大学物理综合练习答案
大学物理综合练习(三)
《大学物理》综合练习(三)——气体动理论与热力学班级学号: 姓 名: 日 期: 一、选择题(把正确答案的序号填入括号内)1.若气体分子的速率分布曲线如图所示, 其中a 、b 两部分面积相等,则图中0v 为 (A)最概然速率p v v =0; (B)平均速率v v =0; (C)方均根速率20v v =;(D)速率大于和小于0v 的分子数各占一半。
2.一定质量的理想气体,从状态),(V p A 然速率之比Ap Bp v v /为(A)2; (B)3; (C)1; (D)π/2。
[ ]3.如图所示的两条曲线分别表示在相同温度下,氢气和氧气分子的速率分布曲线,则氧分子和氢分子最概然速率之比22/pH po v v 为 (A)2/1; (B)4/1; (C)8/1; (D)1。
[ ]4.容器中装有温度为273K 、压强为1atm 的氧气,假设容器的绝对温度加倍,因此分子被分离为原子,试问氧原子的方均根速率为氧分子的方均根速率的多少倍? (A)2; (B)1; (C)2/1; (D)2。
[ ]5.一容器内盛有一摩尔的氢气和一摩尔的氦气,其混合后的稳恒温度为127℃,则混合气体的算术平均速率为 (A))12(54+ππR; (B))12(5200+πR;f (v )p o 2 p H 22(C)πR15200; (D) π310400R。
[ ]6.气体的温度升高时,麦克斯韦速率分布函数曲线的变化是 (A)曲线下的面积增大,最概然速率增大; (B)曲线下的面积不变,最概然速率增大; (C)曲线下的面积减小,最概然速率增大; (D)曲线下的面积不变,最概然速率减小。
[ ]7.一容器装着一定量的某种气体,下述几种说法哪一种对? (A) 容器内各部分压强相等,这状态一定是平衡态; (B) 容器内各部分温度相等,这状态一定是平衡态;(C) 容器内各部分压强相等,且各部分密度也相同,这状态一定是平衡态。
[ ]8.图中表示在不同条件下理想气体的体积密度ρ随压强变化的五种曲线,试问哪个图准确地描述了等温条件下一定质量的气体的密度随压强的变化?[ ]9.理想气体作一循环过程acba ,其中ba 为等压过程,acb 为半圆弧, a c p p 2=。
成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)
.一质点同时参与了两 个同方向的简谐振动, 它们的振动 9 0.05 cos(t 1 )( SI ),x2 0.05 cos(t )( SI ), 方程分别为 x1 4 12 其合成运动的运动方程 为x __________ __________ ____ .
8
解法三: 旋转矢量法
由旋转矢量图知, A1 A2 ,
A A1 A2 0.05 2 (m)
2 2
0
4
4
2
合振动方程x A cos(t 0 ) 即x 0.05 2 cos(t )( SI ) 2
光学
一、选择题
1.在双缝干涉实验中,屏幕E上的P点处是明纹.若将缝S 2盖住, 并在S1S 2连线的垂直平分面处放一高折射率介质反射面M,如图所示, 则此时( ).
2 2 3 C. x2 A cos(t ) D. x2 A cos(t ) 2
由题意作两简谐振动的旋转矢量图如下 解:
要写出质点2的振动方程, 应先求出其初相 2
2 ( )
2
x2 A cos(t 2 ) A cos[t ( )] A cos(t ) 2 2 (选B)
t , 解: 由图可知, 2s时 x 0
2 2 v A A 6 3 (cm s 1 ) T 4
答案: 3cm.s 0;
1
7
.一弹簧振子系统具有 1.0 J的振动能量、 0.10 m的振幅和
×1的最大速率,则弹簧的 劲度系数为 _____ ,振子的振动 1.0 m s 频率为 _______ . 1 2 E 2 1.0 解: E kA2 , 得k 2 由 200( N .m 1 ), 2 A 0.12
大学物理习题及综合练习答案详解
库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上,使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024kg ,月球的质量m =7.34l022kg 。
(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。
解:(1)设Q 分成q 1、q 2两部分,根据题意有 2221r MmG r q q k=,其中041πε=k即 2221q k q GMm q q Q +=+=。
求极值,令0'=Q ,得 0122=-kq GMmC 1069.5132⨯==∴k GMm q ,C 1069.51321⨯==k q GMm q ,C 1014.11421⨯=+=q q Q (2)21q m q M =Θ,k GMm q q =21 kGMm m q mq Mq ==∴2122 解得C 1032.61222⨯==kGm q , C 1015.51421⨯==m Mq q ,C 1021.51421⨯=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形的重心上。
为使每个负电荷受力为零,Q 值应为多大?解:Q 到顶点的距离为 l r 33=,Q 与-q 的相互吸引力为 20141rqQ F πε=, 两个-q 间的相互排斥力为 220241l q F πε=据题意有 10230cos 2F F =,即 2022041300cos 412rqQl q πεπε=⨯,解得:q Q 33= 电场强度7-3 如图7-3所示,有一长l 的带电细杆。
(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。
解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为200200)(d 41)(d 41d x a l x q x a l q q F -+=-+=λπεπεq 0受的总电场力 )(4)(d 4000200a l a l q x a l xq F l+=-+=⎰πελπελ00>q 时,其方向水平向右;00<q 时,其方向水平向左q 0 图7-3a λ lP x q-q-q-ll rQ rr(2)在x 处取线元d x ,其上的电量x kx x q d d d ==λ,它在P 点的电场强度为2020)(d 41)(d 41d x a l xkx x a l q E P -+=-+=πεπε)ln (4)(d 40020al aa l k x a l x x kE lP ++=-+=∴⎰πεπε 方向沿x 轴正向。
大学物理练习册参考答案
大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。
本文将为大家提供几个大学物理练习册的参考答案,供大家参考。
第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。
请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。
因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。
把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。
第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。
如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。
因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。
在地球上,物体的重力加速度大约为9.8m/s²。
因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。
大学物理学专业《大学物理(一)》综合练习试题A卷 附答案
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…考试须知:123 一、填空题(共10小题,每题2分,共20分)1、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
2、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为(SI).在0到 4 s 的时间间隔内, (1) 力F 的冲量大小I=__________________. (2) 力F 对质点所作的功W =________________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a )是________气分子的速率分布曲线;曲线(c )是________气分子的速率分布曲线。
5、一圆锥摆摆长为I 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角,则: (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________。
6、两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为_______ 。
7、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
8、质点p 在一直线上运动,其坐标x 与时间t 有如下关系:(A 为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.9、一平面余弦波沿Ox 轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
吉林大学大学物理练习册综合练习二答案
c′
V
8.1mol刚性双原子分子理想气体,当温度为 时,其 . 刚性双原子分子理想气体, 刚性双原子分子理想气体 当温度为T时 内能为
3 A . RT 2 3 B . kT 2
5 C . RT 2
5 D . kT 2
4
9.对于室温下的双原子分子理想气体,在等压 .对于室温下的双原子分子理想气体, 膨胀的情况下, 膨胀的情况下,系统对外所作的功与从外界吸 收的热量之比 A/Q 等于 A. 1/3 B. 1/4 C. 2/5 D. 2/7 10.一定量的理想气体向真空作绝热自由膨 . 体积由V 增至V 胀,体积由 1增至 2,在此过程中气体的 A. 内能不变,熵增加 内能不变, B. 内能不变,熵减少 内能不变, C. 内能不变,熵不变 内能不变, D. 内能增加,熵增加 内能增加,
m mg µl M f = 2∫ ⋅ dr ⋅ gµr = 0 2l 2
l
M f ⋅ ∆t = 0 − Iω 0 ⇒ 2 lω 0 ∆t = 3 µg
8
5. 如图所示 , 质点 的质量为 . 如图所示, 质点P的质量为 的质量为2kg, 位置矢量 , r r r 的作用。 为 r ,速度为 υ ,它受到力 F 的作用。这三个 −1 量均在xOy平面内,且r = 3m, = 4.0m ⋅ s , 平面内, 量均在 平面内 , υ r F=2N。 则该质点对 点的角动量 12kkgm2s−1, 点的角动量=_________, 。 则该质点对O点的角动量 r 作用在质点上的力对O点的力矩 点的力矩=___________。 作用在质点上的力对 点的力矩 3kNm 。
角动量(动量矩) 角动量(动量矩)
r r r L = r × mυ
r r r M = r ×F
大学物理综合练习答案
擦不计,物体与台面间摩擦系数为,试计算台面对物体的摩擦力
的功以及物体的初速V0 。
L
V0
解:当物体滑至前端到达
x时摩擦力可表示为
f
滑道
m
xg
i
L
mg i
x (0 x L)
( x L)
L
台面
S
则全过程摩擦力的功为:
Af
f dl
L
0
m L
xg dx
S
mg dx
L
mg(S
L) 2
2.质量m=1Kg的物体,在坐标原点处从静止出发在水平面内沿X轴
运动,其所受合力方向与运动方向相同,合力大小为F=3+2x(SI),
那么物体在开始运动的3m内,合力所做功W=
其速率V=
6m/s
。
a F /m 3 2x
a dV / dt V dV / dx
18J
F
dr;且 03x(3=32mx)时i d,x i
移到相应的b、c、d 各点,设移动过程中电场力所做功分别为A1、
A2、A3,则三者的大小关系是: A1 A2 A3 。a
A q0U AB ,球面为-Q的一个等势面
5.在一个不带电的导体球壳内,先放进一电量为
Q
o
b c
d
填空题4
+q的点电荷,点电荷不与球壳内壁接触,然后使该球壳与地接触一
下,再将点电荷+q取走,此时球壳的电量为 -q ,电场分布的范
m l
x1g
T1
m l
x1a
(T1
T2 )R
J
(1 MR2 2
m R R2 )
l
a
S
吉林大学大学物理作业答案综合练习题(下)(二)
A. 1.50µm B. 1.57µm C. 1.29µm D. 1.43µm
氧化钽
A
B
玻璃衬底 玻璃衬底
2ne+λ/2=(2k+1)λ/2 (k=10)
2.物体在周期性外力作用下发生受迫振动,且周期性外力的频率与物体固 有频率相同。若忽略阻力,在稳定情况下,物体的运动表现出如下特点
A. 物体振动频率与外力驱动力的频率不同, 振幅呈现有限值; B. 物体振动频率与外力驱动力的频率相同, 振幅呈现有限值; C. 物体振动频率与外力驱动力的频率不同, 振幅趋于无限大; D. 物体振动频率与外力驱动力的频率相同, 振幅趋于无限大;
固有长度l0
3.两飞船,在自己的静止参照系中测得各自的长度均为100m。飞船1上的 仪器测得飞船1的前端驶完飞船2的全长需5/3×10-7s。两飞船的相对速度 的大小是( )
同地钟——固有时间t
0
A.
c/ 6
B.
C.
c/2
l t0
D.
c/ 2
2c / 5
l l0
v2 1 2 c
v
4.光子A的能量是光子B的两倍。则光子A的动量是光子B的( A.1/4 B.1 C. D.2 倍。
l 0 . 5 m m 解:
e e 3 9 0 0 n m 5 2 2
2 2n
l
1 . 71 0r a d
4
4.一平面透射光栅,当用白光垂直照射时,能在30°衍射方向上观察到600nm的第 二级干涉主极大,并能在该处分辨△λ=0.05nm的两条光谱线,但在此30°方向上却 测不到400nm的第三级主极大,计算此光栅的缝宽a和缝距b以及总缝数N 。
工科大学物理练习答案及解析(含综合卷)
16
t 2
k4
V 4t 2
Vt 1 4m/s
a R
d dV 2kt 8t dt dt
an 2 R 2 16t 4
F
O
F
1题图
M J
M 0
2.质量为m的小孩站在半径为R的水平平台边缘上,平台可以绕通过 其中心的竖直光滑轴自由转动,转动惯量为J,开始时平台和小孩 均静止,当小孩突然以相对地面为V的速率在台边缘沿顺时针转向
走动时,此平台相对地面旋转的角速度和旋转方向分别为 :
(A)
mR 2 V ( ) J R
M J k 2 J 0 / 2
k 2 J
d dt
2.一长为l的轻质细棒,两端分别固定质量为m和
2m的小球如图,此系统在竖直平面内可绕过中点 O且与棒垂直的水平光滑固定轴(O轴)转动。开始 时棒与水平成60°角并处于静止状态。无初转速 地释放以后,棒、球组成的系统绕O轴转动,系 3 ml 2 统绕O轴转动惯量J= 4 ,释放后,当棒转到 1 mgl 水平位置时,系统受到的合外力矩M= 2 , 角加速度 =
a2 10 18 2 26(SI )
2.一质点沿X轴运动,其加速度a与位置坐标x的关系为a=3+6x2(SI), 如果质点在原点处的速度为零,试求其在任意位置处的速度。 dV dx dV 2 dV a ( 3 6 x ) i V 解: dt dx dt dx
k t ( AV0 ) m V Ae
mg F A k
大学物理练习册答案
第十章练习一一、选择题1、以下四种运动〔忽略阻力〕中哪一种是简谐振动?〔〕(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它局部按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它局部按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置时,加速度a=/s 2,则该质点从一端运动到另一端的时间为〔 〕3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,假设从松手时开场计时,则该弹簧振子的初相位为〔〕(A) 0 (B) 2π (C) 2π-(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。
假设将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等〔〕(A)2A (B) 4A(C)2A (D)A 二、填空题1、简谐振动A x =)cos(0ϕω+t 的周期为T ,在2Tt =时的质点速度为,加速度为。
2、月球上的重力加速度是地球的1/6,假设一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为。
3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均一样,再经过2秒,从另一方向以一样速率反向通过B 点。
该振动的振幅为,周期为。
4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E =,P E E =,当xA=时,k P E E =。
三、计算题1、一振动质点的振动曲线如右图所示, 试求:(l)运动学方程; (2)点P 对应的相位;(3)从振动开场到达点P 相应位置所需的时间。
2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。
吉林大学大学物理练习册综合练习一答案
R1
R2O
λ1 r P
λ2
D. 0
9. 真空中一半径为 的球面均匀带电 ,在球心 处有一 真空中一半径为R的球面均匀带电 的球面均匀带电Q,在球心O处有一 带电量为q的点电荷 如图所示。 的点电荷, 带电量为 的点电荷,如图所示。设无穷远处为电 势零 则在球内离球心O距离为 距离为r的 点处电势为 点,则在球内离球心 距离为 的P点处电势为
二、填空题 x = 6 t − t 2 ( SI) ,则在 由0至4 s的 1. 一质点的运动方程为 则在t由 至 的 则在 时间间隔内, 时间间隔内,质点的位移大小为 8m ,在t由0到4 s 由 到 的时间间隔内质点走过的路程为 10m 。 2. 半径为 半径为30cm的飞轮 从静止开始以 的飞轮,从静止开始以 的飞轮 从静止开始以0.5rad/s2的匀角加速 度转动, 度转动,则飞轮边缘上一点在飞轮转过 240°时的切向 ° 法向加速度的大小a 加速度的大小 at= 0.15 m/s2 , 法向加速度的大小 n = 0.4π m/s2 。 3.一定量的理想气体处于热动平衡状态时,此热力学 .一定量的理想气体处于热动平衡状态时, 系统不随时间变化的三个宏观量是____________, 系统不随时间变化的三个宏观量是 P,V ,T 2 1 而随时间不断变化的微观量是_________________. 而随时间不断变化的微观量是 υ, 2 mυ , mυ等
m dMf = rµ gdm = rµ g 2 2π rdr πR
mg 2 Mf = ∫ rµ 2 2πrdr = mgµ R 3 πR 0
R
1 2 − Mf θ = 0 − Iω0 2
n =θ
3Rω = 2π 16πµ g
2 0
3. 一卡诺热机 可逆的 ,当高温热源的温度为 一卡诺热机(可逆的 当高温热源的温度为127oC, 低温 可逆的), 热源温度为27 时 其每次循环对外作净功8000J。今维 热源温度为 oC时,其每次循环对外作净功 。 持低温热源的温度不变,提高高温热源温度, 持低温热源的温度不变,提高高温热源温度,使其每次 循环对外作净功10000J 。若两个卡诺循环都工作在相同 循环对外作净功 的两条绝热线之间,试求: 的两条绝热线之间,试求: (1) 第二个循环热机的效率; 第二个循环热机的效率; (2) 第二个循环的高温热源的温度。 第二个循环的高温热源的温度。 T1 − T2 A 解: = η = ⇒Q2 = 24000J T1 Q2 + A 两循环工作在相同的两条绝热线之间, 两循环工作在相同的两条绝热线之间,且低温热源的 温度不变, 不变。 温度不变,故Q2不变。
8大学物理习题及综合练习答案详解
8大学物理习题及综合练习答案详解导体8-1两个同心导体球壳A 和B ,A 球壳带电+Q ,现从远处移来一带+q 的带电体(见图8-1),试问(请阐明理由):(1)两球壳间的电场分布与无+q 时相比有无变化?(2)两球壳间的电势差是否变化?(3)两球壳的电势是否变化?(4)如将B 球壳接地,上述(1)、(2)、(3)的情况又如何?解:(1)由于静电屏蔽作用,+q 对两球壳间的电场没有影响。
(2)由⎰⋅=BAABl E U ϖϖd 可知,由于Eϖ不变,所以ABU不变,即两求壳间的电势差不变。
(3)由电势叠加原理,+q 使两球壳的电势升高。
(4)B 球壳接地,由于屏蔽作用,两球壳间的电场分布不变,从而ABU 不变。
因B 球壳接地,电势不变,所以A 球壳电势也不变。
8-2半径为R 1的导体球A ,带电q ,其外同心地套一导体球壳B ,内外半径分别为R 2和R 3(见图8-2),且R 2=2R 1,R 3=3R 1。
今在距球心O 为d =4R 1的P 处放一点电荷Q ,并将球壳接地。
问(1)球壳B 所带的净电荷Q ’ 为多少?(2)如用导线将导体球A 与球壳B 相连,球壳所带电荷Q ” 为多少?图8-1解:(1)根据静电平衡条件,A 球上电荷q 分布在A 球表面上,B 球壳内表面带电荷-q 。
由高斯定理可得,R r R 21<<:0204r rq E ϖϖπε=A 球电势 2120)11(4d 4d 21R R q r r q l E U R R BAAπεπε=-==⋅=⎰⎰ϖϖ设B 球壳外表面带电荷q ’球球心处电势40302010044'44R Q R q R q R q U πεπεπεπε++-+=1010********'244R QR q R q R q πεπεπεπε++-=1010104434'8R Q R q R q πεπεπε++=108R qU A πε==, Q q 43'-=∴ B 球壳所带净电荷 qQ q q Q --=-=43''(2)用导线将和相连,球上电荷与球壳内表面电荷相消。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学基础教育《大学物理(一)》综合练习试题 附答案
大学基础教育《大学物理(一)》综合练习试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
2、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
3、两列简谐波发生干涉的条件是_______________,_______________,_______________。
4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
5、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
6、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
7、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
8、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
10、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
大学物理综合练习题及答案
⼤学物理综合练习题及答案综合练习题AII⼀、单项选择题(从每⼩题给出的四个备选答案中,选出⼀个正确答案,并将其号码填在题⼲后的括号内,每⼩题2分,共计20分)。
1、关于⾼斯定理,下⾯说法正确的是:()A. ⾼斯⾯内不包围电荷,则⾯上各点的电场强度E 处处为零;B. ⾼斯⾯上各点的E 与⾯内电荷有关,与⾯外的电荷⽆关;C. 穿过⾼斯⾯的电通量,仅与⾯内电荷有关;D. 穿过⾼斯⾯的电通量为零,则⾯上各点的E 必为零。
2、真空中有两块互相平⾏的⽆限⼤均匀带电平板,其中⼀块的电荷⾯密度为+σ,另⼀块的电荷⾯密度为-σ,两板间的电场强度⼤⼩为:()A. 0;B. 023εσ;C. 0εσ;D. 02εσ。
3、图1所⽰,P 点在半圆中⼼处,载流导线旁P 点的磁感应强度B 的⼤⼩为:() A. µ0I(r r 2141+π); B. µ0I(r r2121+π); C. µ0I(r r 4141+π); D. µ0I(r r 4121+π) 。
4、⼀带电粒⼦以速率V 垂直射⼊某匀强磁场B 后,运动轨迹是圆,周期为T 。
若以速率2V 垂直射⼊,则周期为:() A. T/2; B. 2T ; C. T ; D. 4T 。
5、根据洛仑兹⼒的特点指出下列叙述错误的为:() A. 洛仑兹⼒与运动电荷的速度相垂直; B. 洛仑兹⼒不对运动电荷做功; C. 洛仑兹⼒始终与磁感应强度相垂直;D. 洛仑兹⼒不改变运动电荷的动量。
6、在杨⽒双缝⼲涉实验中,两条狭缝相距2mm ,离屏300cm ,⽤600nm 光照射时,⼲涉条纹的相邻明纹间距为:()A. 4.5mm ;B. 0.9mm ;C. 3.12mm ;D. 4.15mm 。
7、若⽩光垂直⼊射到光栅上,则第⼀级光谱中偏离中⼼最远的光是:()A. 蓝光;B. 黄光;C. 红光;D. 紫光。
8、⼀束光是⾃然光和线偏振光的混合光,让它垂直通过⼀偏振⽚。
大学物理电磁学综合练习题(含答案)
解:选择电流元
d I = I dl = I d R
d B = 0 d I = 0 I d 2R 2R
d Bx = − d B sin
=
−
0I 2 2R
sin
d
d By = d B cos
=
0I 2 2R
cos
d
Bx
=
0 d Bx
=
− 0I 2R
I • P•
o• L2
(D) M = 。
解:线圈 1(或 2)的电流变化不会引起线圈 2(或 1)的磁
通量的变化。
二、填充题(单位制为 SI)
1.
电流回路如图所示,弧线
AD
、
BC
为同心半圆环。某时刻一电子以速度
v
沿水平向左
的方向通过圆心 o 点,则电子在该点受到的洛仑兹力大小为 Fm
=
0I 4
ev
5-5
则此导线中的感生电动势 i
=
5 2
BR 2 ;
O 点电势高。
解:添 ob 后,整个线圈的感应电动势为零,所以
oacb
=
ob
=
ob(v
B) dl
=
− obrB
d
r
=
−
0
5R
rB
d
r
=
=
−
5 2
R2B
5.如图所示,一无限长圆柱体半径为 R ,均匀通过电流 I ,则穿过图中阴影部分的磁通量
解:产生涡旋电场,据 i = E K d l 可判断。
10.两个自感应系数分别为 L1 、 L2 ,半径均为 R 的圆
L1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理综合练习一
一、选择题 1、(B ),2、(D ),3、(E ),4、(B )
二、填空题 1、v =v 0+C t 3
/3,
x =x 0+v 0t +C t 4
/12; 2、A=18J ,v =6m/s ; 3、a t =6m/s 2,a n =450m/s 2
; 4、j
t i t r
23
23+=;
5、(1)R
h R GMmh )(+,(2))
(2h R R GMh v +=
; 6、0.496(rad/s );
7、k L
12= kg ·m 2/s ,
k
M
3= N ·m ; 8、
J=25 kg ·m 2
三、计算题 1、f =µN=µMgx/L ,
)2
(d d d 0L S Mg μx Mg μx x L Mg μx f S L
b a
L --=--=∙⎰⎰
⎰ ,
由动能定理
)2( ,2
1)2/( ,21002
020L S g μv mv L S Mg μmv A -==--
=
2、碰撞瞬间,角动量守恒,机械能守恒
⎪⎩⎪⎨⎧
⨯==(2)
31
212
1)1( 312222 ωmL mv ωmL mvl ,
L l 3
3
=
3、设圆盘两侧绳长分别为x 1、x 2
)21( (6)
/(5) )/2/()( )4( //(3) //(2) S (1) 3
2121
112221221M m l smg
a r a ββl m r πMr r T T l ma x l mg x T l ma x T l mg x x x R πx x l +=⎪
⎪⎪⎩⎪⎪⎪⎨⎧
=+=-=-=--=++=
4.)
3(47 31])2(31[22022
2022x l ωl ωωmx ωml ωm l ml +=+=+
大学物理综合练习二
一、选择题
1. (A),
2. (D),
3. (D),
4. (B),
5. (C),
6. (B) 二、填空题 1、10
2
2
φεq φ
+=
,10
1
3
φεq φ
-=
,
114εq φφ-
=
2、
n S ΔE ε 2
1
20 3、
)R
4d 1(R 4 )R (4 d 2
00220πS
πεQ U επr S Q E -=-=
4、3
21
A A A == 5、q -, 球壳外的空间 6、
2
2
02U d
εεw r e =
三、计算题和证明题
1. 解 R 1 < r <R 2 ,r
πελ
2E =,两筒间距中轴线为r 的任意一点的电势为
202r 0
2r r
2ln 22d d d 222U r R r πελ
U r πεr λU l E U l E U U R R R +=+=+∙=∙=-⎰⎰⎰
计算λ ,
12
00
021ln 2d 22
1R R πελ
r r πελU U U R R ===-⎰
,
01
2
20
ln ln U
R R r R U U +=
2. 解
r πεQ
R πεQ r r πεQ r R πεQr l E U U r πεQ
E R r R πεQr E R r r R R r r 0020030002
030483d 4d 4d 4 , 4 -=+=∙=-=
=
⎰⎰⎰ ><
r
πεQ
R πεQq U U q E U U q E r kr r kr 0000483 )( )(0-
=
-=--=-
3.解
(1)由定义
a
b
L
επεC εC r r ln 2C 00=
= ]
1ln( [ )1ln()ln(x x)a
a b a a b a a a b ≈+-≈-+=+-
a
b La επεC r -=
∴02
(2).
L
επεa b
Q C Q W La επεQ a b C Q W r e r e 0220224ln 2 4)(2=
=-==或
4. 证a <r <b 时,
2
002044r r πεQ r r πεQ E E E
'+=
+=壳点
2
0222
2
2
2)
( )2d 4d 4r εa r A E a r A πr r πA r r πρQ r
a r
a
-=
∴-==='⎰⎰
壳(
2
02
0202022202242)(4r εAa εA r πεQ r εa r A r πεQ E -
+=-+=
若要E 与r 无关,则要
0242
02
20=-r
εAa r πεQ ,得
2
2a πQ
A =
大学物理综合练习三
一、 选择题
1、(D)
2、(B)
3、(C)
4、(B)
5、(A) 二、 填空题 1、i 2、 2.67×10-4
T , 63.7A/m 3、
S qB
mv πS R πqB mv -=-22
)(,
4、2
0201
0444R πI μR I μR I μ-
+ 5 、0.4 H
6、1 μF 三、 问答题
qB
mv R = v 大则R 大。
粒子通过铝板要损失
动能,故速度减小,半径随之减少。
粒子的
运动方向为逆时针向,由于带电粒子在磁场
中要受到洛仑兹力作用,由B v q f
⨯=判断 知q >0 。
四、 计算题
1 、解:实心圆柱体
2ln 24d 2d 22 , 2 0002002
00201π
Il μπIl μr l r πI μr l R πIr μΦr
πI
μB R r R πIr μB R r R R R m +=+==
〉=≤≤⎰⎰
薄圆筒
2
ln 2d 202 , 0 0020021π
Il
μr l r πI μΦr
πI
μB R r B R r R R m =+==
〉=≤≤⎰
a b
π
h I N μr r πh I N μW W r h r πr
πI N μμV B μW a b
π
h μI ΦN M a b π
h
I μr r πh I μS B Φr h S r
πI μB a b π
NIh
μr r πNIh μS B Φr
h S r
πNI
μB b a b a b a ln 4d 4d d 2421d 21d ln 2ln 2d 2d
d d 2 )2(ln 2d 2d d d 2 (1) .22
20220m m 2
22220020m 0000000
000m 0===⋅======⋅=====⋅===⎰⎰⎰⎰⎰⎰⎰⎰直线直线直线
(2))
(1
d )
d(d d d d
b a (1) .32
2222
2002222222
2222
2L
B mgR
v t e L B mgR v t R L
vB mg v R L B L B mR t R
L
vB mg v m t v m R L vB mg R
L vB IBL F R
vBL R εI vBL ε mR t
L B t v =∞→-==---=-=-↑==→===⎰⎰
4、解
220220002
20220002
2022000222
2002
0000)2
()2(ln 4sin )2
()2(ln
4sin d d )2
()2(ln
4cos d 2cos d d 2cos d cos d d
2cos 00
h a d h a d R πt ωωb I μR εi h a d h a d πt ωωb I μt Φεh a d h a d πt ωb I μh x x x π
t ωb I μS B Φx r
x πt ωb I μx r x
Bb θx Bb S B r
πt ωI μB i m i a d a d m +-++==+-++=-=+-++=+=⋅====⋅=⎰⎰⎰+-。