2018新课标全国1卷(理数)
2018高考作文解析
浙江卷作文基于对“浙江精神”的提炼与概括,回 望历史,紧贴时代主题,引导考生站在人生新起点, 在宏观视野中找到个人意义,思考未来人生。
、本大题共2小题,23· · · 24共60分。 • 23、微写作(10分) • 从下面三个题目中任选一题,按要求作答。 • ①在《红岩》《边城》《老人与海》中,至少选择一部作品, 用一组排比比喻句抒写你从中获得的教益。要求:至少写三句, 每一句中都有比喻。120字左右。 • ②从《红楼梦》《呐喊》《平凡的世界》中选择一个既可悲 又可叹的人物,简述这个人物形象。要求:符合原著故事情节。 150-200字。 • ③读了《论语》,在孔子的众弟子之中,你喜欢颜回,还是 曾参,或者其他哪位?请选择一位,为他写一段评语。要求:符 合人物特征。150-200字。
作文要求考生围绕“器”展开联想和思考,注重发掘 中国传统文化的优秀因子,引导考生对成才成器、国之 重器等进行深入思考,启迪考生争做大国栋梁,落实高 考“立德树人”的根本任务。 材料在提供多向思维路径的同时,又有一定的思维梯 度,需要考生通过想象和思辨,达到叙述或论证的深度 与高度。
2018上海高考作文详情: 生活中,人们不仅关注自身的需要,也时常 渴望被他人需要,以体现自己的价值。这种“被 需要”的心态普遍存在,对此你有怎样的认识? 请写一篇文章,谈谈你的思考。 要求:1)自拟题目;2)不少于800字。
今年的作文试题命制充分调动文化积淀,融会新思想, 将“四个自信”贯穿其中,并着力画龙点睛,在关键处 破题,形成点面结合、精神深蕴的格局。 全国I卷作文试题“世纪宝宝中国梦”精选7个年份,既 集中展示中国新世纪的标志事件和新时代的重大规划, 又精准对接这一代考生成长史的重要时刻,具有强烈的 时代感与历史感,引导考生在体会国家进步、民族振兴 的同时,感受大国风采、民族精神和时代品格,不断增 强自己和同代人的荣誉感、责任感,更充分认识个人成 长与国家、与民族、与新时代的深刻关联,更切实感受 “四个自信”,在实现社会主义现代化、实现中国梦的 生动实践和激情奋斗中放飞青春梦想。
2018新课标全国2卷(理数)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
复数(2012-2021)高考数学真题
复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( ) A .62i - B .42i - C .62i + D .42i +【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1 CD .22.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .23.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))(1–i )4=( ) A .–4 B .4 C .–4iD .4i .4.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))若()11+=-z i i ,则z =( ) A .1–iB .1+iC .–iD .i5.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))复数113i -的虚部是( ) A .310-B .110-C .110D .3106.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BC D .17.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=8.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2iD .–1–2i9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z = A .B .12C .1 D12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i +=A .32i -B .32i +C .32i --D .32i -+13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i +=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+14.(2018年全国卷Ⅲ文数高考试题)(1)(2)i i +-= A .3i --B .3i -+C .3i -D .3i +15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i - B .13i + C .3i +D .33i +18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( )A .1+2iB .1-2iC .2+iD .2-i19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .221.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .322.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BC D .223.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+B .12i -C .32i +D .32i -24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则z z =A .1B .1-C .4355i +D .4355i -26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .229.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))若a 为实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .430.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1-B .0C .1D .231.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2.32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))A .B .C .D .33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i +B .12i -+C .12i -D .12i --34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5B .5C .- 4+ iD .- 4 - i35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)i i +=- A .112i -- B .112i -+ C .112i + D .112i - 36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4D .4537.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i +=A .B .2CD .138.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32iz i-+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i --40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p。
高常考题—函数的性质(含解析)
函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
2018年全国统一高考物理试题及答案解析(新课标1卷)
A . m a m b m e2017年普通高等学校招生全国统一考试物理试题及答案(新课标1卷)注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量: H 1 C 12 N 14 O 16 S 32 Cl 35.5 K 39 Ti 48 Fe 56 I 127、选择题:本题共 8小题,每小题6分,共48分。
在每小题给出的四个选项中,第 14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得 6分,选对但不全的得 3分,有选错的得0分。
14. 将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为 600 m/s 的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) 15. 发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。
速度较大的球越过球网,速度较小的球没有越过球网;其原因是 A •速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C •速度较大的球通过同一水平距离所用的时间较少D .速度较大的球在相同时间间隔内下降的距离较大16. 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸 面向里,三个带正电的微粒 a 、b 、c 电荷量相等,质量分别为 m a 、m b 、m e 。
已知在该区域内,a 在纸 面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,e 在纸面内向左做匀速直线运动。
下列选项正确的是A . 30 kg m/s2C . 6.0 氷0 kg m/s2B . 5.7 X 0 kg m/s D . 6.3 X 02 kg m/sD . m c m b m a17 .大科学工程 人造太阳”主要是将氘核聚变反应释放的能量用来发电。
2018年全国高考数学一卷
2018年全国高考数学一卷2018年全国高考数学一卷一、选择题(共40分)1. 选择题的出题范围主要涵盖了数学的基础知识和基本运算能力。
题目形式主要包括填空题、选择题和判断题。
二、填空题(共20分)1. 填空题是要求考生根据题目给出的条件或问题,在题目的空白处填写出正确的答案,答案形式可以是数字、字母、符号或者词语。
三、解答题(共120分)1. 解答题是考察考生的解题方法和推理能力的一种题型,要求考生用正确的数学方法进行推理,解答出题目中所给出的问题。
(1)证明题:要求考生用推理和证明的方法来完成题目中的论证,证明的形式可以是直接证明、间接证明或者反证法等。
(2)计算题:要求考生运用所学的数学知识和方法,完成具体的计算问题。
题目形式主要包括有理数的四则运算、代数式的计算、函数的计算与应用等。
(3)应用题:要求考生综合运用所学的数学知识和方法,对实际问题进行分析和解答。
题目形式涵盖了几何问题、概率问题、统计问题等。
四、评分细则1. 针对选择题、填空题和判断题,采用加权得分的方式进行评分。
一般来说,每道题的分值都是相等的,考生的答案要完全符合题目的要求才能得到满分。
2. 针对解答题,评分一般按照不同的题型和解题方法进行评分。
有些题目可能存在多个推理路径和解题思路,评分时会对考生的答案进行综合评估,给予相应的分数。
五、注意事项1. 在答题时,要认真审题,理解题目的意思和要求,确定解题的思路和步骤,严格控制答题的时间。
2. 解答题要注重清晰和规范,符号使用要正确,并且表达要准确、简洁明了。
注重解题的合理性和推理过程的严密性。
3. 打算查漏补缺,在考试结束前,要及时检查答题卡上的填涂情况,确保答案的准确无误。
以上是2018年全国高考数学一卷的考试要点和注意事项,请考生们认真备考,祝你们取得优异的成绩!。
2018四川省高考数学试题及答案(理数)
2018年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
专题1.1 年全国1卷理科第16题-刷百题不如解透一题之高考真题数学小题大做
一、典例分析,融合贯通典例【2018年全国1卷理科第16题】已知函数f(x)=2sinx+sin2x ,则f(x)的最小值是______. 解法一:引导:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.点评:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 解法二:()=2sin +sin2=2sin (1+cos )f x x x x x22222()=4sin (1+cos )4(1-cos )(1+cos )f x x x x x ∴=4(3-3cos )(1+cos )(1+cos )(1+cos )3x x x x = 443-3cos +1+cos +1+cos +1+cos )34x x x x ⎛⎫≤ ⎪⎝⎭44327324⎛⎫=⨯= ⎪⎝⎭ ()f x 易知是奇函数1cos = 332(),23sin =2x f x x ⎧⎪⎪∴≥-⎨⎪-⎪⎩当时可以取等号,33().2f x ∴-的最小值是 点评:另辟蹊径,联系均值不等式求最值(和定积最小)。
解法三:解法3:公式搭桥,函数领路,导数建功。
解法四:()=2sin +sin2f x x x ,tan 2xt R =∈令则22234182sin(1cos)(1)1112t ty x xt t t tt-=+=+=++++,31t2,t ttϕ=++令()4222221321t32,0t tt tt tϕμ+-'=+-==≥()令,原式得;(1)(31),μμμ+-=显然13μ=时,取tϕ()到极值经检验当3t=-时,tϕ()有最大值,则y有最小值得:min833.1()3yϕ==--解法4:替换消元,导数建功。
2018年全国高考新课标1卷理科数学试题(解析版)
2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。
2018年高考天津卷理数真题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð(A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考全国1卷理科数学试题与答案解析
WORD格式整理绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
x1.已知集合A={x|x<1},B={x|3 1},则A.A B{x|x0}B.A B RC.A B{x|x1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是1πA.B.48C.12D.π43.设有下面四个命题p:若复数z满足11zR,则z R;p:若复数z满足22z R,则z R;p:若复数z1,z2满足z1z2R,则z1z2;3专业技术参考资料WORD 格式整理p :若复数z R,则z R.4其中的真命题为A.p1, p3 B.p1, p4 C.p2 , p3 D.p2, p44.记S为等差数列{ a n} 的前n项和.若a4 a5 24 ,S6 48 ,则{ a n} 的公差为nA.1 B.2 C.4 D. 85.函数 f (x) 在( , ) 单调递减,且为奇函数.若 f (1) 1,则满足 1 f (x2) 1的x 的取值范围是A.[ 2,2] B.[ 1,1] C.[0,4] D.[1,3]6.16(1 )(1 x)2x展开式中 2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足 3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2 x+ 2π) ,则下面结论正确的是3专业技术参考资料WORD 格式整理A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C2C.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2D.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C210.已知 F 为抛物线C:y2=4x 的焦点,过F作两条互相垂直的直线l2=4x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1 与C交于A、B两点,直线l 2 与C交于D、E两点,则|AB|+| DE| 的最小值为A.16 B.14 C.12 D.10x y z11.设x yz 为正数,且 2 3 5 ,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前N项和为 2 的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110二、填空题:本题共 4 小题,每小题 5 分,共20 分。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
2018年高考题和高考模拟题数学(理)——专题05立体几何分类汇编(解析版)
5.立体几何1.【2018年XX卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年XX卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.学/科-网+4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以与其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用XXX(Venn)图表达集合间的基本关系及集合的基本运算。
选择题★★☆2.集合间的基本关系选择题★★☆3.集合间的基本运算选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系。
2.深刻理解、掌握集合的元素、子、交、并、补集的概念。
熟练掌握集合的交、并、补的运算和性质。
能用XXX(Venn)图表示集合的关系及运算。
3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法。
4.本节内容在高考中分值约为5分,属中低档题。
命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x|x<2},B={-2,1,2},则AB=()A。
{0,1} B。
{-1,1} C。
{-2,1,2} D。
{-1,1,2}2.【2018年理新课标I卷】已知集合A={x|x²-4x+3=0},B={x|x²-2x-3=0},则AB中元素的个数为()A。
2 B。
3 C。
4 D。
53.【2018年全国卷III理】已知集合A={x|x²-5x+6>0},B={x|x-2>0},C={x|x<3},则A∩B∩C=()A。
{x|x2} D。
专题11_平面向量(解析版)
= 3t 2
【漪漪点睛】本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用
基底表示,同时利用向量共线转化为函数求最值.
8.【2018 年高考北京卷理数】设 a,b 均为单位向量,则“ a 3b 3a b ”是“a⊥b”的
A.充分而不必要条件
B.必要而不充分条件
件或结论是否定式的命题,一般运用等价法.
3.集合法:若 A ⊆ B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A = B ,则 A 是 B 的充要条件.
9.【2017 年高考全国 III 卷理数】在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切
的圆上.若 AP AB AD ,则 的最大值为
A.3
B.2 2
C. 5
D.2
【答案】A
【解析】如图所示,建立平面直角坐标系.
4
墨漪专属资料
设 A 0,1 , B 0,0 , C 2,0 , D 2,1 , P x, y ,
易得圆的半径 r
2
4
2
,即圆 C 的方程是 x 2 y 2 ,
5
5
AP x, y 1 , AB 0, 1 , AD 2,0 ,若满足 AP AB AD ,
x 2
x
x
, , 1 y ,所以 y 1 ,
模
夹角
a x12 y12
|a|= a a
cos
a b
ab
cos
x1 x2 y1 y2
x12 y12 x2 2 y2 2
高考数学精选课件全国卷1地区通用版:3.1 导数与积分
x
x
1
,∴k= 1 = 1 x1 x2
1
,∴x1= 1k ,x2= 1k -1,∴y1=-ln
k+2,y2=-ln
k.即A
1k ,
ln
k
2
,B 1k 1,
ln
k
,∵A、B在直线y=kx+b上,
∴
2
ln ln k
k
k
k 1(x)=x3+(a-1)x2+ax为奇函数,∴a-1=0,解得a=1,∴f(x)=x3+x,∴f '(x)=3x2+1,∴f '(0)=1,故曲线y= f(x)在点(0,0)处的切线方程为y=x,故选D.
解后反思 求曲线的切线方程需注意的几个问题: (1)首先应判断所给的点是不是切点,如果不是,那么需要设出切点. (2)切点既在原函数的图象上,又在切线上,可先设出切线方程,再将切点代入两者的解析式建 立方程组. (3)切点处的导数值等于切线的斜率,这是求切线方程最重要的条件.
设函数h(x)=xe-x- 2 ,则h'(x)=e-x(1-x).
e
所以当x∈(0,1)时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.
故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=- 1 .
e
综上,当x>0时,g(x)>h(x),即f(x)>1.
6.(2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= .
2018新课标全国2卷(理数)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018高考满分作文精选:你我之梦,中国之梦
【满分作文】2018高考满分作文精选:你我之梦,中国之梦2018新课标全国Ⅰ卷高考作文详情:(全国1卷适用地区:河南、河北、山西、江西、湖南、湖北、广东、安徽、福建、山东)阅读下面的材料,根据要求写作。
2000年农历庚辰龙年,人类迈进新千年,中国千万“世纪宝宝”出生。
2008年汶川大地震。
北京奥运会。
2013年“天宫一号”首次天空授课。
公路“村村通”接近完成;“精准扶贫”开始推动。
2017年网民规模达7.72亿,互联网普及率超全球平均水平。
2018年“世纪宝宝”一代长大成人。
2020年全面建成小康社会。
2035年基本实现社会主义现代化。
一代人有一代人的际遇和机缘、使命和挑战。
你们与新世纪的中国一路同行、成长,和中国的新时代一起追梦、圆梦。
以上材料触发了你的联想和思考?请据此写一篇文章,想象它装进“时光瓶”留待2035年开启,给那时的18岁的一代人阅读。
要求:选好角度,确定立意,明确文本,自拟标题,不要套作,不得抄袭,不得泄露个人信息;不少于800字。
【满分作文1】——写给2035年时18岁的青年你们好!身为2000年农历庚辰龙年出生的“世纪宝宝”,我有幸见证了祖国辉煌崛起的伟大历史进程,特将自己的感受记录下来,存于“时光瓶”,留待你们阅读。
悠悠古国,千载华夏。
中国这头沉睡的雄狮已经苏醒,以前所未有的自信、辉煌的成就昂立于世界之林。
而这,是由无数人勇担责任,共同努力奋斗出来的。
身担重责,酒下汗水,璀璨背后几人知?2013年中国“天宫一号”首次太空授课,在祖国希望的心中留下太空的美丽印记。
这是千百航天员、万千工作者不负心中责任、国家期许,日夜辛劳换得的回报。
“精准扶贫”取得重大成就,为世界脱贫贡献中国力量,这是扶贫干部不惧险阻,只为无愧于肩上责任,无愧于人民、国家而顽强拼搏的成果。
无论是荒凉偏僻的陇西荒原,还是落后困乏的大山深处,抑或是破败不堪的草屋陋室,哪里有贫困,哪里就有他们的身影。
“在奔小康的路上,不允许一个人掉队”是他们的庄严承诺,也是他们神圣的责任。
专题20统计概率(理科)解答题20题-备战高考数学冲刺横向强化精练精讲(原卷版)
统计概率(理科)解答题20题1.(2021年全国高考乙卷数学(文)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥认为有显著提高).2.(2021年全国高考甲卷数学(理)试题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8283.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版))下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,721()0.55ii y y =-=∑7≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i ni i tt y y b t t ==--=-∑∑,=.a y b t -4.(2021年全国新高考Ⅰ卷数学试题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.,经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.7.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.8.(2021·辽宁大连·高三学业考试)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持 支持 不支持 方案一 200人 400人 300人 100人 方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与 1p 的大小.(结论不要求证明)9.(2019年天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.10.(2018年全国普通高等学校招生统一考试理数(全国卷II ))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.11.(18年天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.12.(2017年全国1卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,()16162221111160.2121616i i i i s x x x x ==⎛⎫=-=-≈ ⎪⎝⎭∑∑,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.0080.09≈.13.(16年全国1)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数12 3 4 5≥保费0.85a a1.25a 1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5≥ 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.14.(16年全国2卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (1)求X 的分布列;(2)若要求()0.5P X n ≤≥,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?15.(2021·云南·模拟预测(理))某工厂为了提高某产品的生产质量引进了一条年产量为100万件的生产线.已知该产品的质量以某项指标值k 为衡量标准,为估算其经济效益,该厂先进行了试生产,并从中随机抽取了100件该产品,统计了每个产品的质量指标值k ,并分成以下5组,其统计结果如下表所示: 质量指标值 [)5,6[)6,7[)7,8[)8,9[]9,10频数163040104试利用该样本的频率分布估计总体的概率分布,并解决下列问题:(注:每组数据取区间的中点值)(1)由频率分布表可认为,该产品的质量指标值k 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本的标准差s ,并已求得0.82s ≈,记X 表示某天从生产线上随机抽取的10件产品中质量指标值k 在区间(]5.42,7.88之外的个数,求()1P X =及X 的数学期望(精确到0.001);(2)已知每个产品的质量指标值k 与利润y (单位:万元)的关系如下表所示()6,7t ∈ 质量指标值k [)5,6[)6,7[)7,8[)8,9[]9,10利润y5t3t2tt25t -假定该厂所生产的该产品都能销售出去,且这一年的总投资为500万元,问:该厂能否在一年之内通过销售该产品收回投资?试说明理由.参考数据:若随机变量()2~,Z N μσ,则()()0.6827,220.9545P Z P Z μσμσμσμσ-<≤+=-<≤+=,()9330.9973,0.81860.1651P Z μσμσ-<≤+=≈.16.(2021·河南·模拟预测(理))如图,某市有南、北两条城市主干道,在出行高峰期,北干道有1N ,2N ,3N ,4N ,四个交通易堵塞路段,它们被堵塞的概率都是13,南干道有1S ,2S ,两个交通易堵塞路段,它们被堵塞的概率分别为12,23.某人在高峰期驾车从城西开往城东,假设以上各路段是否被堵塞互不影响.(1)求北干道的1N ,2N ,3N ,4N 个易堵塞路段至少有一个被堵塞的概率; (2)若南干道被堵塞路段的个数为X ,求X 的分布列及数学期望()E X ;(3)若按照“平均被堵塞路段少的路线是较好的高峰期出行路线”的标准,则从城西开往城东较好的高峰期出行路线是哪一条?请说明理由.17.(2021·黑龙江·哈尔滨市第一中学校高三期末(理))在核酸检测中, “k 合1”混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.(1)现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确将这100人随机平均分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.如果感染新冠病毒的2人在同一组,求检测的总次数;(2)将这100人随机平均分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.试求两名感染者在同一组的概率.18.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?19.(2021·广东·模拟预测)2020年9月,中国在第75届联合国大会上承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用为了解某一地区纯电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电汽车销量y (单位:万台)关于x (年份)的线性回归方程为ˆ 4.79459.2yx =-,且销量y 的方差为22545y s =,年份x 的方差为22x s =.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的相关性强弱; (2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:购买非电动车 购买电动车 总计男性 39 6 45 女性 30 15 45 总计 692190请判断有多大的把握认为购买电动汽车与性别有关;(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中,男性的人数为X ,求X 的分布列和数学期望. 512763525⨯≈②参考公式:(i )线性回归方程:ˆˆˆybx a =+,其中()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==--==--∑∑ (ii )相关系数:()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑ 0.9r >,则可判断y 与x 线性相关较强.(iii )22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.附表: ()20P K k ≥ 0.10 0.05 0.025 0.010 0.0010k2.7063.841 5.024 6.635 10.82820.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或11都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018新课标全国1卷(理数)2018年全国统一髙考数学试卷(理科)(新课标I)一、选择题:本题共12小题,每小题5分,共60分。
1.(5 分)(2018・新课标I )设z=lzL+2i,贝!]|z|=()1+iA.0B.丄C. ID. V222.(5 分)(2018* 新课标I )已知集合A={X|X2-X-2>0},则C R A二()A. {x| - l<x<2}B. {x| - 1W X W2} C ・{x | x < - 1} U {x|x>2} D. {x|xW - 1} U {x|xM2}3.(5分)(2018-新课标I )某地区经过一年的新农村建设, 农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例则下面结论中不正确的是A.新农村建设后, 种植收入减少其他收入增加了一倍以上养殖收入增加了一倍养殖收入与第三产业收入的总和超过了 经济收入的一半4. (5分)(2018-新课标I )记&为等差数列{a n }的前n 项和.若 3S 3=S 2+S 4, ai=2,则直二( )A. - 12B. - 10C. 10D. 125. (5 分)(2018*新课标 I )设函数 f(x)=x 3+(a - l)x 2+ax •若 f (x )为奇函数,则曲线y 二f (x )在点(0, 0)处的切线方程为() A. y= - 2x B ・ y=-xC ・ y=2x D. y=x6. (5分)(2018*新课标I )在AABC 中,AD 为BC 边上的 中线,E 为AD 的中点,则酣( )A. |AB -护B. 1AB -网C.押+护D.存S+評7. (5分)(2018*新课标I )某圆柱的高为2,底面周长为 16,其三视图如图.圆柱表面上的点M 在正视图上的对应 点为A,圆柱表面上的点N 在左视图上的对应点为B,则在 此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )B .C . 新农村建设后, 新农村建设后, 新农村建设后,A. 2佰B・ 2V5 C. 3D. 28.(5分)(2018*新课标I )设抛物线C: y2=4x的焦点为F, 过点(・2, 0)且斜率为寻的直线与C交于M, N两点,则而•乔()第4 页(共35 页)A. 5B. 6C. 7D. 89.(5分)(2018?新课标I)已知函数f (x)心,glnj,(x)=f (x)+x+a .若g (x)存在2个零点,则a的取值范围是(A. [ - 1, 0)B. [0 , +s)C. [ - 1, +s)D. [1 ,+s)10.(5分)(2018?新课标I)如图来自古希腊数学家希波克拉底所研究的几何图形•此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC直角边AB, AC △ ABC 勺三边所围成的区域记为I,黑色部分记为:n, 其余部分记为皿•在整个图形中随机取一点,此点取自I,n,m的概率分别记为》, p2,卩3,贝廿()A. P1 = P2B. P1 = P3C. p2=p3D. P1 = P2 + P31 211.(5分)(2018?新课标I)已知双曲线C: - y2=1, O 为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M N.若△ OMN为直角三角形,则|MN|=()A. ]B. 3C. 2 匚D. 412.(5分)(2018?新课标I)已知正方体的棱长为1,每条棱所在直线与平面a所成的角都相等,则a截此正方体所得截面面积的最大值为()A 「B •厂C 「D.- 二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)(2018?新课标I)若x, y满足约束条件\-2y-2<0*心5,贝V z=3x+2y的最大值为________ .i yCo14.(5分)(2018?新课标I)记S为数列{a n}的前n项和•若S=2&+1,贝U S= _______ .15.(5分)(2018?新课标I)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.(5分)(2018?新课标I)已知函数f(x)=2sinx+sin2x ,则f (x)的最小值是 ______ .三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17〜21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
仃.(12分)(2018?新课标I)在平面四边形ABCD中, Z ADC=90,/ A=45°, AB=2 BD=5(1)求cos / ADB(2)若DC=2:,求BC.18.( 12分)(2018?新课标I)如图,四边形ABCD为正方形,E, F分别为AD, BC的中点,以DF为折痕把厶DFC折起,使点C到达点P的位置,且PF丄BF.(1)证明:平面PEFL平面ABFD(2)求DP与平面ABFD所成角的正弦值.19.( 12分)(2018?新课标I)设椭圆C:+y2=1的右焦点为F,过F的直线I与C交于A,B两点,点M的坐标为(2, 0).(1)当I与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:/ OMAMOMB20.( 12分)(2018?新课标I)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品•检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0v pv 1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p), 求f (p)的最大值点p o.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p o作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21. (12 分)(2018?新课标I)已知函数f(x)= - x+alnx .X(1)讨论f (x)的单调性;(2)若f (x)存在两个极值点X1,X2,证明:’ v aX1 ~z2-2.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4 : 坐标系与参数方程](10分)22.( 10分)(2018?新课标I)在直角坐标系xOy中,曲线C的方程为y=k|x|+2 .以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线G的极坐标方程为2p +2 p cos 0 - 3=0.(1)求C2 的直角坐标方程;(2)若C与C2有且仅有三个公共点,求C的方程.[ 选修4-5 :不等式选讲] ( 10 分)23.( 2018?新课标I)已知f (x) =|x+1| - |ax - 1| .(1)当a=1时,求不等式f (x) > 1的解集;(2)若x €(0, 1 )时不等式f (x) > x成立,求a的取值范围.2018年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. C; 2. B; 3. A; 4. B; 5. D; 6. A; 7. B; 8. D; 9. C; 10. A; 11. B; 12. A;二、填空题:本题共4小题,每小题5分,共20分。
13. 6; 14.- 63; 15. 16; 16. ";一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5 分)(2018?新课标I)设z=」+2i,则|z|=()A. 0B.C. 「【分析】利用复数的代数形式的混合运算化简后,然后求解复数的摸.【解答】解:z= +2i=「: +2i= - i+2i=i ,则|z|=1 .故选:C.2. (5 分)(2018?新课标I )已知集合 A={x|x 2- x - 2> 0}, 则?R A=( )A. {x| - 1vxv2}B. {x| - 1<x<2}C. {x|x v - 1} U {x|x > 2}D. {x|x <- 1} U {x|x > 2}【分析】通过求解不等式,得到集合 A ,然后求解补集即可.【解答】解:集合A={x|x 2 - x - 2>0},可得 A={x|x v- 1 或 x > 2},则:?4={x| - K x < 2}.故选:B. 3.( 5分)(2018?新课标I )某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了 解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )种植收入 粽殖收入 第三产业收入其他收入 建设前经济收入枸咸比例种植收入 第三产业收入其他收入蘇殖收入建设后经济收入构成比例A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A 项,种植收入37 x 2a- 60%a=14%a0, 故建设后,种植收入增加,故A 项错误.B项,建设后,其他收入为5%X 2a=10%a 建设前,其他收入为4%a,故10%芥4%a=2.5> 2,故B 项正确.C 项,建设后,养殖收入为30%x 2a=60%a,建设前,养殖收入为30%a,故60%芥30%a=2故C 项正确.D 项,建设后,养殖收入与第三产业收入总和为(30%+28%)x 2a=58%x 2a,第12 页(共35 页)经济收入为2a,故(58%x 2a)十2a=58沧50%故D项正确.因为是选择不正确的一项,故选:A.4.(5分)(2018?新课标I)记S为等差数列{a n}的前n项和•若3S=S+S, a i=2,贝U a5=()A. - 12B.- 10C. 10D. 12【分析】利用等差数列的通项公式和前n项和公式列出方程,能求出a5的值.【解答】解:••• S为等差数列{a n}的前n项和,3S=S+S, a1 =2,二—t =a1+a1+d+4ai+宁d,把a1=2,代入得d=- 3a5=2+4X( - 3) = — 10.故选:B.5.(5 分)(2018?新课标I)设函数f (x)=x3+ (a- 1)x2+ax.若f (x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为()A. y= - 2xB. y= - xC. y=2xD. y=x第13页(共35页)【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.【解答】解:函数f (x) =x3+ (a - 1) x2+ax,若f (x)为奇函数,可得a=1,所以函数f (x) =x3+x,可得f'(x) =3x2+1, 曲线y=f (x)在点(0, 0)处的切线的斜率为:1, 则曲线y=f (x)在点(0, 0)处的切线方程为:y=x. 故选:D.6.(5分)(2018?新课标1)在厶ABC中,AD为BC边上的中线,E为AD的中点,贝( )A.儿-丄W B .—逅-一:1 云c. 丄三D. -三+ 丁4 4 44 4 4 44【分析】运用向量的加减运算和向量中点的表示,计算可得所求向量.【解答】解:在△ ABC中, AD为BC边上的中线,E为AD的中占I 八,1=小一:|=小一■ ■II2=1. - 1 X '(小+…)-W- M3—* 1 —*= .“,一-「4 4 ?故选:A.7.(5分)(2018?新课标I)某圆柱的高为2,底面周长为16,其三视图如图•圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A. 2 —B. 2 -C. 3D. 2【分析】判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:「=2 =.故选:B.&(5分)(2018?新课标I)设抛物线C: y2=4x的焦点为第15页(共35页)F,过点(-2, 0)且斜率为:的直线与C交于M N两点,则■I'? •尸( )A. 5B. 6C. 7D. 8【分析】求出抛物线的焦点坐标,直线方程,求出M N的坐标,然后求解向量的数量积即可.【解答】解:抛物线C: y2=4x的焦点为F (1,0),过点 (-2, 0)且斜率为:的直线为:3y=2x+4,联立直线与抛物线C: y2=4x,消去x可得:y2- 6y+8=0, 解得y i=2,y2=4,不妨M( 1,2),N (4,4),:「」. :::,XL::: <'.则?尸(0,2) ? (3,4) =8.故选:D.9.(5分)(2018?新课标I)已知函数f (x) =「「,g (x) =f (x) +x+a .若g (x)存在2个零点,则a的取值范围是(A. [ - 1,0)B. [0,+s)C. [ - 1,+s)D. [1,+s)【分析】由g (x) =0得f (x) =- x - a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】解:由g (x) =0得f (x) =- x- a,作出函数f (x)和y= - x - a的图象如图:当直线y= - x - a的截距-aw 1,即卩a》-1时,两个函数的图象都有2个交点,即函数g (x)存在2个零点,故实数a的取值范围是[-1, +s).10.(5分)(2018?新课标I)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC直角边AB, AC △ ABC勺三边所围成的区域记为I,黑色部分记为:n, 其余部分记为皿•在整个图形中随机取一点,此点取自I,n,m的概率分别记为》, p2,卩3,贝廿()A. p i = p2B. p i = p3C. p2=p3D. p i = p + p3【分析】如图:设BC=2r i, AB=2r2, AC=2r3,分别求出I, n,m所对应的面积,即可得到答案.【解答】解:如图:设BC=2r i, AB=2r2, AC=2r3,. 2 2 2・・ r i =r2 +r3 ,2…S I = X 4r 2「3=2r2r 3, S m = X n r 1 — 2r 2r 3,2 2 2 2S n = 1 X n r 3 X n r 2 — S m = - X n r 3 X n r 2 _ 1 X2 2 22 2n「12+2吋3=2“3,/. S I =Sn ,/• P i=F2,故选:A.ii.(5分)(2018?新课标I)已知双曲线C: -y2=i, O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M N.若△ OMN为直角三角形,则|MN|=()A.B. 3C. 2 匚D. 4【分析】求出双曲线的渐近线方程,求出直线方程,求出MN的坐标,然后求解|MN|.【解答】解:双曲线C: : - y2=i的渐近线方程为:y= - I,渐近线的夹角为:60°,不妨设过F (2, 0)的直线为:,则:严解得M (影誓),'解得:N (;),则|MNF =3.故选:B.12.(5分)(2018?新课标I)已知正方体的棱长为1,每条棱所在直线与平面a所成的角都相等,则a截此正方体所得截面面积的最大值为()A. B. - C. D.【分析】利用正方体棱的关系,判断平面a所成的角都相等的位置,然后求解a截此正方体所得截面面积的最大值. 【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面a所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,a截此正方体所得截面面积的最大,此时正六边形的边长",a截此正方体所得截面最大值为:6X [匚=「.故选:A.二、填空题:本题共4小题,每小题5分,共20分。