重庆市万州第三中学2020-2021学年八年级上学期期中考试数学试卷(PDF版)
重庆市万州区2020_2021学年第一学期八年级数学教学质量监测
万州区2020~2021学年度(上)教学质量监测八年级数学试题卷(满分150分 考试时间120分钟)注意事项:1.试题的答案必须答在答题卷上,不得在试题卷上直接作答.2.答题前务必将自己的学校、姓名、考号填在答题卷规定的位置上.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将每小题的答案直接涂在答题卷中对应的位置上. 1.在下列实数中,无理数是( ▲ )A.35-B.8C.-2D.52.下列运算正确..的是( ▲ ) A.642x x x =⋅ B.642)(x x = C. 6332x x x =+ D.336)2(x x -=-3.万州区2020年初中数学优质课比赛有11位选手参加,成功在南京中学举行,要适时公布每位选手的成绩,采用的是下面的方法公布的选手成绩,则它是( ▲ )A.条形统计图B.扇形统计图C.折线统计图D.统计表4.如图,已知AB=AC ,BD=DC,则直接能使△ABD ≌△ACD 的根据是( ▲ ) A.SAS B.ASA C.AAS D.SSS 5.若()0352=++-b a ,则b a 、的值分别为( ▲ )A.5 、3B.5、 -3C.-5、-3D.-5、3选手序号 1 2 3 4 5 6 7 8 9 10 11 成绩* * *********第4题图6.估算56-的值,它的整数部分是(▲ )A.2 B.3 C.4 D.57.若ΔABC的三边为下列四组数据,则能判断ΔABC是直角三角形的是(▲)A. 1、2、2B. 2、3、4C. 6、7、8D.6、8、108.下列命题的逆命题一定成立的是(▲)A.在三角形中,等边对等角 B.全等三角形的对应角相等C.若ba=,则ba= D.若2=x,则022=-xx9.如图, DE是AC的垂直平分线,CE=5,△BDC•的周长为15,则△ABC的周长是(▲)A.15B.20C.25D.3010.如图,都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑨个图形中五角星的个数为(▲)A.72个B.98个C.128个D.162个11.如图,从边长为12+a的正方形纸片中剪去一个边长为2+a的正方形)0(>a,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(▲)A.332-a B.332+a C.122+-aa D.9182++aa12.已知zyx、、满足12=-zx,362-=+yxz,则zyx++2的值为(▲)A.4B.1C.0D.-8二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横第10题图第9题图第11题图线上.13.分解因式233a a -= ▲ .14.一组数据经整理后分成五组,第一,二,三,四小组的频率分别为0.1,0.1,0.3,0.2,若第二小组的频数是6,则第五小组的频数是 ▲ . 15.计算:1612563+-+-= ▲ .16.若362++ma a 是一个关于a 的完全平方式,则=m ▲ . 17.如图,在△ABC 中,AD 平分∠BAC ,交BC 于点D ,BE ⊥AD 于E ,AB=6,AC=14, ∠ABC=3∠C ,则BE= ▲ .18.如图,△ABC 中(AB >BC ),G 在CB 的延长线上,边AC 的垂直平分线DE 与∠ABG 的角平分线交于点M ,与AB 交于点D ,与AC 相交于E ,MN ⊥AB 于N . 已知AB=13,BC=9,MN=3,则△BMN 的面积是 ▲ .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卷中对应的位置上. 19.化简求值2(3)(3)(23)5(4)2a b a b a b a b a a ⎡⎤+-+--+-÷⎣⎦,其中21,2-==b a .20.如图,已知:点B 、F 、C 、E 在一条直线上,∠B=∠E ,AC=DF ,AC ∥DF. (1)求证:△ABC ≌△DEF ;(2)若BF=6,求CE 的长.21.垃圾的分类处理与回收利用,可以减少污染,节省资源.重庆主城区环保部门为了提高宣传实效,抽样调查了部分居民 小区一段时间内生活垃圾的分类情况(全部分类),其相关ECABDF第20题图第17题图第18题图信息如图表,根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共▲吨;(3)调查发现,在可回收物中塑料类垃圾占20%,每回收1吨塑料类垃圾可获得0.7吨二级原料.若重庆主城区某月产生的生活垃圾为300 000吨,且全部分类处理,那么该月回收的塑料类垃圾可以获得多少吨二级原料?第21题图22.“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过40千米/时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方18米的C处,过了2秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为30米,请问这辆小汽车是否超速?若超速,则超速了多少?第22题图第25题图23.小琪、小米两人在计算一道整式乘法题)2)(3(b m a m -+时,小琪由于把第二个多项式中的“m 2”看成了“m 3”,得到的结果为6392--m m ,小米由于把第一个多项式中的“a +”看成了“a 2+”,得到的结果为1262--m m . (1)求的b a 、的值. (2)求出此题的正确结果.24.把一个三位自然数(或两位自然数)各数位上最大的数字的平方依次减去其它数位上的数字的平方所得的差,再取绝对值,得到一个新数,叫做第一次运算(规定:新数为两位数或0,得到0时即停止运算),再把所得新数的一个数位上的数字的平方减去另一个数位上的数字的平方的差,再取绝对值,又得到一个新数,叫做第二次运算,……如此重复下去,若最终结果为0,我们就把具有这种特征的三位或两位自然数称为“完美数”.例如:2222222117711477433330,→--=→-=→-=222222250660511110,22220,→--=→-=→-=所以117、506、22是“完美数”. (1)704 ▲ “完美数”(填“是”或“不是”);最大的三位“完美数”是 ▲ ;并说明496为完美数.(2)若一个两位“完美数”经过两次运算后结果为0,且把这个两位“完美数”与它的各位上的数字的和相加所得的数除以6余1,求出满足这个条件的所有的两位“完美数”.25.如图所示,△ABC 中,AB=BC ,DE ⊥AB 于点E ,交AC 于D ,EF ⊥BC 于点F . (1)若∠CDE=152°,求∠DEF 的度数;(2)若点D 是AC 的中点,求证:ADE ABC ∠=∠2四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卷中对应的位置上.26.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为D、E,M为斜边AB的中点(备注,可以直接用结论:直角三角形斜边上的中线等于斜边的一半).(1)如图1,当点P与点M重合时,AD与BE的位置关系是▲ ,MD与ME的数量关系是▲ .(2)如图2,当点P在线段AB上不与点M重合时,试判断MD与ME的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上且PQ是不与AB重合的任一直线时,分别过A、B向直线PQ 作垂线,垂足分别为D、E,此时(2)中的结论是否成立?若成立,请说明理由.图1图2图3。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套
2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2020-2021学年重庆市万州区八年级上期中考试数学模拟试卷及答案解析
一.选择题(共12小题,满分48分,每小题4分)
1.(4分)在 ,3.14,0.3131131113…, , , 中无理数的个数有( )
A.2个B.3个C.4个D.5个
2.(4分)如图,在△ABC中,D是BC上一点,已知AB=15,AD=12,AC=13,CD=5,则BC的长为( )
A.14B.13C.12D.9
3.(4分)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=( )
A.﹣1B.1C.5D.﹣5
4.(4分)我们用f(x)代替函数中的变量y,如:y=x+3可以记作f(x)=x+3,“当x=1,y=4”可以记作“f(1)=4”.现有函数f1(x)=2x,f2(x) ,f3(x)=﹣6(x﹣1)(x﹣2).记Ik=|fk(1)﹣fk( )|+|fk( )﹣fk( )|+……+|fk( )﹣fk(2)|,其中k=1,2,3,则下列结论正确的是( )
A.I1<I2<I3B.I2<I1<I3C.I2<I3<I1D.I3<I2<I1
5.(4分)已知0<x<1,则 、 、x2、x的大小关系是( )
A. x2<x B.x<x2 C.x2<x D. x2<x
6.(4分)正比例函数y=kx(k≠0)函数值y随x的增大而增大,则y=kx﹣k的图象大致是( )
25.(10分)如图,已知△ABC.
(1)尺规作图:过点C作AB的垂线交AB于点O.不写作法,保留作图痕迹;
(2)分别以直线AB,OC为x轴,y轴建立平面直角坐标系,使点B,C均在正半轴上.若AB=7.5,OC=4.5,∠A=45°,写出点B关于y轴的对称点D的坐标;
2020-2021学年度第一学期八年级期中数学试卷及答案共三套
2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。
2020-2021重庆市初二数学上期中试题及答案
B. 180 180 3 x x2
C. 180 180 3 x2 x
D. 180 180 3 x2 x
2.已知一个正多边形的内角是 140°,则这个正多边形的
D.6
3.下列关于 x 的方程中,是分式方程的是( ).
A. 3x 1 2
B. 1 2 x
C. x 2 3 x 54
约 2 吨煤,使储存的煤比原计划多用 15 天.若设改进技术前每天烧 x 吨煤,则可列出方程
________.
17.点 P(-2, 3)关于 x 轴对称的点的坐标为_________
18.观察下列各式的规律:
a ba b a2 b2
a b a2 ab b2 a3 b3 a b a3 a2b ab2 b3 a4 b4
D.3x-2y=1
4.李老师开车去 20km 远的县城开会,若 按原计划速度行驶,则会迟到 10 分钟,在保证
安全驾驶的前提下,如果将速度每小时加快 10km,则正好到达,如果设原来的行驶速度为
xkm/h,那么可列分式方程为
A. 20 20 10 x x 10
B. 20 20 10 x 10 x
10.A
解析:A 【解析】 分析: 根据分式的值为 0 的条件:分子为 0 且分母不为 0,得出混合组,求解得出 x 的值. 详解: 根据题意得 :x-2=0,且 x+5≠0,解得 x=2. 故答案为 A. 点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
11.D
解析:D 【解析】 【分析】 根据轴对称的性质即可解答. 【详解】 ∵△ABC 与△A1B1C1 关于直线 MN 对称,P 为 MN 上任意一点, ∴△A A1P 是等腰三角形,MN 垂直平分 AA1、CC1,△ABC 与△A1B1C1 面积相等, ∴选项 A、B、C 选项正确; ∵直线 AB,A1B1 关于直线 MN 对称,因此交点一定在 MN 上. ∴选项 D 错误. 故选 D. 【点睛】 本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所 连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的 角、线段都相等.
[期中试卷]2020-2021(上)期中八年级数学试卷及答案
2020-2021学年度第一学期期中学情分析样题八年级数学(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共16分)2.下列说法正确的是A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形3.下列各组线段能构成直角三角形的一组是A.1,2,3 B.2,3,4C.3,4,5 D.4,5,64.如图,已知点A、D、C、F在同一条直线上,AB=DE,∠A=∠EDF,再添加一个条件,可使△ABC≌△DEF,下列条件不符合...的是AD=CF D.AD=DC A.∠B=∠E B.BC∥EF C.5.如图,用直尺和圆规作一个角的平分线,该作法的依据是A.SSS B.SAS C.ASA D.AAS6.在如图所示的正方形网格中,△ABC的顶点A、B、C都是网格线的交点,则△ABC 的外角∠ACD的度数等于A.130°B.135°C.140°D.145°7.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为A .a +cB .b +cC .a -b +cD .a +b -c8.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①S △ABE =S △BCE ;②∠AFG =∠AGF ;③∠F AG =2∠ACF ;④BH =CH .其中所有正确结论的序号是A .①②③④B .①②③C . ②④D .①③二、填空题(每小题2分,共20分)9.等腰三角形的底角是顶角的2倍,则顶角的度数是 ▲ °. 10.等边三角形的两条中线相交所形成的锐角等于 ▲ °.11. 如图,△ABC ≌△DEC , CA 和CD , CB 和CE 是对应边,∠ACD =28°, 则∠BCE = ▲ °.12.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若AD =6cm ,CD =3cm ,则图中阴影部分的面积是 ▲ cm 2;13.如图,在△ABC 中,AC 的垂直平分线分别交BC 、AC 于点D 、E ,若AB =10cm ,BC =18cm ,则△ABD(第4题)EBC D AF BCDA (第6题) (第5题) ABCDFA DEFGH(第7题)(第8题)DCAE14.如图,点P 为等边三角形ABC 的边BC 上一点,且∠APD =80°, AD =AP ,则∠DPC = ▲ °.15.在△ABC 中,将∠B 、∠C 按如图所示方式折叠,点B 、C 均落于边BC 上一点G处,线段MN 、EF 为折痕.若∠A =82°,则∠MGE = ▲ °.16.如图,将△ABC 绕点C 逆时针旋转得到△A ′B ′C ,其中点A ′与点A 是对应点,点B ′与点B 是对应点,点B ′ 落在边AC 上,连接A ′B ,若∠ACB =45°,AC =3,BC =2,则A ′B 2= ▲ .(第14题)A BDC(第15题)(第16题)B ′ A ′CAB17.如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以AB 长为一边作△ABD ,且AD =BD ,∠ADB =90°,取AB 中点E ,连DE 、CE 、CD .则∠EDC = ▲ °. 18.如图,在等腰△ABC 中,AB =AC =10,高BD =8,AE 平分∠BAC ,则△ABE 的面积为 ▲ .三、解答题(本大题共8小题,共64分)19.(6分)如图,AD 、BC 交于点O ,AC =BD ,BC =AD .求证:∠C =∠D .20.(7分) 如图,AD 是△ABC 的角平分线, DE 、DF 分别是△ABD 和△ACD 的高.求证:AD 垂直平分EF .ABDCO(第19题)(第20题) AF EBCD(第17题)ADCE (第18题)BDEA21.(6分)如图,已知△ABC,请用直尺和圆规以C为一个公共顶点作△CDE,使△CDE与△ABC全等,则全等的依据是▲.(不写作法,保留作图痕迹)22.(6分)如图,在△ABC 中,AB =AC ,点E 在CA 的延长线上,EP ⊥BC ,垂足为P ,EP 交AB 于点F .求证:△AEF 是等腰三角形.23.(9分)如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙底端C 的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B 将向左滑动多少米?BE F A(第22题) (第23题)A 1AB B 1C25.(10分)已知:如图,AB =AC ,AD =AE ,BE 与CD 相交于点P . (1)求证:PC =PB ; (2)求证:∠CAP =∠BAP ;(3)利用(2)的结论,用直尺和圆规作∠MON 的平分线.AB CD EPOMN(第25题)26.(11分)在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.将Rt△ABC 绕点O依次旋转90°、180°和270°,构成的图形如图所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.(1)请利用这个图形证明勾股定理;(2)请利用这个图形说明a2+b2≥2ab,并说明等号成立的条件;(3)请根据(2)的结论解决下面的问题:长为x,宽为y的长方形,其周长为8,求当x,y取何值时,该长方形的面积最大?最大面积是多少?(第26题)2020-2021学年度第一学期期中学情分析样题(2)八年级数学评分标准一、选择(每题2分,共16分)二、填空题(每题2分,共20分)9.36 10.60 11.28 12.9 13.28 14.20 15.82 16.13 17.75 18.15. 三、解答题19.(6分) 证明:在△ABC 和△BAD 中, ∵AC =BD ,BC =AD ,AB =BA ,∴△ABC ≌△BAD . ······································································ 4分∴∠C =∠D . ················································································ 6分 20.(7分) 证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD , ······································································ 1分 ∵ DE 、DF 分别是△ABD 和△ACD 的高,∴∠DEA =∠DF A =90°, ····························································· 2分 ∵AD =AD ,∴△AED ≌△AFD . ······································································ 4分 ∴DE =DF ,AE =AF , ································································· 5分 ∴A 、D 在EF 的垂直平分线上, ···················································· 6分∴AD 垂直平分EF . ····································································· 7分 21.(6分)可分别利用平移、翻折、旋转作图. ······································ 4分理由. ··························································································· 6分22.(6分) 证明:∵AB =AC ,∴∠B =∠C ···················································································· 1分 ∵EP ⊥BC ,∴∠B +∠BFP =∠C +∠E =90°, ···················································· 3分 ∵∠BFP =∠AFE(第20题)AFEBCDBC E FA (第22题)GA B DCO(第19题)∴∠AFE =∠E ················································································ 5分 ∴AE =AF ,即△AEF 是等腰三角形. ································································· 6分 证法二:过A 作AG ⊥BC ,································································ 1分 ∵AB =AC ,∴∠BAG =∠CAG , ······················································· 2分 ∵EP ⊥BC ,∴∠AGC =∠EPC =90°,∴AG ∥EP , ··················································································· 3分 ∴∠BAG =∠AFE ,∠CAG =∠E , ····················································· 4分 ∴∠AFE =∠E ················································································ 5分 ∴AE =AF ,即△AEF 是等腰三角形. ································································· 6分23.(9分)解:在△ABC 中,∠C =90°,∴AC 2+BC 2=AB 2, ······························· 2分即AC 2+0.72=2.52,∴AC =2.4. ························································ 4分 在△A 1B 1C 中,∠C =90°,∴A 1C 2+B 1C 2=A 1B 12, ······························ 6分 即(2.4–0.4)2+B 1C 2=2.52,∴B 1C =1.5. ············································· 8分 ∴B 1B =1.5–0.7=0.8,即点B 将向左移动0.8米. ································· 9分 ∴∠DCB =∠EBC . ········································································· 8分 ∴AB =AC ,即△ABC 是等腰三角形. ·································································· 9分(第23题) A 1 AB B 1 C25.(10分)证明:(1)∵AB =AC ,AD =AE ,∠BAE =∠CAD .∴△BAE ≌△CAD (SAS ), ·································· ∴∠C =∠B ,∵AB =AC ,AD =AE ,∴CE =BD ,∵∠CPE =∠BPD ,∴△CPE ≌△BPD (AAS ), ······························································· 4分 ∴PC =PB . ··················································································· 5分(2)∵AB =AC ,∠C =∠B , PC =PB ,∵△ACP ≌△ABP (SAS ), ································································ 7分 ∴∠CAP =∠BAP . ········································································· 8分(3)如图. ················································································· 10分26.(11分)解:(1)因为边长为c 的正方形面积为c 2,···························· 1分 它也可以看成是由4个直角三角形与1个边长为(a – b )的小正方形组成的,它的面积为4×12ab +(a – b )2=a 2+b 2, ·············································· 3分 所以c 2=a 2+b 2. ········································································· 4分(2)∵(a – b )2≥0, ······································································ 5分 ∴a 2+b 2–2ab ≥0,∴a 2+b 2≥2ab , ················································· 6分 当且仅当a =b 时,等号成立. ························································ 7分(3)依题意得2(x +y )=8,∴x +y =4,长方形的面积为xy ,由(2)的结论知2xy ≤x 2+y 2=(x +y )2–2xy , ···································· 9分 ∴4xy ≤(x +y )2,∴xy ≤4, ··························································· 10分 当且仅当x =y=2时,长方形的面积最大,最大面积是4. ··················· 11分 A B C D E P。
人教版八年级数学上重庆万州第三中学上学期期中考试数学试题
初中数学试卷2014年秋季八年级期中考试数学试题考试时间120分钟 总分150分第I 卷(选择题48分)一、选择题(每小题4分,共48分)1.、161的平方根是( ) A 、41 B 、41- C 、41± D 、4± 2.下列命题中,真命题是( )A.、相等的角是直角B.、不相交的两条线段平行C.、两直线平行,同位角互补 D 、.经过两点有且只有一条直线3、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是根据三角形的全等判定( )A 、SAS 带③B 、SSS 带③C 、ASA 带③D 、AAS 带③4. 在实数020.20200200843.143073,,,,,,,π-…中,无理数的个数是( )A 、1B 、2C 、3D 、45.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .∠A =∠A ' C .AC =A C ''D .∠C =∠C '6.下列运算中,正确的是( )A.B. C. D.7.已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D . 以上答案均不对8..下列从左边到右边的变形,属于因式分解的是 ( )A 、 1)1)(1(2-=-+x x xB 、1)2(122+-=+-x x x xC 、)4)(4(422y x y x y x -+=-D 、)3)(2(62-+=--x x x x9.设一个正方形的边长为错误!未找到引用源。
,若边长增加3cm ,则新正方形的面积增加了( )A.错误!未找到引用源。
2020-2021学年度第一学期八年级期中数学试卷及答案共三套
2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。
2020-2021学年八年级上学期期中考试数学试题附解答
2020-2021学年八年级上学期期中考试数学试题(全卷三个大题,共23个小题,共6页;满分120分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卡上解题作答,答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1.点(,5)E a -与点(2,)F b -关于y 轴对称,则a = ,b = .2.如图,在ABC △中,8AB AC ==,6BC =,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则BEC △的周长为 .3.三角形三边长分别为3,a ,7,则a 的取值范围是 .4.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为 .5.如图,已知AB BD ⊥,AB DE ∥,AB ED =.要说明ABC EDC △≌△,若添加AC EC =可用 判定全等.6.如图为6个边长相等的正方形组成的图形,则123∠+∠+∠= .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.下列四副图案中,不是轴对称图形的是( ).A .B .C .D .8.等腰三角形的一个角是50︒,则它的底角是( ).A .50︒B .65︒C .80︒D .50︒或65︒9.下列条件中,不能得到等边三角形的是( ).A .有两个内角是60︒的三角形B .三边都相等的三角形C .有一个角是60︒的等腰三角形D .有两个外角相等的等腰三角形10.如图,在ABC △中,AB AD DC ==,70B ∠=︒,则C ∠的度数为( ).A .35︒B .40︒C .45︒D .50︒11.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ).A .线段CD 的中点B .OA 与OB 的中垂线的交点C .CD 与AOB ∠的平分线的交点D .OA 与CD 的中垂线的交点 12.如图,ABC △中,AB AC =,D 是BC 中点,下列结论中不正确的是( ).A .BC ∠=∠ B .AD BC ⊥ C .AD 平分BAC ∠ D .2AB BD =13.画AOB ∠的角平分线的方法步骤是:①以O 为圆心,适当长为半径作弧,交OA 于M 点,交OB 于N 点;②分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧在AOB ∠的内部相交于点C ;③过点C 作射线OC ,射线OC 就是AOB ∠的角平分线.这样作角平分线的根据是( ).A .SSSB .SASC .ASAD .AAS14.在锐角ABC △内的一点P 满足PA PB PC ==,则点P 是ABC △( ).A .三条角平分线的交点B .三边垂直平分线的交点C .三条高的交点D .三条中线的交点三、解答题(本大题共9个小题,共70分)15.(1)如图1,要在公路MN 旁修建一个货物中转站P ,分别向A 、B 两个开发区运货.若要求货站到A 、B 两个开发区的距离相等,那么货站应建在那里?(2)在直角坐标系中,ABC △的三个顶点的位置如图2所示.①请画出ABC △关于y 轴对称的A B C '''△(其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法); ②直接写出A ',B ',C '三点的坐标:A '( ),B '( ),C '( ).16.在ABC △中,CD AB ⊥于点D ,CE 是ACB ∠的角平分线,20A ∠=︒,60B ∠=︒.求ECD ∠的度数.17.如图,点E ,F 在BC 上,BE CF =,A D ∠=∠,B C ∠=∠,AF 与DE 交于点O .(1)求证:AB DC =;(2)试判断OEF △的形状,并说明理由.18.如果一个多边形的内角与外角和的差是1440︒,那么这个多边形是几边形?19.如图,已知:E 是AOB ∠的平分线上的一点,EC OB ⊥,ED OA ⊥,C 、D 是垂足,连接CD ,且交OE 于点F .(1)求证:OE 是CD 的垂直平分线;(2)若60AOB ∠=︒,请你探究OE ,EF 之间有什么数量关系?并证明你的结论.20.如图是A 、B 、C 三岛的平面图,C 岛在A 岛的北偏东50︒方向,B 岛在A 岛的北偏东80︒方向,C 岛在B 岛的北偏西40︒方向.从C 岛看A 、B 岛的视角ACB ∠为多少?21.已知:ABC △中,B ∠、C ∠的角平分线相交于点D ,过D 作EF BC ∥交AB 于点E ,交AC 于点F ,求证:BE CF EF +=.22.如图,A B ∠=∠,AE BE =,点D 在AC 边上,12∠=∠,AE 和BD 相交于点O .(1)求证:AEC BED △≌△;(2)若142∠=︒,求BDE ∠的度数.23.如图,已知ABC △中,B C ∠=∠,8AB =厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t (秒)(03t ≤≤).(1)用t 的代数式表示PC 的长度;(2)若点P ,Q 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点P ,Q 的运动速度不相等,当点Q 的运动速度a 为多少时,能够使BPD △与CQP △全等?参考答案1.2,-5;2.10;3.4<a<10;4.72°;5.SAS;6.135°;7.A.8.D.9.C.10.A.11.C.12.D.13.A.14.A.15.(1)画图略;(2)画图略;(2,3),(3,1),(-1,-2);16.解:∵∠A=20°,∠B=60°∴∠C=100°∴∠BCE=50°∴∠BDC=90°∴∠BCD=30°∴∠DCE=20°.17.(1)证明:∵BE=BF-EF,CF=EC-EF∴BF=CE在△ABF和△CDE中∵∠A=∠D,BF=CE,∠B=∠C∴△ABF≌△CDE(ASA)∴AB=CD.(2)由(1)知△ABF≌△CDE;∴OE=OF∴△OEF为等腰三角形.18.解:设多边形的边数为n,(n-2)∙180°-360°=1440°;解得n=12.19.(1)证明:∵OE平分∠AOB,DE⊥OA,CD⊥OB ∴DE=CE,OE=OE∴Rt△ODE≌Rt△OCE∴OC=OD∴△COD是等腰三角形∵OE平分∠AOB∴OE是CD的垂直平分线.(2)∵OE平分∠AOB,∠AOB=60°∴∠AOE=∠BOE=30°∵OB⊥CE,OA⊥DE∴OE=2DE,∠ODF=∠OED=60°∴∠EDF=30°∴DE=2EF∴OE=4EF.20.解:∵C在A北偏东50°∴∠CAD=50°∵C在BE北偏西45°∴∠CBE=40°∵AD//BE∴∠BAD+∠ABE=180°∴∠CAD+∠CAB+∠ABC+∠CBE=180°∴∠BAC+∠ABC=90°∴∠ACB=90°.21.证明:∵BD 平分ABC∴∠DBE=∠CBD∵EF//BC∴∠BDE=∠CBD∴∠BDE=∠EBD∴DE=BE同理:CF=DF∴EF=DE+DF=BE+CF .即BE+CF=EF .22.(1)证明:∵AE 与BD 相较于点O ∴∠AOD=∠BOE在△AOD 和△BOE 中∵∠A=∠B ,∠BEO=∠2∠1=∠2∠1=∠BEO ∴△AEC ≌△BED (ASA )(2)∠BDE=69°;23.解:(1)PC=6-2t ;(2)全等.理由如下:∵t=1时,BP=2,∴CP=4∵AB=8,D 为AB 中点∴BD=4∴PC=BD ∴△BPD ≌△CQP(3)∵P ,Q 运动速度不相等, ∴BP ≠CQ∵△BPD ≌△CPQ ,∠B=∠C∴BP=PC=3cm ,CQ=BD=4cm , ∴t=1.5秒,V=38cm/s .。
重庆市八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.如图图案不是轴对称图形的有()个.A. 2个B. 3个C. 4个D. 5个2.如果等腰三角形的两边长是10cm和5cm,那么它的周长为()A. 20cmB. 25cmC. 20cm或25cmD. 15cm3.如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A. 0B. 1C. 2D. 34.√16的平方根是()A. 4B. ±4C. 2D. ±25.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A. 80∘B. 40∘C. 60∘D. 120∘6.下列各数中:π3,−0.3⋅,227,√25,√93,是无理数的有()A. 1个B. 2个C. 3个D. 4个7.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. BC=EF,AC=DFC. ∠A=∠D,∠B=∠ED. ∠A=∠D,BC=EF8.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A. 750米B. 1000米C. 1500米D. 2000米9.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于D,交BC于E,若BE=8cm,则AC的长为()A. 4cmB. 5cmC. 6cmD. 8cm10.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是()A. HLB. SAS或AASC. ASAD. SSS11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=2.5cm,点D到AB的距离为()A. 10cmB. 7.5cmC. 2.5cmD. 12.5cm12.下列语句中,正确的是()A. 一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个二、填空题(本大题共8小题,共24.0分)13.使√2−x有意义的x的取值范围是______.14.一辆汽车的车牌号在水中的倒影是,那么它的实际车牌号是:______.15.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是______ .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是______(填SSS,SAS,AAS,ASA中的一种).17.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=______ 度.18.满足-√3<x<√23的整数x有______ .19.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= ______ .20.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB= ______ .三、解答题(本大题共8小题,共60.0分)21.计算:32×√4+12×√144−√10003______ .22.解方程(1)x3-125=0(2)x2-24=1.23.已知√x−2+|2y-x|=0,求x2+4y的立方根.24.如图所示,两条笔直的公路AO与BO相较于点O,村庄D和E在公路AO的两侧,现要在公路AO和BO之间修一个供水站P向D、E两村供水,使供水站P到两公路的距离相等,且到D、E两村的距离也相等.请你在图中画出P点的位置.25.如图,已知∠1=∠2,∠C=∠D,求证:OC=OD.26.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.27.如图,AD是等边三角形BC边上的高,以AD为边作等边三角形△ADE,连结BE.求证:BE⊥AE.28.如图,△DAC和△EBC均是等边三角形,A、C、B三点在一条直线上,AE、BD分别与CD、CE交于点M、N.现有如下结论:①AM=DN;②EM=BN;③∠CAM=∠CDN;④∠CME=∠CNB.(1)上述结论正确的有______ .(2)选出一个你认为正确的结论,并证明这个结论.你选的结论是:______ .证明:______ .答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形;共3个图案不是轴对称图形;故选:B.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.【答案】B【解析】解:当腰为5cm时,5+5=10,不能构成三角形,因此这种情况不成立.当腰为10cm时,10-5<10<10+5,能构成三角形;此时等腰三角形的周长为10+10+5=25cm.故选:B.题目给出等腰三角形有两条边长为10cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.此题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.【答案】C【解析】解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC,∴△ABE≌△ACD(AAS).故选C.根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.4.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先化简=4,然后求4的平方根.本题考查平方根的求法,关键是知道先化简.5.【答案】C【解析】解:∵∠A=80°,∠B=40°,∴∠C=180°-∠A-∠B=60°,∵△ABC≌△DEF,∴∠F=∠C=60°,故选C.根据三角形内角和定理求出∠C,根据全等三角形性质推出∠F=∠C,即可得出答案.本题考查了三角形内角和定理,全等三角形性质的应用,主要考查学生的推理能力,难度不大.6.【答案】B【解析】解:,是无理数;-是无限循环小数,是有理数;是分数,是有理数;=5,是整数,是有理数.故选B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7.【答案】D【解析】解:(1)在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故A正确;(2)在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);故B正确;(3)在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误;故选D.分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.本题考查了全等三角形的判定,常用判定三角形全等方法有SSS,SAS,ASA,AAS,本题中对各选项进行验证是解题的关键.8.【答案】B【解析】解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B 点为最短距离.本题涉及最短路径问题和全等三角形的知识,难度一般.9.【答案】A【解析】解:∵DE是线段AB的垂直平分线,∴AD=DB=8cm,∴∠DAE=∠B=15°,∴∠ADC=∠DAE+∠B=30°,∵∠ACB=90°,∴AC=AD=4cm.故选A.由线段AB的垂直平分线DE交BC于D,交AB于E,E为垂足,根据线段垂直平分线的性质,可求得DB=AD,继而求得∠DAE=∠B=15°,则可求得∠ADC 的度数,然后由含30°的直角三角形的性质,求得答案.此题考查了线段垂直平分线的性质以及含30°的直角三角形的性质.注意求得∠ADC=30°是关键.10.【答案】C【解析】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.11.【答案】B【解析】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=BC-BD=7.5,即点D到AB的距离为7.5cm.故选B.过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12.【答案】D【解析】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C错误,D、立方根是这个数本身的数共有三个,0,1,-1,故D正确.故选D.A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.本题主要考查平方根和立方根的知识点,比较简单.13.【答案】x≤2【解析】解:由题意得:2-x≥0,解得:x≤2.故答案为:x≤2.根据二次根式的被开方数为非负数即可得出答案.本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数.14.【答案】MT9527【解析】解:实际车牌号是:MT9527.故答案为:MT9527.关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.15.【答案】(-3,4)【解析】解:∵点P关于x轴对称的点是(3,-4),则P点的坐标是(3,4).∴点P关于y轴对称的点的坐标是(-3,4)关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.这一类题目是需要识记的基础题.能够结合平面直角坐标系和对称的性质进行记忆.16.【答案】SSS【解析】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.利用全等三角形的判定方法判断即可.此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.17.【答案】72【解析】解:∵∠E=36°,AE∥DC,∴∠E=∠BCD=36°,∵CD平分∠ACB,∴∠ACB=72°;∵AB=AC,∴∠B=∠ACB=72°.先利用平行线的性质求出∠E=∠BCD=36°,再利用角平分线的性质和等边对等角计算.考查平行线及角平分线的有关性质.18.【答案】-1,0,1【解析】解:∵-2<-<-1,1<<2,∴满足-<x<的整数x有-1,0,1,故答案为:-1,0,1.先估算出-和的范围,即可得出答案.本题考查了估算无理数的大小,能估算出-和的范围是解此题的关键.19.【答案】11【解析】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.根据已知条件分清对应边,结合全的三角形的性质可得出答案.本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.20.【答案】20cm【解析】解:∵EF是线段AB的垂直平分线,∴AE=BE,∵BE+CE=20cm,∴AE+CE=AC=20cm,∵AD是线段BC的垂直平分线,∴AB=AC=20cm.故答案为20cm.先由EF是线段AB的垂直平分线得出AE=BE,代入BE+CE=20cm,得到AE+CE=AC=20cm,再由AD是线段BC的垂直平分线,得出AB=AC=20cm.本题考查了线段垂直平分线的性质:线段垂直平分线上的任意一点到线段两端点的距离相等.得出AC=20cm是解题的关键.21.【答案】=-1【解析】解:原式=×2+×12-10=3+6-10=-1.故答案为:=-1.先根据数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.22.【答案】解:(1)移项得:x3=125.两边直接立方得:x=5,∴方程的解为:x=5;(2)移项得:x2=25.两边直接开平方得:x=±5,∴方程的解为:x1=5,x2=-5,【解析】(1)经过观察,发现将常数项移到方程的右边后等式两边可以直接开立方即可.(2)经过观察,发现将常数项移到方程的右边后等式两边可以直接开平方方即可.此题主要考查了立方根和平方根的知识,可利用数的开方直接求解的方程形式有:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.23.【答案】解:∵√x−2+|2y-x|=0,∴x-2=0,2y-x=0,∴x=2,y=1,∴x2+4y=8,∴x2+4y的立方根是2.【解析】先根据非负数的性质求出x、y的值,再求出x2+4y的立方根即可.本题考查的是非负数的性质及立方根的定义,能根据非负数的性质求出x、y 的值是解答此题的关键.24.【答案】解:如图所示,点P即为所求.【解析】根据P到两公路的距离相等,且到D、E两村的距离也相等,先作∠AOB的平分线,再作线段ED的垂直平分线,两线的交点P就是所求的点.此题主要考查了角平分线、线段垂直平分线的性质的应用以及作法,解决问题的关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.解题时要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.25.【答案】证明:在△ABC与△BAD中,{∠1=∠2∠C=∠D AB=BA,∴△ABC≌△BAD(AAS).∴AD=BC,∵∠1=∠2,∴AO=BO,∴AD-AO=BC-BO,即OC=OD.【解析】首先利用AAS判定△ABC≌△BAD,再根据全等三角形的对应边相等求得AD=BC,再由∠1=∠2,可得AO=BO,从而求得OC=OD.本题主要考查三角形全等的判定方法及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.本题比较简单,做题时要找准对应关系.26.【答案】解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16-(BE+AE)=16-9=7cm.【解析】先根据线段垂直平分线的性质求出BE+AE的长,再根据△ABE的周长为16cm,即可求出AB的长.本题比较简单,应用的知识点为:线段垂直平分线上的点到线段两端的距离相等.27.【答案】解:∵△ABC与△ADE是等边三角形,∴AE=AD,AB=AC,∠BAC=∠DAE=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,{AE=AD∠EAB=∠DAC AB=AC,∴△AEB≌△ADC,∴∠AEB=∠ADC,∵AD是等边三角形BC边上的高,∴∠ADC=90°,∴∠AEB=90°,∴BE⊥AE.【解析】根据等边三角形的性质得到AE=AD,AB=AC,∠BAC=∠DAE=60°,于是得到∠EAB=∠DAC,推出△AEB≌△ADC,得到∠AEB=∠ADC=90°,即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.28.【答案】①②③④;③;∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵{AC=CD∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,【解析】解:(1)上述结论正确的有:①②③④;故答案为:①②③④;(2)选③,证明:∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵,∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,所以③正确;选①,证明:在△ACM和△DCN中,∵,∴△ACM≌△DCN(ASA),∴AM=DN,所以①正确;选②,证明:∵△ACE≌△DCB,∴∠MEC=∠NBC,在△MCE和△NCB中,∵,∴△MCE≌△NCB(ASA),∴EM=BN,∠CME=∠CNB.所以②和④都正确.(1)4个选项都正确;(2)证明△ACE≌△DCB,得∠CAM=∠CDN,证明△ACM≌△DCN得:AM=DN,再证明△MCE≌△NCB(ASA),得EM=BN,∠CME=∠CNB.本题考查了三角形全等的性质和判定、等边三角形的性质,是常考题型,此类题变化多样,熟练掌握等边三角形的性质是关键,利用等边三角形的性质得出三角形全等的条件即可得出结论.。
初中数学重庆市万州区万州中学八年级数学上学期期中考模拟试题考试卷及答案 新部编版.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:与数轴上的点一一对应的是()A、有理数B、整数C、无理数D、实数试题2:的平方根是()A.9 B.C.D.3试题3:下列各题的计算,正确的是()A. B.C. D.试题4:如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5试题5:在,,,,,-0.2020020002…,中,无理数有()个A.2B.3C.4D.5试题6:如果,那么p、q的值是()A. B. C. D.试题7:在△ABC和△A′B′C′中,①AB=A′B′;②B C=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A. ①②③B. ①②⑤C. ①⑤⑥D.①②④试题8:若正数a的算术平方根比它本身大,则()A. 0<a<1B. a>0C.a<1 D. a>1试题9:下列分解因式正确的是()A.B.C.D .试题10:若,则的值为()A. B.-2 C. D.试题11:在边长为的正方形中挖去一个边长为的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.试题12:如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个A.1B.2C.3D.4试题13:若=1,则_________.试题14:_______________. 试题15:分解因式:.试题16:若b为常数,且是完全平方式,那么b=.试题17:如图所示,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= .试题18:已知,则____________.试题19:试题20:试题21:试题22:试题23:解方程:试题24:因式分解:试题25:化简求值:,其中.试题26:如图, 已知:AB⊥BC , DC∥AB , DE⊥AC于点F , AB=EC.求证:AC=DE.试题27:已知,求的立方根.试题28:某家装公司的员工在安装玻璃时,不小心将一块三角形玻璃打碎. 要求他只带其中一块碎片到玻璃店去,就能配一块与原来一样的回来. 请根据图形回答问题:(1)碎片如图1,他应该带去,原因是.(2)碎片如图2,他应该带去,原因是.(图1)(图2)试题29:探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?试题30:已知:如图,点E在△ABC的边AC上,且∠AEB=∠ABC.(1) 求证:∠ABE=∠C;(2) 若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=6,AC=10,求DC的长;(3) 若BE平分∠ABC,AF平分∠BAC,且FD∥BC交AC于点D,连接FC,则△DFC是什么三角形?为什么?试题1答案:DC试题3答案: C试题4答案: B试题5答案:B试题6答案: C试题7答案:D试题8答案: A试题9答案:C试题10答案:A试题11答案:C试题12答案: C试题13答案:,,试题15答案:,试题16答案:,试题17答案: 55°,试题18答案:或试题19答案:试题20答案:试题21答案: 9200试题22答案:试题23答案:,试题25答案:化简得:,因为所以,所以原式试题26答案:证明:∵ AB⊥BC,∴∠ABC=90°,,∵ DC∥AB ,∴∠ABC+∠ECD=180°,∴∠ECD=90°,∴∠ABC=∠ECD,∠BCA+∠FCD=90°,∵ DE⊥AC于点F ,∴∠DFC=90°,∴∠CDE+∠FCD=90°,∴∠BCA=∠CDE,∵ AB=EC,∴△ABC≌△ECD(AAS),∴ AC=DE.试题27答案:解:化为,又∵,,,∴,,,∴,,,∴,试题28答案:(1)带 B 去,原因是两角及其夹边对应相等的两个三角形全等(ASA).(2)带 A 去,原因是两边及其夹角对应相等的两个三角形全等(SAS).试题29答案:探索题:先填空,再解答,解答需要写出恰当的过程.解:……①;②∵,,,,,,,…∴的各位数字按照规律:2,4,8,6;2,4,8,6循环出现,∴的个位数字是7.试题30答案:(1)证明:∵∠AEB=∠ABC,且∠AEB=∠EBC+∠C,∠ABC=∠EBC+∠ABE,∴∠EBC+∠C=∠EBC+∠ABE,∴∠ABE=∠C;(2)解:∵∠BAE的平分线AF交BE于F,∴∠BAF=∠DAF,∵ FD∥BC交AC于D,∴∠ADF=∠C,∵∠ABE=∠C,∴∠ADF=∠ABE,即∠ADF=∠ABF,∵ AF=AF,∴△BAF≌△DAF,∴ AD=AB=6,∴ DC=AC-AD=10-6=4.(3)解:△DFC是等腰三角形.理由是:过点F分别作FH⊥AB,FN⊥BC,FM⊥AC,易证:△AFH≌△AFM(AAS),从而知FH=FM,△BFH≌△BFM(AAS),从而知FH=FN,∴FM=FN,又FC=FC,可证Rt△CFM≌Rt△CFN(HL)∴∠MCF=∠NCF,∵FD∥BC,∴∠DFC=∠BCF,∴∠DFC=∠MCF,∴DF=DC,∴△DFC是等腰三角形.。
重庆某中学2020-2021学年八年级期中考试数学试卷
重庆某中学2020-2021学年八年级期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算正确的是( )A.4442a a a ⋅=B.448a a a +=C.448a a a ⋅=D.4416a a a ⋅=2.下列各组线段,能组成三角形的是( )A.2 cm ,3 cm ,5 cmB.5 cm ,6 cm ,10 cmC.1 cm ,1 cm ,3 cmD.3 cm ,4 cm ,8 cm3.如图,OP 平分,AOB PC OA ∠⊥于,C PD OB ⊥于D ,则PC 与PD 的大小关系是( )A.PC PD >B.PC PD =C.PC PD <D. 不能确定4.如图,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A.SSSB.SASC.ASAD.AAS5.使用乘法公式正确的是( )A.()222541025x x x -=++B.2(23)(23)43x x x +-=-C.22()()a b a b a b +-=+D.()22411681x x x +=++ 6.若25x =,则22x +的值为( )A.5B.10C.20D.40 7.与三角形三边的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点8.如下图,在ABC 中,AB AC =,点D 在AC 上,且BD BC AD ==,则A ∠等于( ).A.30°B.40°C.45°D.36°9.等腰三角形的一个外角是80︒,则其底角是( )A.100︒B.100︒或40︒C.40︒D.80︒10.如图,ABC 是等边三角形,,D E 分别在BC 和AC 上,BD CE =,连接,BE AD 交于P ,则APB ∠的度数是( ).A.60°B.90°C.120°D.150°11.如图,在Rt ABC 中,90B ∠=︒ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10BAE ∠=︒,则C ∠的度数为( )A.30︒B.40︒C.50︒D.60︒12.如图,在等腰Rt ABC 中,90,8,C AC F ∠==︒是AB 边上的中点,点,D E 分别在,AC BC 边上运动,且保持AD CE =.连接,,DE DF EF .在此运动变化的过程中,下列结论:①DFE 是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤CDE 面积的最大值为8.其中正确的结论是( )A.①②③B.①④⑤C.①③④D.③④⑤二、解答题13.工人师傅常用角尺平分一个任意角.做法如下:AOB ∠是一个任意角,在边,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点,M N 重合.过角尺顶点C 的射线OC 平分AOB ∠吗?为什么?14.如图,在ABC 中,,AB AC D =是BA 延长线上一点,点E 是AC 的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(不写作法,但必须保留作图痕迹) ①作DAC ∠的平分线AM ; ②连接BE 并延长交AM 与点F(2)试猜想AF 与BC 有怎样的位置关系和数量关系,并说明理由.15.因式分解(1)2844a a --(2)()()241x y x y +-+-16.先化简,再求值:()()2222[2]x x y xy xy xy x x y -+-÷,其中2020,2019x y ==.17.如图,,E F 分别是等边三角形ABC 的边,AB AC 上的点,且,,BE AF CE BF =交于点P .(1)求证:CE BF =;(2)求BPC ∠的度数.18.已知ABC 中,90,,A AB AC BE ∠=︒=平分ABC ∠,且BE CE ⊥于E . 求证:12CE BD =.19.如图1,在ABC △中,AE BC ⊥于E ,AE BE =,D 是AE 上的一点,且DE CE =,连接BD ,CD .(1)试判断BD 与AC 的位置关系和数量关系,并说明理由;(2)如图2,若将DCE △绕点E 旋转一定的角度后,试判断BD 与AC 的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD 与AC 的数量关系,请直接写出结论;②你能求出BD 与AC 的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.三、计算题20.计算(1)()()22a b b a b -++(2)()()222323x x -+四、填空题21.分解因式: 29x -=___________________.22.计算:2()x y --= __________________.23.等腰三角形有两条边长为4 cm 和9 cm ,则该三角形的周长是_________.24.已知()31x x +=,则代数式2265x x +-的值为_____________.25.一个凸多边形的内角和与外角和相等,它是_________边形.26.如图所示,在折纸活动中,小明制作了一张ABC 纸片,点,D E 分别在边,AB AC 上,将ABC 沿着DE 折叠压平,A 与A '重合,若70A ∠=︒,则12∠+∠=_____________.参考答案1.答案:C解析:448a a a ⋅=,故A 、D 项不正确,C 项正确;4442a a a +=,故B 项不正确,故选C.2.答案:B 解析:A.2+3=5,不能够组成三角形;B. 6+5>10,能构成三角形;C. 1+1<3,不能构成三角形;D. 3+4<8,不能构成三角形.故选:B.3.答案:B解析:利用角的平分线上的点到角的两边的距离相等可知PC PD =.故选:B.4.答案:A 解析:从作图可知,,OD OD OC OC CD C D ==='''',在ODC 和O D C '''中DO D O CO C O CD C D '''''=⎧'⎪=⎨⎪=⎩,()ODC O D C SSS ∴'''≌,AO B AOB ∴∠'''=∠ (全等三角形的对应角相等),故答案为:SSS .5.答案:D解析:A.22(25)42025x x x -=-+ ,故A 错误;B.2(23)(23)49x x x +-=-,故B 错误;C.22()()a b a b a b -=-+,故C 错误;D.22(41)1681x x x +=++,故D 正确.故选D.6.答案:C解析:根据25x =,则222225420x x +=⨯=⨯=,故选择C.7.答案:A解析:题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.B. 中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B 错误;C. 高的交点是三角形的垂心,到三边的距离不相等,C 错误;D. 线段垂直平分线上的点和这条线段两个端点的距离相等,D 错误;A. 角平分线上的点到角两边的距离相等,要到三角形三条边距离相等的点,只能是三条角平分线的交点,A 正确.故选:A.8.答案:D解析:,BD AD A ABD =∴∠=∠,,BD BC BDC C =∴∠=∠.又2BDC A ABD A ∴∠=∠+∠=∠2C A ∴∠=∠,AB AC =,ABC C ∴∠=∠.又180,2180A ABC C A C ∠+∠+∠=∴∠+∠=,把2C A ∠=∠代入上式,得22180A A ∠+⨯∠=.36A ∴∠=.故选D.9.答案:C解析:当80︒的外角在底角处时,则底角18080100=-=,因此两底角和200180=>,故此种情况不成立.因此只有一种情况:即80︒的外角在顶角处.则底角=80240︒÷=︒;故选C.10.答案:C解析:,,AB BC ABD BCE BD CE =∠=∠=,ΔΔ()ABD BCE SAS ∴≌,BAD CBE ∴∠=∠,又60ABP CBE ∠+∠=,60ABP BAP ∴∠+∠=,180120APB ABP BAP ∴∠=-∠-∠=. 11.答案:B解析:根据垂直平分线的性质可得AE CE =,即得EAC C ∠=∠,再有90,10B BAE ∠=︒∠=︒,根据三角形的内角和定理即可求得结果.ED 是AC 的垂直平分线AE CE ∴=EAC C ∴∠=∠90,10B BAE ∠=︒∠=︒40EAC C ∴∠=∠=︒故选B.12.答案:B解析:①连接CF .ABC 为等腰直角三角形,45,FCB A CF AF FB ∴∠=∠=︒==,AD CE =,ADF CEF ∴≌,,EF DF CFE AFD ∴=∠=∠,90AFD CFD ∠+∠=︒90CFE CFD EFD ∴∠+∠=∠=︒,EDF ∴是等腰直角三角形,故本选项正确;②四边形CDFE 不可能为正方形;故本选项错误;③DEF 是等腰直角三角形,∴当DE 最小时,DF 也最小,即当DF AC ⊥时,DE 最小,此时142DF BC ==,DE ∴== ④ADF CEF ≌,CEF ADF SS ∴=, 12DCF CEF DCF ADF ACF ABC CDFE S S S S S S S ∴=+=+==四边形故本选项正确;⑤当CED 面积最大时,由③知,此时DEF 的面积最小,此时,1688CED DEF AFC DEF CEFD S S S S S =-=-=-=四边形,故本选项正确;故选B.13.答案:OC 平分AOB ∠证:在COM 和CON 中()()()OM ON CM CN CO CD =⎧⎪=⎨⎪=⎩已知已知公共边()COM CON SSS ∴≌COM CON ∴∠=∠(全等三角形对应角相等)OC ∴平分AOB ∠(角平分线定义)解析:证角相等常常通过把角放到两个三角形中,寻找这两个三角形全等的条件,利用全等三角形的性质对应角相等.本题考查了三角形全等的判定方法;解答本题的关键是把要证明相等的两个角放到两个三角形中,怎么这两个三角形全等,借助两个三角形全等的性质.14.答案:(1)如图,AM 平分DAC ∠.BE 交AM 于点F .(2)//AF BC .证:AB AC =(已知)ABC C ∴∠=∠(等边对等角)22DAC ABC C ABC C ∴∠=∠+∠=∠=∠(三角形外角定理)且AM 平分DAC ∠(已作)12DAF DAC C ∴∠=∠=∠(等量代换) //AF BC ∴(同位角相等,两直线平行)解析:根据等腰三角形的性质,可得两底角相等,根据三角形的外角的性质,可得DAC ABC C ∴∠=∠+∠,根据内错角相等,可得两直线平行,根据ASA ,可得两个三角形全等,根据全等三角形的性质,可得证明结论.15.答案:(1)2844a a --()2421a a =--+24(1)a =--(2)2()4(1)x y x y +-+-2()4()4x y x y =+-++2(2)x y =+-解析:16.答案:原式()322223222x y x y x y x y x y =-+-÷ ()3222x y x y x y =-÷x y =-当2020,2019x y ==,202020191x y -=-=.解析:17.答案:(1)证:在ABF 与BCE 中()60()()AB BC A ABC BE AF =⎧⎪∠=∠=︒⎨⎪=⎩等边三角形定义等边对等角已知()ABF BCE SAS ∴≌CE BF ∴=(等边三角形对应边相等)(2)ABF BCE ≌(已证)ABF BCE ∴∠=∠ (全等三角形对应角相等)60CBF BCE CBF ABF ABC ∴∠+∠=∠+∠=∠=︒(等量代换)180()120BPC CBF BCE ∴∠=-+=︒∠∠︒(三角形内角和).解析:(1)根据等边三角形的性质结合BE AF =,即可得出,60,AE CF A BCF AC CB =∠=∠=︒=,进而即可证出()ACE CBF SAS ≌,根据全等三角形的性质即可得出CE BF =;(2)根据全等三角形的性质可得出ACE CBF ∠=∠,再根据三角形内角和定理结合60BCF BCP ACE ∠=∠+∠=︒,即可求出180********BPC BCF ∠=︒-∠=︒-︒=︒.18.答案:证:延长,BA CE 交于F .在FBE 与CBE 中90()()()BEF BEC BE BE FBE CBE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩垂直定义公共边角平分线定义 ()FBE CBE ASA ∴≌12CE FE CF ∴==(全等三角形对应边相等) 在Rt ABD 与Rt CDE 中90ABD ADB ECD CDE ∠+∠=∠+∠=︒(直角三角形两余角互余)且ADB CDE ∠=∠(对顶角相等)ABD ECD ∴∠=∠(等量代换)在ABD 与ACF 中90()()()DAB CAF AB AC ABD ACF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩已知已知已证 ()BAD CAF ASA ∴≌BD CF ∴=(全等三角形对应边相等)1122CE CF BD ∴==(等量代换) 解析:分别延长,CE BA ,它们交于F 点,由BE 平分,ABC CE BE ∠⊥,得到BCF 为等腰三角形,2FC EC =;易证得Rt Rt ABD ACF ≌,根据全等三角形的性质,BD CF =,即可得到结论.19.答案:解:(1)BD AC =,BD AC ⊥,理由是:延长BD 交AC 于F .AE BC ⊥,90AEB AEC ∴∠=∠=︒,在BED △和AEC △中,BE AE BED AEC DE EC =⎧⎪∠=∠⎨⎪=⎩,BED AEC ∴≌△△,BD AC ∴=,DBE CAE ∠=∠,90BED ∠=︒,90EBD BDE ∴∠+∠=︒,BDE ADF ∠=∠,90ADF CAE ∴∠+∠=︒,1809090AFD ∴∠=︒-︒=︒,BD AC ∴⊥;(2)不发生变化.理由:90BEA DEC ∠=∠=︒,BEA AED DEC AED ∴∠+∠=∠+∠,BED AEC ∴∠=∠,在BED △和AEC △中,BE AE BED AEC DE EC =⎧⎪∠=∠⎨⎪=⎩,BED AEC ∴≌△△,BD AC ∴=,BDE ACE ∠=∠,90DEC ∠=︒,90ACE EOC ∴∠+∠=︒,EOC DOF ∠=∠,90BDE DOF ∴∠+∠=︒,1809090DFO ∴∠=︒-︒=︒,BD AC ∴⊥;(3)①如图3中,结论:BD AC =,理由是:ABE △和DEC △是等边三角形,AE BE ∴=,DE EC =,60EDC DCE ∠=∠=︒,60BEA DEC ∠=∠=︒,BEA AED DEC AED ∴∠+∠=∠+∠,BED AEC ∴∠=∠,在BED △和AEC △中,BE AE BED AEC DE EC =⎧⎪∠=∠⎨⎪=⎩,BED AEC ∴≌△△,BD AC ∴=.②能.ABE △和DEC △是等边三角形,AE BE ∴=,DE EC =,60EDC DCE ∠=∠=︒,60BEA DEC ∠=∠=︒,BEA AED DEC AED ∴∠+∠=∠+∠,BED AEC ∴∠=∠,在BED △和AEC △中,BE AE BED AEC DE EC =⎧⎪∠=∠⎨⎪=⎩,BED AEC ∴≌△△,BDE ACE ∴∠=∠,180()DFC BDE EDC DCF ∴∠=︒-∠+∠+∠180()ACE EDC DCF =︒-∠+∠+∠180(6060)=︒-︒+︒60=︒,即BD 与AC 所成的角的度数为60°.解析:20.答案:(1)222a b +(2)42167281x x -+解析:(1)原式22222222a b ab ab b a b ==+-+++(2)原式22242[(23)(23)](49)167281=x x x x x =-+=--+21.答案:(3)(3)x x +-解析:29(3)(3)x x x -=+- .22.答案:222x x y y ++解析:原式=222x x y y ++ .23.答案:22 cm解析:(1)若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;(2)若9厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为 厘米9+9+4=22 cm.故答案为:22 cm.24.答案:3-解析:(3)1x x +=,22652(3)5215253x x x x ∴+-=+-=⨯-=-=-.25.答案:四解析:设多边形的边数为n ,根据题意列方程得,(2)180360n -⋅=︒︒,22n -=,4n = . 故答案为四.26.答案:140°解析:A DE '∴是ADE 翻折变换而成,,,AED A ED ADE ADE A A '∴∠=∠∠=∠∠=∠, 180AED ADE AED ADE ∠+∠=∠+∠=∴︒, 123602110140∠+∠=︒-⨯︒=∴︒. 故答案为:140°.。
八年级数学上学期期中试题 试题 3
万州三中2021-2021学年八年级上学期期中考试数学试题 新人教版一、二、 选择题。
〔4⨯10=40分〕 1、以下式子中正确的选项是〔〕A 、3.09.0=B 、34971±= C 、()442-=- D 、11121±=±2、xy y x 322⋅ 的结果是 〔 〕 A 、y x 36 B 、236y x C 、x 23 D 、xy 323、以下各式计算正确的选项是〔 〕 ①426222=÷②()62322=③020=④655222=+⑤xz xy yz x 48322=÷⑥()()121122-=-+x x x ⑦()1122-=-x x A 、①②⑤ B 、①②④⑤ C 、⑤⑥⑦ D 、①②④⑤⑦4、以下各组数互为相反数的是( ) A .5和()25-B .()5--和5- C .5-和3125 D .5-和51-5、()0142=-+-a b ,那么ba的平方根是( ) A .21±B .21 C .41 D .41±6、多项式992-x 因式分解的结果是( ) A .()()3333-+x xB .()192-x C .()19-x x D .()()119-+x x7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,那么只要〔 〕 A :AB=CD B :EC=BF C :∠A=∠D D :AB=BCcba(第9题)(第7题)FEDCB A8、规定()()c b d a db ca ++=,假如3,132,1,1=-=-=-=ab b a dc ,那么计算结果是( ) A 、33B 、3-C 、22D 、22-9、如图:直线a ,b ,c 表示三条互相穿插环湖而建的公路,如今建立一个货物中转站,要求它到三条公路的间隔 相等,那么可供选择的地址有〔 〕A :1个 B :2个 C :3个 D :4个10、假设9192++kx x 是完全平方式,那么k 的值是( ) A 、2 B 、±2 C 、±3 D 、3 二、填空题。
2020-2021重庆市初二数学上期中试题(含答案)
2020-2021重庆市初二数学上期中试题(含答案)一、选择题1.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =12.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .87.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y -B .22x yC .2x yD .3232x y8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-110.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)15.如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD=3,则线段BD 的长为___.16.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 17.使分式的值为0,这时x=_____.18.若x 2+2mx +9是一个完全平方式,则m 的值是_______19.已知22139273m ⨯⨯=,求m =__________.20.因式分解:x2y﹣y3=_____.三、解答题21.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.22.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键. 2.C解析:C【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP 的等边三角形,则AE=AP=2,在直角△AEB 中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C .【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.7.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x x x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==, 故选A .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8.A解析:A【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2.9.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.15.9【解析】【分析】利用三角形的内角和求出∠A 余角的定义求出∠ACD 然后利用含30度角的直角三角形性质求出AC=2ADAB=2AC 即可【详解】解:∵CD⊥AB∠ACB=90°∴∠ADC=∠ACB=90解析:9【解析】【分析】利用三角形的内角和求出∠A ,余角的定义求出∠ACD ,然后利用含30度角的直角三角形性质求出AC=2AD ,AB=2AC 即可..【详解】解:∵CD ⊥AB ,∠ACB=90°,∴∠ADC= ∠ACB=90°又∵在三角形ABC 中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=12AC,即AC=6 ∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】 本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 18.±3【解析】【分析】完全平方公式的灵活应用这里首末两项是x 和3的平方那么中间项为加上或减去x 和3的乘积的2倍【详解】∵是完全平方式∴解得故答案是:【点睛】本题主要考查完全平方公式属于基础题关键是根据 解析:±3【解析】【分析】完全平方公式的灵活应用,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∵229x mx ++是完全平方式,∴223?mx x =±⨯,解得3m =±.故答案是:3±【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.19.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.证明见解析.【解析】【分析】证出AC=DF,由SAS推出△ABC≌△DEF,由全等三角形的性质推出即可.【详解】证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,AB DFA D AC DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS),∴BC=EF.【点睛】本题考查了全等三角形的判定与性质,根据题意找出全等三角形的条件是解决此题的关键.22.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b23.原计划每天加工20套.【解析】【分析】设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.(1)75天;(2)30天【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.见解析【解析】试题分析:(1)根据角平分线性质可证ED =EC ,从而可知△CDE 为等腰三角形,可证∠ECD =∠EDC ;(2)由OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,OE =OE ,可证△OED ≌△OEC ,可得OC =OD ;(3)根据ED =EC ,OC =OD ,可证OE 是线段CD 的垂直平分线.试题解析:证明:(1)∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴ED =EC ,即△CDE 为等腰三角形,∴∠ECD =∠EDC ;(2)∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴∠DOE =∠COE ,∠ODE =∠OCE =90°,OE =OE ,∴△OED ≌△OEC (AAS ),∴OC =OD ;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.点睛:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.。
2020-2021重庆市八年级数学上期中一模试卷带答案
2020-2021重庆市八年级数学上期中一模试卷带答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③ 3.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .145.计算()2x y xy x xy --÷的结果为( )A .1yB .2x yC .2x y -D .xy - 6.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形8.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 9.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-10.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 11.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.若分式62m -的值是正整数,则m 可取的整数有_____. 16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个18.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 19.观察下列各式的规律:()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a a b ab a b b b a +++=--…可得到()()2019201820182019a a b ab b a b ++++=-L ______.20.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC=______.三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?23.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 24.解分式方程: 2216124x x x --=+-. 25.因式分解、计算:(1)a 3-4ab 2;(2)2a 3-8a 2+8a .(3)22142a a a ---(4)3155aa a-+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.3.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===x yxy x xyxy x y x x y xy x x y x yx y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.6.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10. 故选C .考点:多边形内角与外角.8.C解析:C【解析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB ,∵∠BAC=50°,AO 为∠BAC 的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC ,∴∠ABC=∠ACB=65°.∵DO 是AB 的垂直平分线,∴OA=OB ,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC ,∴直线AO 垂直平分BC ,∴OB=OC ,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 10.C解析:C【解析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.15.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m-的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.16.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm底边是9cm时:不满足三角形的三边关系因此舍去②当底边是4cm腰长是9cm时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:3【解析】根据条件求出各个角的度数,由此确定哪个三角形是等腰三角形解答:∵在△ABC中,AB=BC,∠A=36°,∴∠ABC=∠ACB =72°,∵BD平分∠ABC,∴∠ABD=∠CBD =36°,∴∠ABD=∠A =36°,∠BDC =72°=∠C,∴△ABD和△BDC都是等腰三角形.故有三个等腰三角形故有三个.点睛:本题主要考查了等腰三角形的判定.利用已知条件求出等角是判断等腰三角形的关键. 18.a<-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a<-2且a≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程22x ax-+=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a <-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.19.【解析】【分析】根据已知等式归纳总结得到一般性规律写出所求式子结果即可【详解】归纳总结得:(a−b)(a2019+a2018b+…+ab2019+b2019)=a2020−b2020故答案为:【点睛解析:20202020a b -【解析】【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【详解】归纳总结得:(a−b)(a 2019+a 2018b+…+ab 2019+b 2019)=a 2020−b 2020.故答案为:20202020a b -.【点睛】此题考查多项式乘多项式,平方差公式,解题关键在于找到运算规律.20.6cm 【解析】【分析】根据∠C =90°∠A =30°易求∠ABC =60°而BD 是角平分线易得∠ABD =∠DBC =30°根据△BCD 是含有30°角的直角三角形易求BD 然后根据等角对等边可得AD =BD 从而解析:6cm【解析】【分析】根据∠C =90°,∠A =30°,易求∠ABC =60°,而BD 是角平分线,易得∠ABD =∠DBC =30°,根据△BCD 是含有30°角的直角三角形,易求BD ,然后根据等角对等边可得AD =BD ,从而可求AC .【详解】解:∵∠C =90°,∠A =30°,∴∠ABC =60°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =30°,在Rt △BCD 中,BD =2CD =4cm ,又∵∠A =∠ABD =30°,∴AD =BD =4cm ,∴AC =6cm .故答案为6cm .【点睛】本题考查了角平分线定义、等角对等边、直角三角形30°的角所对的边等于斜边的一半,解题的关键是求出BD ,难度适中.三、解答题21.(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【解析】【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP CQ B C BD PC=∠=∠=,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t=4.533BP==1.5(秒),此时V Q=61.5CQt= =4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P 运动了24×3=72(cm ) 又∵△ABC 的周长为33cm ,72=33×2+6, ∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.22.所求的多边形的边数为7,这个多边形对角线为14条.【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n 的值,再根据对角线的计算公式即可得出答案.【详解】设这个多边形的边数为n ,根据题意,得:(n ﹣2)×180°=360°×2+180°,解得 n =7,则这个多边形的边数是7, 七边形的对角线条数为:12×7×(7﹣3)=14(条), 答:所求的多边形的边数为7,这个多边形对角线为14条.【点睛】本题考查了对多边形内角和定理和外角和的应用,注意:边数是n 的多边形的内角和是(n-2)•180°,外角和是360°.23.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键24.原方程无解【解析】【分析】先找出方程的最简公分母,然后方程两边的每一项去乘最简公分母,化为整式方程,再求解,注意分式方程要检验.【详解】方程两边同乘以(x+2)(x-2)得:(x-2)2-(x+2)(x-2)=16 ,解得: x=-2,检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是原方程的增根,原方程无解.【点睛】本题考查了分式方程的解,分式方程的无解条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.25.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15 【解析】【分析】(1)先提取公因式,再用平方差公式进行因式分解即可.(2)先提取公因式,再用完全平方公式进行因式分解即可.(3)先同分母,再提取公因式即可.(4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142a a a --- 2224a a a --=- ()()222a a a -=+-12a =+. (4)3155a a a-+15155a a +-= 5a a = 15=. 【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.阅读下面的解答过程,求 y2 4y 8 的最小值
26.(1)阅读理解:
如图 1,在△ABC 中,若 AB 10, AC 6 .求 BC 边上的中线 AD 的取值范围.解决此问 题可以用如下方法:延长 AD 到点 E,使 DE AD ,再连接 BE (或将△ACD 绕着点 D 逆时针旋转180° 得到△EBD ),把 AB, AC, 2 AD 集中在△ABE 中,利用三角形三边 的关系即可判断中线 AD 的取值范围是 ;
A. B C
B. AD AE
C. BD CE
D. BE CD
8.已知 a 5, b2 3 ,且 ab 0, 则 a b 的值为( )
A.8 B.-2 C.8 或-8
D.2 或-2
9.如图,在 △ABC 中, AB BD AC , AD CD ,则
ADB 的度数是( )
A.72° B.60°
(2)证明:延长 至点 M,使
,连接
同(1)得,
,
.
,如图 1 所示.
,
在
中,由三角形的三边关系得
,
.
(3)
.证明如下:
延长 至点 N,使
,连接 ,如图 2 所示.
在
和
中,
在
和
中,
(2) 6xy2 9x2 y y3
20.先化简,再求值: (a 2b)(a 2b) (a 2b)2 8b2 ,其中 a 2,b 1 2
21. 已知 2a 1 的算术平方根是 3, 3a b 4 的立方根是 2,求 4a b 的平方根.
22.已知 a,b 两数在数轴上的表示如图所示,化简: (a 2)2 (b 2)2 (a b)2 。
重庆市万州第三中学 2020----2021 学年度上期期中测试
八年级数学
(考试时间 120 分钟,总分 150 分,命题人: )
一、单选题(共 12 题,每小题 4 分,满分 48 分)
1.在 2 ,0,-1,1 这些数中最小的数是() A.-1 B.0 C.1 D. 2
2.计算 a6 a2 的结果是( )
AFC BFC BEC BEA 90 ,
BAC ACF 90 , BAC ABE 90 ,
ABE ACF . 又 Q BD AC , AB CG ,
△ABD △GCAS.A.S. ,
AD AG . (2) AG AD 25.最小值是 ,最大值是 5. 26.(1)2<AD<8
A. a3 B. a4 C. a8 D. a12
3.估计 5 1 的值应在( ).
A.1 和4. 4 的平方根为( ).
C.3 和 4 之间
D. 4 和 5 之间
A. 2 5.下列运算:
① a2 a3 a6 ,
B. 2
C. 2
D.2
② (a3)2 a6 , ③ a5 a5 a ,
解: y2 4y 8 y2 4y 4 4 y 22 4 . ( y 2)2 0 ,即 y 22 的最小值为 0,
y2 4y 8 的最小值为 4. 依照上面的解答过程,求 m2 m 4 的最小值和 4 x2 2x 的最大值
四、解答题(本大题 1 个小题,共 8 分)
均植树量高 25%。已知人均植树量均为整数,则红旗班同学共植树__________棵。
三、解答题(本大题 7 个小题,每小题 10 分,共 70 分)解答时每小题必须给 出必要的演算过程或者推理步骤,画出必要的图形(包括辅助线),请将解答 过程书写在答题卡中对应的位置上。
19、因式分解
(1) 16x2 25 y2
C.45°
D.36°
10.若 a2 m 3a 4 是一个完全平方式,则 m 的值应
是( )
A.1 或 5
B.1
C.7 或 1
D. 1
11.下列各图中, a, b, c 为三角形的边长,则甲、乙丙三个三角形和左侧三角形 ABC 全等
的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
12.整数 a 使得关于 x,y 的二元一次方程组 ax y 9的解为正整数(x,y 均为正整数), 3x y 1
且使得关于 x 的不等式组 1 (2x 11) 9 无解,则所有满足条件的 a 的和为( ) 3 x a 1
A.9
B.16
C.17
D.30
二、填空题(共 6 小题,每题 4 分,共 24 分)
13.计算: 9 (2)3 =_______.
14. 3 2 的绝对值是______, 64 的立方根是______. 15.若 a b 4, a b 1,则 (a 1)2 (b 1)2 的值为__________.
16.多项式 x2 3kxy 3y 2 1 xy 8 合并同类项后不含 xy 项,则 k 的值为____. 3
17.如图,两个全等的直角三角形重叠在一起,将其中的一个
三角形沿着 BC 的方向平移到 △DEF 的位置,
AB 10,DO 4 ,平移距离为 6,则阴影部分的面积
为
.
18.“众人拾柴火焰高,众人植树树成林”。为发扬中华民族爱植树的好传统,我校红旗
班 50 名同学和 28 名社区志愿者共同组织了义务植树活动。50 名同学分成了甲,乙两组,
28 名社区志愿者分成了丙,丁两组,甲、丙两组到 A 植树点植树,乙、丁两组到 B 植树
点植树。植树结束后统计得知:甲组人均植树量比乙组多 2 棵,丙、丁两组人均植树量
相同,且是乙组人均植树量的 2.5 倍,A,B 两个植树点的人均植树量相同,且比甲组人
间的数量关系,并加以证明.
1---6 DCCABA 7—12 DCACBB
13.11 14.
,2 15.12
16.1/9 17.48 18.360
19. (1) (4x 5 y)(4x 5 y)
参考答案
(2) y(3x y)2
20.4ab -4 21.3 和-3 22.0 23.(1)50,150 (2)3 种方案,最少 9800 24. (1) Q BE,CF 分别是 AC,AB 两边上的高,
④ ab3 a3b3 ,
其中结果正确的个数为( )
A.1
B.2
C.3
D.4
6.若 x 3 y 2 0 ,则 (x y)2017 的值为( ).
A.-1
B.1
C. 1
D.0
7.如图,点 D, E 分别在线段 AB, AC 上, CD 与 BE 相交于 O 点,已
知 AB AC ,现添加以下的哪个条件仍不能判定 △ABE △ACD ( )
23.重庆市继 2019 年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极 响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买 2 个温馨提示牌和 3 个垃圾箱共需 550 元,且垃圾箱的单价是温馨提示牌单价的 3 倍. 1.求温馨提示牌和垃圾箱的单价各是多少元? 2.该小区至少需要安放 48 个垃圾箱,如果购买温馨提示牌和垃圾箱共 100 个,且费用不 超过 10000 元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少 元?
(2)问题解决:
如图 2,在△ABC 中,D 是 BC 边上的中点, DE DF 于点 D, DE 交 AB 于点 E, DF 交 AC 于点 F,连接 EF ,求证: BE CF EF ;
(3)问题拓展:
如图 3,在四边形 ABCD 中, B D 180°,CB CD, BCD 140°,以 C 为顶点作 一个 70° 角,角的两边分别交 AB, AD 于 E, F 两点,连接 EF ,探索线段 BE, DF , EF 之