PN=CM=t﹣2,DN=PM=2,于是得到D(t,4),接着利用△OPC≌△ADP得到AD=OP=2,则A(t,4+2),于是利用y=x图象上点的坐标特征得到t=4+2,所以C(0,4+2),D(4+2,4),接下来利用待定系数求出直线CD的解析式为y=(1﹣)x+4+2,则通过解方程组可得Q点坐标.【解答】解:过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),∴P(2,2),∴OP=2,OM=BN=PM=2,CM=t﹣2,∵线段PC绕点P顺时针旋转90°至线段PD,∴PC=PD,∠CPD=90°,∴∠CPM+∠DPN=90°,而∠CPM+∠PCM=90°,∴∠PCM=∠DPN,在△PCM和△DPN中,∴△PCM≌△DPN(AAS),∴PN=CM=t﹣2,DN=PM=2,∴MN=t﹣2+2=t,DB=2+2=4,∴D(t,4),∵∠COP=∠OAB=45°,∠CPQ=∠PDB,∴∠CPO=∠PDA,∴△OPC≌△ADP(AAS),∴AD=OP=2,∴A(t,4+2),把A(t,4+2)代入y=x得t=4+2,∴C(0,4+2),D(4+2,4),设直线CD的解析式为y=kx+b,把C(0,4+2),D(4+2,4)代入得,解得,∴直线CD的解析式为y=(1﹣)x+4+2,解方程组得,∴Q(2+2,2+2).故答案为(2+2,2+2).二.解答题(共3小题)26.学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=24 分钟时甲乙两人相遇,乙的速度为60 米/分钟;(2)求点A的坐标.【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度,根据相遇时间求出所得和,即可求出乙的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).27.寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个中种旅行包和10个乙种旅行包共需5200元.(1)甲、乙两种旅行包的进价分别是多少元?(2)若该店恰好用了7000元购买旅行包;①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;②若该店将中种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.【分析】(1)设甲种旅行包每件进价是x元,乙种旅行包每件进价是y元,根据“购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个甲种旅行包和10个乙种旅行包共需5200元”列出方程组解答即可;(2)设购进甲种旅行包m个,则乙种旅行包个,根据利润=售价﹣进价解答即可.【解答】解:(1)设甲种旅行包每个进价是x元,乙种旅行包每个进价是y元,可得:,解得,答:甲、乙两种旅行包的进价分别是160元,200元;(2)①设购进甲种旅行包m个,则乙种旅行包个;②设购进甲种旅行包m个,则乙种旅行包个,可得:w=(298﹣160)m+(325﹣200)×=38m+4375,∵m=40时,时,能获得最大利润,最大利润是5895元.28.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=m2+7n2,b=2mn;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.【分析】(1)利用完全平方公式展开可得到用m、n表示出a、b;(2)利用(1)中结论得到6=2mn,利用a、m、n均为正整数得到m=1,n=3或m=3,n=1,然后利用a=m2+3n2计算对应a的值;(3)设+=t,两边平方得到t2=4﹣+4++2,然后利用(1)中的结论化简得到t2=6+2,最后把6+2写成完全平方形式可得到t的值.【解答】解:(1)设a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均为整数),则有a=m2+7n2,b=2mn;故答案为m2+7n2,2mn;(2)∵6=2mn,∴mn=3,∵a、m、n均为正整数,∴m=1,n=3或m=3,n=1,当m=1,n=3时,a=m2+3n2=1+3×9=28;当m=3,n=1时,a=m2+3n2=9+3×1=12;即a的值为为12或28;(3)设+=t,则t2=4﹣+4++2=8+2=8+2=8+2(﹣1)=6+2=(+1)2,∴t=+1.。
人教版初中数学八年级2018-2019学年上册期末试卷含答案
人教版初中数学八年级2018-2019学年上学期期末检测模拟试卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.考试范围:人教版八上第11~15章。
一、选择题(每小题3分,共36分)1.以下图形是轴对称图形的是()A.B.C.D.2.下列式子中是分式的是()A.B.C.D.3.计算(﹣2a2b3)3的结果是()A.﹣2a6b9B.﹣8a6b9C.8a6b9D.﹣6a6b94.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°5.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.26.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣27.如图,∠AOB=45°,点M,N在边OA上,OM=2,ON=4,点P是边OB上的点,则能使点P,M,N构成等腰三角形的点P的个数有()A.1个B.2个C.3个D.4个8.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC9.计算12a2b4•(﹣)÷(﹣)的结果等于()A.﹣9a B.9a C.﹣36a D.36a10.甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=第7题图第8题图第11题图第12题图11.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.6012.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4二、填空题(每小题4分,共24分) 13.已知x 2﹣1=0,则ax 2﹣a= .14.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene )是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为 .第15题图 第18题图15.如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于84°,则∠OBC= . 16.如果关于x 的分式方程2mx =1有增根,那么m 的值为 .17. 已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直接于F ,DE ∥AB 交AC 所在直线于E .若∠A=80°,则∠FDE 的度数是 .18. 如图,等腰三角形ABC 的底边BC 长为4,面积是12,腰AB 的垂直平分线EF 分别交AB ,AC 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则△BDM 的周长的最小值为 . 三、解答题(本大题满分共60分) 19.计算:(1)计算:(2)解方程:.20.如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.21.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1: .公式2:.(4)运用你所得到的公式计算:10.3×9.7.22.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.23.已知:如图,∠xOy=90°,点A,B分别在射线Ox,Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化,如果保持不变,请给出证明,如果随点A,B的移动发生变化,请求出变化的范围.24.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?25.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.26.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.(2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F.若BF=BC,①求证:EH=EC;②请你找出线段AH、AD、DF之间的数量关系,并说明理由.参考答案:一、选择题(每小题3分,共36分)1.以下图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.下列式子中是分式的是()A.B.C.D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.3.计算(﹣2a2b3)3的结果是()A.﹣2a6b9B.﹣8a6b9C.8a6b9D.﹣6a6b9【分析】根据幂的乘方法则:底数不变,指数相乘,求解即可.【解答】解:原式=﹣8a6b9,故选:B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则:底数不变,指数相乘.4.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°【分析】根据全等三角形的对应角相等解答.【解答】解:第一个图中,∠1=180°﹣42°﹣62°=76°,∵两个三角形全等,∴∠1=76°,故选:C.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.5.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣2【分析】根据因式分解的意义,可得答案.【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.如图,∠AOB=45°,点M,N在边OA上,OM=2,ON=4,点P是边OB上的点,则能使点P,M,N构成等腰三角形的点P的个数有()A.1个B.2个C.3个D.4个【分析】根据题意,画出相应的图形,利用分类讨论的数学思想可以解答本题.【解答】解:如右图1所示,当点P在线段MN的垂直平分线上时,PM=PN,此时点P,M,N构成等腰三角形;如右图2所示,当MN=MP时,此时点P,M,N构成等腰三角形;∵∠AOB=45°,OM=2,ON=4,∴点N到OB的距离是4×sin45°=22>2,∴不存在NM=NP的情况,故选B.【点评】本题考查等腰三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.8.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.【点评】本题主要考查全等三角开的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.9.计算12a2b4•(﹣)÷(﹣)的结果等于()A.﹣9a B.9a C.﹣36a D.36a【解答】解:12a2b4•(﹣)÷(﹣)=12a2b4•(﹣)•(﹣)=36a.故选:D.10.甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.第8题图第11题图第12题图11.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.12.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4【解答】解:(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故(2)(3)(4)正确.故选:C.二、填空题(每小题4分,共24分)13.已知x2﹣1=0,则ax2﹣a= 0 .【分析】首先提公因式a,再代入x2﹣1=0即可.【解答】解:ax2﹣a=a(x2﹣1)=a×0=0,故答案为:0.【点评】此题主要考查了提公因式法分解因式的应用,关键是正确确定公因式.14.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为 .【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.第15题图第18题图15.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于84°,则∠OBC= .【分析】连接OA,根据三角形内角和定理得到∠ABC+∠ACB=96°,根据线段垂直平分线的性质得到OA=OB,OA=OC,根据等腰三角形的性质计算即可.【解答】解:连接OA,∵∠BAC=84°,∴∠ABC+∠ACB=96°,∵l1、l2分别是AB、AC的垂直平分线,∴OA=OB,OA=OC,∴OB=OC ,∠OBA=∠OAB ,∠OCA=∠OAC , ∴∠OBA+∠OCA=∠BA C=84°, ∴∠OBC+∠OCB=12°, ∴∠OBC=6°, 故答案为:6°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等. 16.如果关于x 的分式方程2m x -=1有增根,那么m 的值为 ﹣4 .【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x ﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案. 【解答】解:2m x -=1,去分母,方程两边同时乘以x ﹣2,得:m+2x=x ﹣2, 由分母可知,分式方程的增根可能是2, 当x=2时,m+4=2﹣2, m=﹣4. 故答案为:﹣4.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17. 已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直接于F ,DE ∥AB 交AC 所在直线于E .若∠A=80°,则∠FDE 的度数是 80°或100°. .【分析】分为三种情况,画出图形,根据三角形的内角和定理求出∠BAC,再根据平行线的性质求出∠E,即可求出答案.【解答】解:分为三种情况:第一种情况:如图①,∵∠A=80°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=80°;第二种情况:如图②,∵∠BAC=80°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=80°,∠FDE+∠E=180°,∴∠FDE=100°;第三种情况:如图③,∵∠BAC=80°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=80°,∠FDE+∠E=180°,∴∠FDE=100°;故答案为:80°或100°.【点评】本题考查了平行线的性质和三角形内角和定理的应用,能求出符合条件的所有情况是解此题的关键,用了分类讨论思想.18.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(本大题满分共60分)19.计算:(1)计算:【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣(3﹣2)﹣1,=3﹣3+2﹣1,=2﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.(2)解方程:.【分析】∵x2﹣4=(x+2)(x﹣2),∴最简公分母为(x+2)(x﹣2).方程两边都乘最简公分母,把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘(x+2)(x﹣2),得:x(x+2)+2=(x+2)(x﹣2),即x2+2x+2=x2﹣4,移项、合并同类项得2x=﹣6,系数化为1得x=﹣3.经检验:x=﹣3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.20.如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.【分析】(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.【解答】解:如图,点P即为所求.(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.【点评】本题考查作图﹣复杂作图、角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本作图的步骤,属于中考常考题型.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.【分析】(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt △DEB,根据全等三角形的性质定理得到答案;(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.【解答】证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB,∴CF=EB;(2)AF+BE=AE.∵Rt△DCF≌Rt△DEB,∴AC=AE,∴AF+FC=AE,即AF+BE=AE.【点评】本题考查的是角平分线的性质和三角形全等的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意直角三角形全等的判定方法.21.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b ,宽是a ﹣b ,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.【点评】本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.22.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.23.已知:如图,∠xOy=90°,点A,B分别在射线Ox,Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化,如果保持不变,请给出证明,如果随点A,B的移动发生变化,请求出变化的范围.解:∠ACB=45°,不变,因为∠1=∠2,∠3=∠4,∠4=∠C+∠1,∠3+∠4=2∠4=∠1+∠2+90°,即2∠4=2∠1+90°,而2∠4=2∠C+2∠1,所以2∠C=90°,∠C=45°24.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【解答】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【点评】本题考查理解题意的能力,第一问以件数做为等量关系列方程求解,第2问以玩具件数和钱数做为不等量关系列不等式组求解.25.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.26.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.(2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F.若BF=BC,①求证:EH=EC;②请你找出线段AH、AD、DF之间的数量关系,并说明理由.【分析】(1)只要证明△ACE≌△CBD即可;(2)①想办法证明∠H=∠ECH即可;②结论:AD=AH+DF.如图2﹣1中,在射线EB上截取EM=DF.只要证明AD=BE,BM=AH即可解决问题;【解答】(1)证明:如图1中,∵△ABC是等边三角形,∴∠A=∠BCD=∠ABC=60°,AC=BC,∵AE=CD,∴△ACE≌△CBD,∴BD=EC.(2)①证明:如图2中,∵△ACE≌△CBD,∴∠ACE=∠CBD,∵∠ABC=∠ACB=60°,∴∠ABD=∠ECB,∵BF=BC,∴∠BFC=∠BCF,∴∠FBH+∠H=∠BCE+∠ECH,∴∠H=∠ECH,∴EH=EC.②解:结论:AD=AH+DF.理由:如图2﹣1中,在射线EB上截取EM=DF.∵BD=CE=EH,BF=BD+DF=BC=AB,∴HM=EH+EM=BF=BC=AB,∴AH=BM,∵AD=BE=BM+EM,BM=AH,EM=DF,∴AD=AH+DF.【点评】本题考查三角形综合题、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
人教版2018-2019学年度第一学期八年级数学期末考试试卷(含答案)
人教版2018-2019学年度第一学期八年级数学期末考试试卷(含答案)一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是B. C.A.2.要使分式一- x-2A. x = —2有意义,则尤的取值应满足B. x 7^ —2C,尤 > —2 D. x ^23.某种微粒的直径为0. 0000058米,那么该微粒的直径用科学记数法可以表示为A. 0.58X10-6米B. 5.8X10-6米 c 58X10*米 D. 5. 8X1Q-5米下列因式分解正确的是4. A. X 2 -4x+4 = (x-4)2B. 4/+2x +1 = (2x + 1)2C. 9~6(m —n) + (n —m) 2 = (3 —m+ri) 2D. x 4 —y 4 = (x 2 + y 2)(x 2 — y 2)5.下列运算中,正确的是m-n n-mA.-----=------m + n n-\-m ab aC. ------7 =-----ab -b a-b一个多边形的内角和与外角和为2520°B.D.6.2 _ 12。
+。
a + b a _ a-a + ba + b,则这个多边形的边数为A. 13B. 14C. 15D. 167.如图,在RtAABC 中,ZC=90° ,以顶点A 为圆心,适当长为半径画弧,分别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于!肱N 的长为半径画弧,两弧交于点P,作射线AF 交边BC 于点。
,若 CQ=4, AB=\5,则△A8D 的面积是A. 15B. 30C. 45D. 608.如果关于x 的方程理罗+ — = 1无解,则a 的值为x-2 2-xA. 1C. -2B. 2b a9. 已知a + b=5,ab = 3,则----+ ----的值为。
+1 b+\8B.-310. 如图,点尸是AAOB 内任意一点,OP=6cm,周长的最小值是6 cm,则AAOB 的度数是D. 1 或2A.2 C.434~9~点M 和点N 分别是射线OA 和射线OB 上的动点,若D.B NC.45D.60二、填空题(每题3分,共18分)M 第10题图x--1若分式土一5•的值为0,则》=12.分解因式o'-a=13.一个等腰三角形的一个外角为100°,则它的顶角的度数是14.把多项式^+ax+b分解因式,得(x+l)(x-3)WJ a+b的值是、、地2016-2x2016-2014n15.计算----3----------n-------=K2016+2x201宁-2017/\16.如图,在左ABC中,AB=BC,ZABC=100°,边BA绕点B/V\顺时针旋转矛,(0<所<180)得到线段连接A£»、DC./若左ADC为等腰三角形,则m所有可能的取值是./\三、解答题(共8个小题,共72分)A第16题图17.(本题满分8分)(1)计算2a2-a4+(a3)2-3a6(2)因式分解3x3+12x2+12x18.(本题满分8分)如图,点。
人教版2018-2019学年初二(上册)期末数学试卷及答案
2018-2019学年八年级(上册)期末数学试卷■单选题(共10题;共30 分)完成生产任务,列出方程为4.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是(5.下列说法:①有两条直角边对应相等的两个直角三角形全等; 腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有 一条边相等的两个等腰直角三角形全等•其中正确的有(6.已知等腰 △ ABC 中,AD 丄BC 于点D ,且 AD= BC ,则△ ABC 底角的度数为(7.下列运算正确的是( )8.过点(-2,- 4)的直线是(1.一个凸多边形的内角和等于 540 °则这个多边形的边数是(D. 8A.B.苓J#C.言爭D. A.锐角三角形 B.直角三角形 C.钝角三角形D.任意三角②有斜边对应相等的两个等A. 1个B. 2个C. 3个D. 4个A. 45 或 75 °B. 75C. 45 或 75 或 15 °D. 60 A. - 5 (a - 1) = - 5a+12 2 4 B. a +a =a C. 3a 3?2j ?=6a 6 D. (- a 2) 3A. y=x - 2B. y=x+2C.y=2x+1D. y= - 2x+19.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以 75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为 500千米,两车同时出发,则图中折线大致表示两车 )B. 6 120吨煤,由于采用新的技术,每天增加生产A. 53.某煤厂原计划x 天生产之间的距离y (千米)与慢车行驶时间t (小时)之间的函数图象是(10. 若x+y=2 , xy= - 2,贝U + 的值是( )A. 2B. -2C. 4D. -4二■填空题(共8题;共24分)2 T 311. 计算:x y +( T)= ___________ .12. ___________________________________________ 点M (1, 2)关于x轴对称的点的坐标为 __________________________________________________ .13. 如果两个直角三角形,满足斜边和一条直角边相等,那么这两个直角三角形___________ (填是”或不是”全等三角形.14. ___________________________________________________________________________ 已知点P (3, - 1)关于y轴的对称点Q的坐标是(a+b, 1- b),则a b的值为___________________ .15. 规定一种运算:,其中a、b为实数,则门弋工…迫吒等于16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分域. 已知:线段48 *小芸的作法如下:(2}作廈线3 .X D老师说: 小芸的作法正确.”请回答:小芸的作图依据是 _____________ .17. 点P 到厶ABC 三边的距离相等,则点 P 是 的交点. 18. 直线l i : y=k i x+b 与直线12: y=k 2x+c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式 k i x+b v k 2x+c 的解集为_________ 21.已知 y= ( m+1) x 2 |m|+n+4(1) 当m 、n 取何值时,y 是x 的一次函数?(2) 当m 、n 取何值时,y 是x 的正比例函数?如图,(1)分别以点卫和点3为 心.大于补肋的长为半径作弧,两弧相交于GD 两点;------------ B20.如图,已知:AB=AD , BC=DE , AC=AE ,试说明:/ 1 = / 2.22•在△ ABC中,如果/ A、/ B、/ C的外角的度数之比是4:3:2,求/ A的度数.23.如图为一个正n边形的一部分,AB和DC延长后相交于点P,若/ BPC=120°,求n.x 2x-124. 解方程:=1.x-1 J T -1四■综合题(共10分)25. 如图,△ ABC是边长为5cm的等边三角形,点P, Q分别从顶点A, B同时出发,沿射线AB,BC运动,且它们的速度都为2cm/s.设点P的运动时间为t( s).(1)当t为何值时,△ ABQ ◎△ CBP .(2)连接AQ、CP,相交于点M,则点P, Q在运动的过程中,/ CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数..单选题1. 【答案】A2. 【答案】C3. 【答案】D4. 【答案】A5. 【答案】C6. 【答案】C7. 【答案】D8. 【答案】A9. 【答案】C10. 【答案】D二. 填空题11. 【答案】12. 【答案】(1, - 2)13. 【答案】是14. 【答案】2515. 【答案】b2b16. 【答案】到线段两个端点距离相等的点在线段的垂直平分线上,两点确定17. 【答案】角平分线的交点18. 【答案】x v 1三. 解答题19. 【答案】 证明:T A (a+b , 1), B (-2, 2a - b )关于x 轴对称,.①+②得,3a=- 3,解得a= - 1,将a=- 1代入①得,-1+b= - 2,解得b= - 1,参考答案条直线.。
最新人教版2018-2019学年八年级数学上册期末模拟试卷及答案解析(精品试题)
八年级(上)期末模拟数学试卷(解析版)一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A.1 B.4 C.8 D.14【分析】先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.【解答】解:此三角形第三边的长为x,则9﹣5<x<9+5,即4<x<14,只有选项C符合题意.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.2.下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.4【分析】根据轴对称图形的概念求解.【解答】解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形是轴对称图形;第四个图形是轴对称图形.综上所述,轴对称图形有3个.故选C.【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下面运算正确的是()A.7a2b﹣5a2b=2 B.x8÷x4=x2C.3=8x6【分析】利用合并同类项、同底数幂的除法、完全平方公式以及积的乘方的知识,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、7a2b﹣5a2b=2a2b,故本选项错误;B、x8÷x4=x4,故本选项错误;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、(2x2)3=8x6,故本选项正确.故选D.【点评】此题考查了合并同类项、同底数幂的除法、完全平方公式以及积的乘方的知识.此题比较简单,注意掌握指数的变化.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.C.a D.,【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.要使分式有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0【分析】根据分母不等于0,列式即可得解.【解答】解:根据题意得,x≠0.故选B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6.下列各式中,计算结果是x2+7x﹣18的是()A.B.C.D.【分析】根据多项式乘多项式的法则,对各选项计算后利用排除法求解.【解答】解:A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.【点评】本题主要考查多项式相乘的法则,熟练掌握运算法则是解题的关键.7.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±5【分析】直接利用完全平方公式求出m的值.【解答】解:∵y2+10y+m是完全平方式,∴y2+10y+m=(y+5)2=y2+10y+25,故m=25.故选:A.【点评】此题主要考查了完全平方公式,熟练应用完全平方公式是解题关键.8.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.【点评】本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.9.如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()A.5cm B.10cm C.15cm D.17.5cm【分析】利用线段垂直平分线的性质得AD=BD,再利用已知条件三角形的周长计算.【解答】解:∵△DBC的周长=BC+BD+CD=35cm(已知)又∵DE垂直平分AB∴AD=BD(线段垂直平分线的性质)故BC+AD+CD=35cm∵AC=AD+DC=20(已知)∴BC=35﹣20=15cm.故选C.【点评】本题主要考查了线段垂直平分线的性质.10.一个正多边形的每个外角都是72°,这个正多边形的边数是()A.9 B.10 C.6 D.5【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:这个正多边形的边数:360°÷72°=5.故选D.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.11.下列各式中,相等关系一定成立的是()A.2B.=x2﹣6C.+x(2﹣x)=(x﹣2)(x﹣6)【分析】A、C符合完全平方公式,根据相反数的平方相等,可得A正确;B、符合平方差公式,可看出后一项没有平方;D可以提取公因式,符号没有处理好.【解答】解:A、2,故A正确;B、应为=x2﹣36,故B错误;C、应为(x+y)2=x2+2xy+y2,故C错误;D、应为6(x﹣2)+x(2﹣x)=(x﹣2)(6﹣x),故D错误.故选:A.【点评】本题主要考查互为相反数的平方相等,平方差公式,完全平方公式,熟记公式是解题的关键.12.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.13.已知∠AOB=45°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【分析】作出图形,连接OP,根据轴对称的性质可得OP=OP1=OP2,∠BOP1=∠BOP,=∠AOP,然后求出∠P1OP2=2∠AOB,再根据等腰直角三角形的定义判定即可.∠AOP2【解答】解:如图,连接OP,与P关于OB对称,P2与P关于OA对称,∵P1=OP2,∠BOP1=∠BOP,∠AOP2=∠AOP,∴OP=OP1OP2=∠BOP1+∠BOP+∠AOP2+∠AOP=2(∠BOP+∠AOP)=2∠AOB,∴∠P1∵∠AOB=45°,OP2=2×45°=90°,∴∠P1,O,P2三点构成的三角形是等腰直角三角形.∴P1故答案为:等腰直角三角形.【点评】本题考查了轴对称的性质,等腰直角三角形的判定,熟记性质是解题的关键,作出图形更形象直观.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.【点评】此题考查图形的变化规律,找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.分解因式a3﹣6a2+9a= a(a﹣3)2.【分析】先提取公因式a,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3﹣6a2+9a=a(a2﹣6a+9)=a(a﹣3)2.故答案为:a(a﹣3)2.【点评】本题考查了提公因式法,公式法分解因式的知识.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.16.计算:(﹣2014)0+()﹣1﹣(﹣1)2014= 2 .【分析】根据非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+2﹣1=2,故答案为:2.【点评】本题考查了零指数幂,非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,负数的偶数次幂是正数.17.如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC≌△DEF.【分析】补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.如果分式的值为零,那么x= ﹣1 .【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:如果分式的值为零,则|x|﹣1=0.解得x=1或﹣1.x﹣1≠0,解得x≠1,∴x=﹣1.故答案为﹣1.【点评】分式值为0,那么需考虑分子为0,分母不为0.20.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO 全等,写出三个符合条件的点P的坐标:(4,0)或(4,4)或(0,4).【分析】画出图形,根据全等三角形的性质和坐标轴与图形的性质可求点P的坐标.【解答】解:如图,∵△ABO≌△ABP,,点P1的坐标:(4,0);∴①OA=AP1,点P2的坐标:(0,4);②OA=BP2,点P3的坐标:(4,4).③OA=BP3故填:(4,0),(4,4),(0,4).【点评】本题考查了全等三角形的性质及坐标与图形的性质;解题关键是要懂得找全等三角形,利用全等三角形的性质求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算题:(1)(a2)3(a2)4÷(a2)5(2)(x﹣y+9)(x+y﹣9)【分析】(1)先算乘方,再算乘除,即可得出答案;(2)先变形,再根据平方差公式进行计算,最后根据完全平方公式展开即可.【解答】解:(1)原式=a6a8÷a10=a6+8﹣10=a4;(2)原式0=[x﹣(y﹣9)][(x+(y﹣9)]=x2﹣(y﹣9)2=x2﹣y2+18y﹣81.【点评】本题考查了整式的混合运算的应用,主要考查学生的化简和计算能力,题目比较典型,难度适中.22.因式分解(1)﹣2a3+12a2﹣18a(2)(x2+1)2﹣4x2.【分析】(1)首先提取公因式﹣2a,再利用完全平方公式进行二次分解即可;(2)首先利用平方差进行分解,再利用完全平方公式进行二次分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.【分析】根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.【解答】解:【点评】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.24.先化简,再求值:,其中x从﹣1、+1、﹣2﹣3中选出你认为合理的数代入化简后的式子中求值.【分析】先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和把除法运算化为乘法运算,然后约分后得到原式=,根据分式有意义的条件,把x=﹣3代入计算即可.【解答】解:原式====,当x=﹣3时,原式==2.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.25.是否存在实数x,使分式的值比分式的值大1?若存在,请求出x的值;若不存在,请说明理由.【分析】根据题意列出分式方程解答即可.【解答】解:由题意可得:,解得:x=2,经检验x=2不是原分式方程的解,答:不存在,因为分式方程无意义.【点评】此题考查分式的值问题,关键是根据题意列出分式方程.26.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CF ,垂足为F .(1)若AC=10,求四边形ABCD 的面积;(2)求证:AC 平分∠ECF ;(3)求证:CE=2AF .【分析】(1)求出∠BAC=∠EAD ,根据SAS 推出△ABC ≌△ADE ,推出四边形ABCD 的面积=三角形ACE 的面积,即可得出答案;(2)根据等腰直角三角形的性质得出∠ACE=∠AEC=45°,△ABC ≌△ADE 求出∠ACB=∠AEC=45°,推出∠ACB=∠ACE 即可;(3)过点A 作AG ⊥CG ,垂足为点G ,求出AF=AG ,求出CG=AG=GE ,即可得出答案.【解答】(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD ,在△ABC 和△ADE 中,,∴△ABC ≌△ADE (SAS ),∵S 四边形ABCD =S △ABC +S △ACD ,∴;(2)证明:∵△ACE是等腰直角三角形,∴∠ACE=∠AEC=45°,由△ABC≌△ADE得:∠ACB=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF;(3)证明:过点A作AG⊥CG,垂足为点G,∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定,角平分线性质,直角三角形的性质的应用,能综合运用性质进行推理是解此题的关键,难度适中.。
2018-2019学年新人教版八年级(上)期末数学测试题
2018-2019学年新人教版八年级(上)期末数学试卷一、选择题(本题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.2.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4 B.3 C.2 D.13.下列各图中,∠1大于∠2的是()A.B.C.D.4.下列命题的逆命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.如果a=b,那么a2=b2C.如果两个角相等,那么这两个角是同位角D.如果一个整数能被5整除,则这个整数的个位数字是05.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于x轴对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.76.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是()A.1个B.2个C.3个D.4个7.等腰三角形的一个角是48°,它的一个底角的度数是()A.48°B.48°或42°C.42°或66°D.48°或66°8.如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO9.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数10.如图,∠ABC=∠DCB,AB=DC,ME平分∠BMC交BC于点E,则下列说法正确的有()①△ABC≌△DCB;②ME垂直平分BC;③△ABM≌△EBM;④△ABM≌△DCM.A.1个B.2个C.3个D.4个11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.15°B.30°C.10°D.20°12.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC的平分线BE分别交CD、CA于点F、E,则下列结论正确的有()①∠CFE=∠CEF;②∠FCB=∠FBC,③∠A=∠DCB;④∠C FE与∠CBF互余.A.①③④ B.②③④ C.①②④ D.①②③二、填空题(本题共5小题,每小题4分,满分20分,只要求填写最后的结果)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是.15.已知A(6a+1,5)与点B(4﹣a,b)关于y轴对称,则=.16.如图,△ABC中∠C=90°,AB的垂直平分线DE交BC于点E,D为垂足,且EC=DE,则∠B的度数为.17.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第k个数是.三、解答题(本题共7小题,共64分,解答应写出必要的文字说明、推理过程或演算步骤)18.(1)化简计算:()2÷(﹣)•()2+(2)先化简,再求值:(+)÷,其中a=﹣2.19.解分式方程:(1)﹣=1;(2)+1=.20.(1)如图,DE∥CB,求证:∠AED=∠A+∠B;(2)如图,在△ABC中,M为BC的中点,且MA=BC,求证:∠BAC=90°.21.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?22.某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?项目23.甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6(1)分别计算甲、乙两组数据的平均数;(2)分别计算甲、乙两组数据的方差;(3)根据计算结果比较两人的射击水平.24.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=33°,求∠BDC的度数.参考答案与试题解析一、选择题(本题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.【考点】分式的乘除法.【分析】根据分式的乘方,把分子分母分别乘方进行计算.【解答】解:(﹣)3=﹣,故选:C.【点评】此题主要考查了分式的乘方,关键是掌握分式的乘方计算法则.2.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4 B.3 C.2 D.1【考点】轴对称图形.【分析】根据轴对称图形的定义对各图形分析判断即可得解.【解答】解:第一个图形是轴对称图形,有2条对称轴,第二个图形是轴对称图形,有2条对称轴,第三个图形是轴对称图形,有2条对称轴,第四个图形是轴对称图形,有3条对称轴,所以,是轴对称图形,且对称轴的条数为2的图形的个数是3.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列各图中,∠1大于∠2的是()A.B.C.D.【考点】三角形的外角性质;对顶角、邻补角;平行线的性质;等腰三角形的性质.【分析】根据三角形的内角,对顶角相等,同旁内角,三角形的外角性质逐个判断即可.【解答】解:A不能判断∠1和∠2的大小,故本选项错误;B、∠1=∠2,故本选项错误;C、不能判断∠1和∠2的大小,故本选项错误;D、∠1>∠2,故本选项正确;故选D.【点评】本题考查了三角形的内角,对顶角相等,同旁内角,三角形的外角性质的应用,主要考查学生的理解能力和判断能力.4.下列命题的逆命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.如果a=b,那么a2=b2C.如果两个角相等,那么这两个角是同位角D.如果一个整数能被5整除,则这个整数的个位数字是0【考点】命题与定理.【分析】分别写出四个命题的逆命题,然后分别根据角相等的定义、平方的意义、同位角的定义和整数的整除性进行判断.【解答】解:A、逆命题为:如果两个角不是对顶角,那么这两个角不相等,此逆命题为假命题;B、逆命题为:如果么a2=b2,那么a=b,此逆命题为假命题;C、逆命题为:如果两个角是同位角,那么这两个角相等,此逆命题为假命题;D、逆命题为:如果一个整数的个位数字是0,那么这个整数能被5整除,此逆命题为真命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.5.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于x轴对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,进而得到a+b.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于x轴对称,∴b=﹣20,a=﹣13,∴a+b=﹣20+(﹣13)=﹣33,故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.6.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定方法,此题应采用排除法,对选项逐个进行分析从而确定正确答案.【解答】解:①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS;③正确,符合判定方法AAS;④不正确,此角应该为两边的夹角才能符合SAS.所以正确的说法有两个.【点评】主要考查全等三角形的判定方法,常用的方法有SSS,SAS,AAS,HL等,应该对每一种方法彻底理解真正掌握并能灵活运用.而满足SSA,AAA是不能判定两三角形是全等的.7.等腰三角形的一个角是48°,它的一个底角的度数是()A.48°B.48°或42°C.42°或66°D.48°或66°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分底角为48°和顶角48°,根据等腰三角形的性质和三角形内角和定理求解即可.【解答】解:当底角为48°时,则底角为48°;当顶角为48°时,则底角==66°;综上可知三角形的一个底角为48°或66°,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.8.如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO【考点】作图—基本作图;角平分线的性质.【分析】利用尺规作图的痕迹可得AE、BF是△ABC的内角平分线,即可得出答案.【解答】解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D选项不正确,故选:D.【点评】本题主要考查了基本作图及角平分线的性质,解题的关键是熟记角平分线的作图方法.9.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数【考点】中位数;众数.【专题】图表型.【分析】根据众数的定义即可得到捐款金额的众数是15;在12个数据中,第6个数和第7个数分别是15元,20元,然后根据中位数的定义求解.【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10.如图,∠ABC=∠DCB,AB=DC,ME平分∠BMC交BC于点E,则下列说法正确的有()①△ABC≌△DCB;②ME垂直平分BC;③△ABM≌△EBM;④△ABM≌△DCM.A.1个B.2个C.3个D.4个【考点】全等三角形的判定;线段垂直平分线的性质.【分析】证明△ABC与△DCB,得到∠MBC=∠MCB,进而得到MB=MC;证明ME⊥BC,BE=CE;证明△ABM≌△DCM,即可解决问题.【解答】解:在△ABC与△DCB中,,∴△ABC与△DCB(SAS),∴∠MBC=∠MCB,∴MB=MC;而ME平分∠BMC,∴ME⊥BC,BE=CE;故①②正确;∵∠ABC=∠DCB,∠MBC=∠MCB,∴∠ABM=∠DCM;在△ABM与△DCM中,,∴△ABM≌△DCM(ASA),故④正确,故选C.【点评】该题主要考查了全等三角形的判定定理及其运用问题;解体的关键是牢固掌握全等三角形的判定定理的内容,这是灵活解题的基础和关键.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.15°B.30°C.10°D.20°【考点】翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又由于折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选C.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.12.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC的平分线BE分别交CD、CA于点F、E,则下列结论正确的有()①∠CFE=∠CEF;②∠FCB=∠FBC,③∠A=∠DCB;④∠CFE与∠C BF互余.A.①③④ B.②③④ C.①②④ D.①②③【考点】直角三角形的性质;三角形内角和定理.【分析】①利用外角的性质可得∠1=∠A+∠6,∠2=∠4+∠5,由角平分线的性质可得:∠5=∠6,由同角的余角相等可得:∠A=∠4,进而可得∠1=∠2,即∠CFE=∠CEF;②采用分析法,若∠FCB=∠FBC,即∠4=∠5,由(1)可知:∠A=∠4,进而∠A=∠5=∠6,然后由直角三角形两锐角互余可得∠A=30°,即只有当∠A=30°时,∠FCB=∠FBC而已知没有这个条件;③由同角的余角相等可得:∠A=∠4,即∠A=∠DCB;④由∠1=∠2,∠1与∠5互余,可得∠2与∠5互余,即:∠CFE与∠CBF互余.【解答】解:如图所示,①∵BE平分∠ABC,∴∠5=∠6,∵∠3+∠4=90°,∠A+∠3=90°,∴∠A=∠4,∵∠1=∠A+∠6,∠2=∠4+∠5,∠1=∠2,故∠CFE=∠CEF,所以①正确;②若∠FCB=∠FBC,即∠4=∠5,由(1)可知:∠A=∠4,∴∠A=∠5=∠6,∵∠A+∠5+∠6=180°,∴∠A=30°,即只有当∠A=30°时,∠FCB=∠FBC而已知没有这个条件,故②错误;③∵∠3+∠4=90°,∠A+∠3=90°,∴∠A=∠4,即∠A=∠DCB,故③正确;④∵∠1=∠2,∠1+∠5=90°,∴∠2+∠5=90°,即:∠CFE与∠CBF互余,故④正确.故选A.【点评】本题考查了等腰三角形的判定,角平分线的定义,直角三角形两锐角互余的性质,同角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象.二、填空题(本题共5小题,每小题4分,满分20分,只要求填写最后的结果)13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是PQ≥2.【考点】角平分线的性质;垂线段最短.【专题】计算题.【分析】由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.【解答】解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了垂线段最短.15.已知点A(6a+1,5)与点B(4﹣a,b)关于y轴对称,则=﹣.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得a、b的值,再根据分式的性质,可得答案.【解答】解:由点A(6a+1,5)与点B(4﹣a,b)关于y轴对称,得6a+1+4﹣a=0,b=5.解得a=﹣1,b=5.则=﹣,故答案为:﹣.【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.如图,△ABC中∠C=90°,AB的垂直平分线DE交BC于点E,D为垂足,且EC=DE,则∠B的度数为30°.【考点】线段垂直平分线的性质.【分析】首先连接AE,由AB的垂直平分线DE交BC于点E,D为垂足,可得AE=BE,又由EC=DE,易证得AE平分∠CAB,继而求得答案.【解答】解:连接AE,∵AB的垂直平分线DE交BC于点E,D为垂足,∴AE=BE,∴∠EAB=∠B,∵△ABC中,∠C=90°,且EC=DE,∴AE平分∠CAB,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠CAB+∠B=90°,∴∠B=30°.故答案为:30°.【点评】此题考查了线段垂直平分线的性质以及角平分线的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第k个数是.【考点】规律型:数字的变化类.【专题】压轴题.【分析】根据已知得出数字分母与分子的变化规律,分子是连续的偶数,分母是连续的奇数,进而得出第k 个数分子的规律是2k,分母的规律是2k+1,进而得出这一组数的第k个数的值.【解答】解:因为分子的规律是2k,分母的规律是2k+1,所以第k个数就应该是:,故答案为:.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数k表示出来.三、解答题(本题共7小题,共64分,解答应写出必要的文字说明、推理过程或演算步骤)18.(1)化简计算:()2÷(﹣)•()2+(2)先化简,再求值:(+)÷,其中a=﹣2.【考点】分式的化简求值;分式的混合运算.【分析】(1)先算乘方,再算乘除即可;(2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:(1)原式=×(﹣)•+=﹣•+=﹣+=;(2)原式=•=•=,当a=﹣2时,原式==﹣5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.解分式方程:(1)﹣=1;(2)+1=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12+3x﹣6﹣6﹣4x=10,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(1)如图,DE∥CB,求证:∠AED=∠A+∠B;(2)如图,在△ABC中,M为BC的中点,且MA=BC,求证:∠BAC=90°.【考点】平行线的性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)延长AE交CB于点F,根据三角形的外角等于与它不相邻的两个内角之和可得∠AFC=∠A+∠B,再根据两直线平行,同位角相等可得∠AED=∠AFC,再利用等量代换可得∠AED=∠A+∠B;(2)根据M为BC的中点,且MA=BC可得MA=MC,MA=MB,根据等边对等角可得∠MAC=∠C,∠MAB=∠B,再根据三角形内角和可得∠MAC+∠C+∠MAB+∠B=180°,进而可得∠BAC=90°.【解答】证明:(1)延长AE交CB于点F,则∠AFC=∠A+∠B,又∵DE∥CB,∴∠AED=∠AFC,∴∠AED=∠A+∠B;(2)∵M为BC的中点,且MA=BC,∴MA=MC,MA=MB,∴∠MAC=∠C,∠MAB=∠B,又∵∠MAC+∠C+∠MAB+∠B=180°,∴∠MAC+∠MAB=90°,即∠BAC=90°.【点评】此题主要考查了等边对等角,平行线的性质,关键是正确作出辅助线,掌握两直线平行,同位角相等.21.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?【考点】分式方程的应用.【分析】设篮球的单价为x元,则足球的单价为(x﹣40)元,根据用1500元购进的篮球个数与900元购进的足球个数相同,列方程求解.【解答】解:设篮球的单价为x元,依题意得,=,解得:x=100,经检验:x=100是原分式方程的解,且符合题意,则足球的价钱为:100﹣40=60(元).答:篮球和足球的单价分别为100元,60元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【考点】加权平均数;算术平均数.【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可;【解答】解:(1)∵甲的平均成绩是:x甲=(93+86+73)÷3=84(分),乙的平均成绩为:x乙=(95+81+79)÷3=85(分),∴x乙>x甲,∴乙将被录用;(2)根据题意得:==85.5(分),==84.8(分);∴x甲>x乙,∴甲将被录用.【点评】本题考查了加权平均数与算术平均数的知识,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6(1)分别计算甲、乙两组数据的平均数;(2)分别计算甲、乙两组数据的方差;(3)根据计算结果比较两人的射击水平.【考点】方差;加权平均数.【分析】(1)根据平均数的公式计算即可;(2)根据方差的公式计算即可;(3)根据方差越大,波动越大,成绩越不稳定,射击水平越差,反之也成立.【解答】解:(1)甲、乙的平均数分别是甲=(9+7+8+9+7+6+10+10+6+8)=8,=(8+7+8+9+7+8+9+10+6+8)=8,乙(2)甲、乙的方差分别是S2甲=[(9﹣8)2+(7﹣8)2+…+(8﹣8)2]=2,S2乙=[(7﹣8)2+(8﹣8)2+…+(6﹣8)2]=1.2;(3)∵S2甲>S2乙,∴乙的射击水平高.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=33°,求∠BDC的度数.【考点】全等三角形的判定与性质.【分析】(1)由条件AB=CB,∠ABC=∠CBD=90°,根据SAS就可以得出结论;(2)由条件可以求出∠AEB的度数,由全等三角形的性质就可以求出结论.【解答】解:(1)∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵AB=CB,∠ABC=90°,∴△ABC为等腰直角三角形,∴∠CAB=45°,∵∠CAE=33°,∴∠BAE=∠CAB﹣∠CAE=12°.∵△ABE≌△CBD,∴∠BCD=∠BAE=12°,∴∠BDC=78°答:∠BDC的度数为78°.【点评】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,三角形内角和定理的运用,解答时证明三角形全是关键.。
人教版2018-2019学年初二数学上学期期末检测卷及答案
2018-2019学年初二数学上册期末检测卷(120分钟150分)、选择题(本大题共10小题,每小题4分,满分40分)1. 在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是()2. 已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为()A. 8 cm 或10 cm B 8 cm 或9 cmC. 8 cm D 10 cm3. 将点M - 5, y)向下平移6个单位长度后所得到的点与点M关于x轴对称,则y的值是()A. -6B.6C.-3D.34. 下列命题与其逆命题都是真命题的是()A.全等三角形对应角相等B.对顶角相等C.角平分线上的点到角的两边的距离相等D.若a2>b2,则a>b5. 把一副三角板按如图叠放在一起,则/ a的度数是()A. 165B. 160°C. 155°D. 150°6. 如图,点A D, C, F在一条直线上,AB=DE/ A=Z EDF,下列条件不能判定△ ABC^A DEF的是()A. AD=CFB. / BCA2 FC. / B=Z ED. BC=EF7.已8. 如图,点E是BC的中点,AB丄BCDCL BCJAE平分/ BAD下列结论:①/ AED=90°②/ ADE N CDE③DE=BE④AD=AB+C其中正确的是()A. ①②④B. ①②③C. ②③④D. ①③9.如图,已知直线ml n,在某平面直角坐标系中,x 轴//直线my 轴//直线n,点A B 的坐 标分别为(-4,2),(2, -4),点A Q, B 在同一条直线上,则坐标原点为()10. 如图,△ ABC 中,/ BAC60° , / BAC 的平分线AD 与边BC 的垂直平分线MD 相交于点D, DE l AB 交AB 的延长线于点E, DF l AC 于点F,现有下列结论:①DE=DF ②DE+DF=AD ③ DM 平分/ ADF ④AB+AC2AE.其中正确的有()A.1个B.2个C.3个D.4个、填空题(本大题共4小题,每小题5分,满分20分)12. 在平面直角坐标系中,已知点A (2,3), B (4,7),直线y=kx-k (k 工0)与线段AB 有交点,则k 的取值范围为A.0B.QC.QD.011. 一副三角板如图放置13. 如图,直线y=2x+4与x, y轴分别交于A B两点,以OB为边在y轴右侧作等边三角形OBC将点C向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为—.14. _________________________________________ 如图,/仁/ 2, / C=Z B,下列结论中正确的是 ________________________________________ .(写出所有正确结论的序号)©△ DAB^A DAC ②CD=DE ③/ CFD h CDF;④/ BED2/ 1+Z B.三、(本大题共2小题,每小题8分,满分16分)15. 如图,在厶ABC 中,/ BAC 是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作/ BAC 的平分线AE 和AB 边上的垂直平分线 MN ⑵用三角板作AC 边上的高BD.b1 h Ahili____-»- J-- 4g_._i ___|1 h < 1i Fl1\»I-1 *T * -r-1 \T W r —id_ __ -L _ V--\J L 亠■J ___ ■申 ki iX1 rT i ■云呻 n ■& 耳\■■ lii1■>11Lb 1 |!1:N >1+f ■ -1■呻■ir■性■ ■b ih1 i卜-4* 亠.卜■w I- v 斗云■f -■•卜•1 *1it 1i4j*■ ■ k斗—N *= ■ii1 1 i d1 l >1 i 4 L-T ~r -~T T ~ ■b i |iiii d1i■16. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点厶AOB(顶点是网格线的交点)(1)画出将△ AOB沿y轴翻折得到的△ AOB则点B的坐标为⑵画出将△ AOB沿射线AB方向平移2.5个单位得到的△ AQB,则点A的坐标为;⑶请求出△ ABB的面积•四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知CD是AB的中垂线,垂足为D DEL AC于点E, DF丄BC于点F.⑴求证:DE=DF⑵若线段CE的长为3 cm, BC的长为4 cm,求BF的长.18. 已知:如图1,在Rt△ ABC和Rt△ A'B'C'中,AB=A'B', AC=A'C', C=Z C'=90° . 求证:Rt △ ABC和Rt △ A'B'C'全等.(1)请你用“如果…,那么…”的形式叙述上述命题;⑵将厶ABC ffiA A'B'C'拼在一起,请你画出两种拼接图形;例如图2:(即使点A与点A' 重合,点C与点C'重合.)(3)请你选择你拼成的其中一种图形,证明该命题.五、(本大题共2小题,每小题10分,满分20分)19. 小明平时喜欢玩“宾果消消乐”游戏•本学期在学校组织的几次数学反馈性测试中 小明的数学成绩如下表: 月份 X9 1 0 11 12 13(第 二年 元14(第 二年 2月) 成绩y (分) 90 80 70 60… …(1) 以月份为x 轴,成绩为y 轴,根据上表提供的数据在平面直角坐标系中描点;(2) 观察(1)中所描点的位置关系,猜想y 与x 之间的函数关系,并求出所猜想的函数表 达式;(3) 若小明继续沉溺于“宾果消消乐”游戏,照这样的发展趋势,请你估计元月(此时 x=13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议•20. 如图,在Rt △ ABC 中,/ ACB90° , / A=22. 5° ,斜边 AB 的垂直平分线交 AC 于点D, 点F 在AC 上,点E 在BC 的延长线上,CE=CF 连接BF, DE •则线段DE 和 BF 在数量和位置 上有什么关系?请说明理由•六、(本题满分12分)21. 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A, B出发,沿轨道到达C处, 在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d i, d2(单位:米),则d i, d2与t的函数关系如图,试根据图象解决下列问题.⑴填空:乙的速度V2二___ 米/分;(2) 写出d i与t的函数表达式;(3) 若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?七、(本题满分12分)22. 在平面直角坐标系xOy中,已知定点A(1,0)和B(0,1)(1)如图1,若动点C在x轴上运动,则使△ ABC为等腰三角形的点C有几个?⑵如图2,过点A B向过原点的直线I作垂线,垂足分别为M N试判断线段AMBN MN 之间的数量关系,并说明理由•八、(本题满分14分)23. 如图,在厶ABC中,AB=AC/ BAC=0° ,点P是BC上的一动点,AP=AQ/ PAQ=0° ,连接CQ.⑴求证:CQL BC.(2) △ ACC能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3) 当点P在BC上什么位置时,△ ACC是等腰三角形?请说明理由.2018-2019学年初二数学上册期末检测卷(120分钟150分)、选择题(本大题共10小题,每小题4分,满分40分)题12345678910号答D A D C A D C A A C案1. 在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是A.165B. 160°C. 1550D. 15006. 如图,点A D, C, F在一条直线上,AB=DE/ A=Z EDF下列条件不能判定△ ABC^^ DEF的是A. AD=CFB. / BCA2 FC. / B=Z ED. BC=EF7.已知函数y=kx+b的图象如图所示,则函数y=-bx+k的图象大致是8. 如图,点E是BC的中点,AB丄BCDCL BCJAE平分/ BAD下列结论:①/ AED=90 °;②/ADE N CDE③DE=BEfi1V L/C④AD=AB+C其中正确的是A.①②④B. ①②③C. ②③④D. ①③9. 如图,已知直线m ±n,在某平面直角坐标系中,x 轴//直线my 轴//直线n,点A, B 的坐标分别为(-4,2),(2, -4),点A O, B 在同一条直线上,则坐标原点为10. 如图,△ ABC 中,/ BAC60° , / BAC 的平分线AD 与边BC 的垂直平分线MD 相交于点 D, DEL AB 交AB 的延长线于点E, DF 丄AC 于点F,现有下列结论:①DE=DF ②DE+DF=AD © DM 平分/ ADF ④AB+AC2AE.其中正确的有A.1个C.3个 二、填空题(本大题共4小题,每小题5分,满分20分)11. 一副三角板如图放置 A.0 B.Q C.QB.2个 D.4个D.Q75°12. 在平面直角坐标系中,已知点A(2,3), B(4,7),直线y=kx-k(k工0)与线段AB有交点, 则k的取值范围为y k W3 .13. 如图,直线y=2x+4与x, y轴分别交于A B两点,以OB为边在y轴右侧作等边三角形OBC将点C向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为_(-1,2)•.(写出所有正确结论的序号)©△DAB^A DAC②CD=DE③/ CFD h CDF;④/ BED2Z 1+Z B.三、(本大题共2小题,每小题8分,满分16分)15. 如图,在厶ABC中,/ BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作/ BAC的平分线AE和AB边上的垂直平分线MN ⑵用三角板作AC边上的高BD.解:如图所示.16. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点厶AOB(顶点是网格线的交点)⑴画出将△ AOB沿y轴翻折得到的△ AOB则点B的坐标为(-3,0);⑵画出将△ AOB沿射线AB方向平移2.5个单位得到的△ AQB,则点A的坐标为—(-1.5,2);⑶请求出△ ABB的面积•解:⑴△ AOB如图所示.⑵△ AQB如图所示•⑶△ ABB的面积=4. 5X 6--X 3X 4--X 1. 5X 6--X4. 5X 2=12.四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知CD是AB的中垂线,垂足为D DEL AC于点E, DF丄BC于点F.⑴求证:DE=DF⑵若线段CE的长为3 cm, BC的长为4 cm,求BF的长.解:⑴T CD是AB的中垂线,••• AC=BC••• / ACD N BCDv DELACDF L BC••• DE=DF.(2) v DEL ACDF L BC, Z AED^ BFD=90°,,在Rt△ ADE和Rt△ BDF中,J••• Rt△ ADE^ Rt△ BDF HL),••• AE=BFv CE=3 cm, BC=4 cm,••• BF=AE=AC-CE=BC-C1E=m.18. 已知:如图1,在Rt△ ABC和Rt△ A'B'C'中,AB=A'B', AC=A'C', C=Z C'=90o . 求证:Rt △ ABC和Rt △ A'B'C'全等.(1) 请你用“如果…,那么…”的形式叙述上述命题;⑵将厶ABC^n^ A'B'C'拼在一起,请你画出两种拼接图形;例如图2:(即使点A与点A' 重合,点C与点C'重合.)(3) 请你选择你拼成的其中一种图形,证明该命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等•⑵如图:图①使点A与点A重合,点B与点B'重合. 图②使点A与点B'重合,点B与点A重合.⑶在图①中,•••点A和点A重合,点B和点B'重合,连接CC'.••• AC=AC, •••/ ACC'=Z AC'C,•••/ ACB h A'C'B'= 90°,二/ ACB-Z ACC'=Z A'C'B'- / AC'C,即/ BCC'=Z BC'G ••• BC=BC.在Rt△ ABC和Rt△ A'B'C'中, •••△ ABC^AA'B'C' (SSS・五、(本大题共2小题,每小题10分,满分20分)19. 小明平时喜欢玩“宾果消消乐”游戏•本学期在学校组织的几次数学反馈性测试中小明的数学成绩如下表月份x 91111213(第二年元14(第二年2月)成绩9876……y(分A r A(A^(1) 以月份为X轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2) 观察(1)中所描点的位置关系,猜想y与x之间的函数关系,并求出所猜想的函数表达式;(3) 若小明继续沉溺于“宾果消消乐”游戏,照这样的发展趋势,请你估计元月(此时x=13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议•解:⑴如图•⑵猜想:y是x的一次函数.设y=kx+b,把点(9,90),(10,80) 代入得,解得-,二y=-10x+180. , ,经验证,点(11,70)和(12,60)均在直线y=-10x+180上, ••• y与x之间的函数表达式为y=- 10x+180. ⑶•••当x=13 时,y=50,•估计元月份的考试中小明的数学成绩是50分•建议:不要再沉迷于游戏,要好好学习•20. 如图,在Rt △ ABC中,/ ACB90° , / A=22. 5° ,斜边AB的垂直平分线交AC于点D, 点F在AC上,点E在BC的延长线上,CE二CF连接BF, DE•则线段DE和BF在数量和位置上有什么关系?请说明理由•解:DE二BFDE丄BF.理由如下:连接BD延长BF交DE于点G.•••点D在线段AB的垂直平分线上,••• AD二BD:/ ABD N A=22. 5°.在Rt△ ABC中, v / ACB900 , / A=22. 5°,:/ ABC67. 5°, : / CBD/ ABC/ ABD45°,•••△ BCD为等腰直角三角形,二BC=DC.在厶ECDF3 FCB中, / ' / ,J••• △ ECD^A FCBSAS,••• DE=BF/ CED/ CFB.v / CFB+/ CBF=90°, : / CED/ CBF=90°,••• / EGB=O° ,即DEL BF.六、(本题满分12分)21. 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处, 在AC 上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d i, d2(单位:米),则d i, d2与t的函数关系如图,试根据图象解决下列问题•在厶 ABPm ACC 中 , // ⑴ 填空:乙的速度V 2= 40米/分;(2) 写出d i 与t 的函数表达式;(3) 若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥 控车的信号不会产生相互干扰?解:(2) v i =1.5v 2=1. 5X 40=60(米/ 分),60- 60=1(分钟),a=1,二 d i = ,⑶ 由已知可得AB=60米,BC=20米,v i =60米/分,V 2=40米/分,并且在0W t <3时,乙车 始终在甲车前面,当0< t< 1时,甲车未达到B 点,所以甲、乙两遥控车的距离为40t- 60t+60=-20t+60>10, 解得t< 2. 5.所以0< t< 1时,两车距离始终大于10米,信号不会产生相互干扰•当1< t <3时,甲车经过B 点向C 点行驶,此时甲、乙两遥控车的距离为40t+6060t> 10, 解得t< 2. 5,所以1 < t< 2. 5时,两车不会产生信号干扰.•••当0< t< 2. 5时,两遥控车的信号不会产生相互干扰.七、(本题满分12分)22. 在平面直角坐标系xOy 中,已知定点A(1,0)和B(0,1). J k % 1(1) 如图1,若动点C 在x 轴上运动,则使△ ABC 为等腰三角形的点C 有几个? ⑵ 如图2,过点A B 向过原点的直线I 作垂线,垂足分别为M N 试判断线段AMBN MN 之间的数量关系,并说明理由.解:(1)如图,当以AB为腰时,有3个;当以AB为底时,有1个,•••使厶ABC为等腰三角形的点C有4个•⑵ AM+BN=MN.理由:由已知可得OA=O,BZ AOM90° - / BON N OBN/ / ,在厶AOMF3 OBN中, / / ,J••• △ AOM^A OBNAAS,••• AM=QNDM=BN• AM+BN=ON+OM=MN.八、(本题满分14分)23. 如图,在厶ABC中,AB=AC/ BAC=0° ,点P是BC上的一动点,AP=AQ/ PAQ=0° ,连接CQ.(1) 求证:CQL BC.(2) △ ACC能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由•(3) 当点P在BC上什么位置时,△ ACC是等腰三角形?请说明理由•解:⑴I/ BAP+Z CAP玄BAC=0o , / CAC N CAP N PAQ=0°,• / BAP/ CAQ••• △ABP^A ACQSAS,••• / ACQ h B,••• AB=AC/ BAC900,•/ B=Z ACB=5°,•Z BCQ M ACB y ACQ450 +450 =900,•CQLBC.⑵当点P为BC的中点或与点C重合时,△ ACC是直角三角形•⑶①当BP=AB时,△ ABP是等腰三角形;②当AB=AP时,点P与点C重合;③当AP=BFP寸,点P为BC的中点.•/ △ABP^A ACQ•当点P为BC的中点或与点C重合或BP=AB时,△ ACQ是等腰三角形•2. 已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为A 8 cm 或10 cm B. 8 cm 或9 cmC. 8 cm D 10 cm3. 将点M - 5, y)向下平移6个单位长度后所得到的点与点M关于x轴对称,则y的值是A.-6B.6C.-3D.34. 下列命题与其逆命题都是真命题的是A.全等三角形对应角相等B.对顶角相等在厶ABPm ACC中, / /C.角平分线上的点到角的两边的距离相等D.若a2 3 4 5>b2,则a>b5. 把一副三角板按如图叠放在一起,则/a的度数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年八年级上册期末数学试卷
一、选择题(共10题;共30分)
1.下列各式中,不能用平方差公式计算的是()
A. (x+a)(a-x)
B. (2-3x)(-2-3x)
C. (m+2n)(-m-2n)
D. (m-n)(n+0.5m)
2.与1+最接近的整数是()
A. 1
B. 2
C. 3
D. 4
3.下列条件不能判定一个三角形为直角三角形的是()
A. 三个内角之比为1:2:3
B. 一边上的中线等于该边的一半
C. 三边为、、
D. 三边长为m2+n2、m2﹣n2、2mn(m≠0,n≠0)
4.下列各题中,能用平方差公式的是()
A. (a﹣2b)(a+2b)
B. (a﹣2b)(﹣a+2b)
C. (﹣a﹣2b)(﹣a﹣2b)
D. (﹣a﹣2b)(a+2b)
5.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是()
A. SSS
B. AAS
C. SAS
D. HL
6.三个内角之比是1:5:6的三角形是()
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 等腰直角三角形
7.下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2﹣1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有()
A. 1组
B. 2组
C. 3组
D. 4组
8.如果分式的值为0,那么x为()
A. -
2 B. 0 C. 1 D.。