余角与补角公开课课件
合集下载
《余角和补角》ppt课件全面版
光不会因你而停留,你却会随着光阴而老去。
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里, 故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的《童年》,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没 有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动, 日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青 蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生 路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里, 故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的《童年》,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没 有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动, 日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青 蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生 路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,
余角和补角课件(共23张PPT)
6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?
余角与补角公开课课件
判断
1)一个角的余角必为锐角。 2)一个角的补角必为钝角。
(√ )
( ×)
× 3)一个角的补角一定比这个角大。( )
4)互余的两个角一定都是锐角,两个锐角一
定互余.
(×)
5)如果∠1=30°,∠2=25°,∠3=35°,那么∠1、
× ∠2、∠3这三个角互为余角. ( )
巩固练习
认真观察下面的图形,回答下列问题: (1)图中有哪几对互余的角?
∠ 3+ ∠ 4 = 900 又∵ ∠ 1 = ∠ 3
∴∠2 =∠4
( 等角的余角相等
)
动手画图,探索性质
请你借助直角三角板,在原图上画出∠AOB 所有的余角。
C
A ∠AOB的两个余角有
B
同角的余角相等
补角的性质
同角的补角相等
∠AOB的两个补角有什么关系?
A
1
B
3
理由:∵∠1与∠2互余 ∴∠2=90o-∠1 ∵∠3与∠4互余 ∴∠4=90o-∠3
又∵∠1=∠3 ∴∠2=∠4
4 3
1 2
同角或等角的余角相等。
补角的性质
等角的补角相等
如果∠1与∠2互补,∠3与∠4互补,∠1=∠3 那么∠2与∠4有什么关系?为什么?
21 43
解: ∵ ∠1 与∠2互补,
∴ __∠2_=1_80_-_∠1_____; ∵ ∠3 与∠4互补, ∴ __∠4_= 1_80_°_-_∠3___; 又 ∵ ∠1=∠3, ∴ __180_°_-_∠1_= _18_0°_-_∠3__, 即__∠_2=_∠4____。
180-x=4(90-x) 解得x=60
答:这个角是60o。
今天我们学了什么?
人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件
理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
余角和补角公开课PPT课件
能力提升
3、一个角的补角和它的余角的3倍的
和等于周角的
11 12
,求这个角?
解:设一个角为x 则这个角的补角为
,(180°-x) 余角为(90°-x)
(,180°-x)+3(。90°-x)=360°×
11 12
解得 x=30°
所以这个角是30°
点拨 方程思想
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
11
1
你能参加吗?
入场方式 只能和一个舞伴两人一起参加。 温馨提示:如何寻找舞伴? 入场券拼起来是一个直角(90°) 或平角(180°)。
2
余角和补角
3
余角:
2 1
如果两个角的 和为9 0 ,就说这两个角互为余角。
补角:
1
2
如果两个角的 和为1 8 0 ,就说这两个角互为补角。
字形巧记
轻松过关
10
谢谢聆听难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
1、帮 找朋友
的余角的补角
80
10
100
45
45
135
(锐角) 90 180
自主尝试 2、50°的余角的补角是多少?(C ) A.40° B.130° C.140° D.150°
分析: 50°的余角:90°- 50°=40°
40°的补角:180°-40°=140°
人教版数学七年级上册 4.余角与补角课件(24张)
解得: x =60 答:这个角的度数是60 °。
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
1026余角和补角PPT课件
18.(10分)在一张城市地图上,有学校、医院、图书馆三 地,但被墨迹污染,图书馆的具体位置看不清,但知道图 书馆在学校的东北方向,在医院的南偏西75°方向,你能 确定图书馆的位置吗?
解:如图:
结束语
当你尽了自己的最大努力时,失败 也是伟大的,所以不要放弃,坚持 就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
=
1 2
∠AOC
,
∠
BOE
=
∠
COE
=
1 2
∠AOC,所以∠1+∠2=12(∠AOC+∠BOC)=12×180° =90°,所以∠1 与∠2 互余
(2)指出图中所有互余和互补的角.
解:互余的角:∠1与∠2;∠1与∠BOE;∠2与∠AOF; ∠BOE与∠AOF.互补的角:∠BOE与∠AOE;∠2与∠AOE; ∠AOF与∠BOF;∠1与∠BOF;∠AOC与∠BOC.
(1)∠AOD的补角是 ∠BOD ,余角是 ∠COD ; (2)∠DOB的补角是 ∠AOD .
2.(3分)已知∠α=20°,则∠α的 余角为____,∠7α0的°补角为____.
160° 3.(3分)∠A的补角为130°,则 ∠A的余角为____.
40°
4.(3分)∠α的补角与∠β的余角相等,则∠α与∠β的关系是(
(1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2) ∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC= 2∠AOF,∠BOC=2∠BOE.
(1)∠1与∠2互余吗?
解:互余.因为∠AOC=2∠AOF,∠BOC=2∠BOE,
余角与补角公开课课件
提问答疑,理解定义
(1)定义中的“互为”一词如何理解?
如果 ∠1 与∠2互余,那么∠1 的余角是∠2,同样 ∠2的余角是∠1 ;如果∠1 与∠2互补,那么∠1 的补角 是∠2, 同样∠2的补角是∠1 。
(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。
4 3
1
2
等角的余角相等。
五.动手画图,探索性质
4.请你借助直尺,在原图上画出∠AOB所有的补角并 标上数字。
A 1 C O 3 4 D 2 B
六.动手画图,探索性质
5.画完图后请回答下列问题:
(1)图中有哪几对互补的角?
A 1 C 3 O 4 2
1与2, 2与4, 3与4, 1与3
根据题意得:
180 x 3(90 x)
x 45
答:这个角为 450
四.动手画图,探索性质
1.请你借助直角三角板,在原图上画出∠COB 所有的余角。
A C
O
B
D
三.动手画图,探索性质
2.画完图后请回答下列问题:
A
C
1 2
(1)图中有哪几对互余的角? BOC与AOC, BOC与BOD
判断 1)一个角的余角必为锐角。 2)一个角的补角必为钝角。 (
√
)
(× )
3)一个角的补角一定比这个角大。( × ) 4)互余的两个角一定都是锐角,两个锐角一 定互余. (× ) 5)如果∠1=30°,∠2=25°,∠3=35°,那么 ∠1、∠2、∠3这三个角互为余角.× ( )
二.活学活用.加深理解
B
∠COD = 90 ° 则∠1与∠2是什么关系?
余角与补角公开课课件
6
二.活学活用.加深理解
(一)判断题:
1、90度的角叫余角,180度的角叫补角。 ( )
2、若 1 2 3900,则 1, 2, 3互为 (. 余)角
3、如果一个角有补角,那么这个角一定是钝角。( )
4、互补的两个角不可能相等。
( )
5、钝角没有余角,但一定有补角。(
)
6、互余的两个角一定都是锐角,两个锐角一定互余.( )
A
1
C
2
O
B
3
4
D
2021/6/30
17
六.动手画图,探索性质
5.画完图后请回答下列问题:
(1)图中有哪几对互补的角?
1与2, 2与4, 3与4, 1与3
A
(∠1+∠2=180°, ∠2+∠4=180°)
1
C
2
(∠1+∠3=180°, ∠3+∠4=180°)
O 3
4
B
(2)你能发现哪几个角是相等
的补角 150° 135 ° 120 ° 109034'25'' 90°
(180-x) °
2021/6/30
8
三、开动脑筋
如图两堵墙围一个 角 AOB,但人不能进入 围墙,我们如何去测这个角的大小呢?
A
动动脑
C
B O
2021/6/30
9
2021/6/30
10
开动脑筋
已知一个角的补角是这个角的余角的4倍, 求这个角的度数。
2.画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C BOC与AOC, BOC与BOD
1 2
O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识提升
A D
30°60° 30° 2 1 3
B
O
O ∵∠1与∠ 2互余, ∠1与∠3互余,
∴∠ 2= 90 °- ∠1, ∠3= 90 °- ∠1
C
∴∠2=∠3
同角的余角相等;
如图,∠1和∠2互余,∠3和∠4互余,若 ∠1=∠3,那么∠2与∠4相等吗?为什么?
解: ∠2与∠4相等
理由:∵∠1与∠2互余 ∴∠2=90o-∠1 ∵∠3与∠4互余 ∴∠4=90o-∠3 又∵∠1=∠3 ∴∠2=∠4
互余(互补)吗?
不能,互余或互补是两个角之间的数量关系。
你问我答
游戏规则如下: 其中一个同学任意说出一个0°— 180°之间的角,并 说明你想知道的是它的余角或补角,另外三个同学抢 答。 问题: 1、钝角有没有余角?
2、直角有没有补角? 90°- α 3、∠α的余角可表示为________, 180°- α 补角可表示为__________。
判断 1)一个角的余角必为锐角。 2)一个角的补角必为钝角。 (
√
)
(× )
3)一个角的补角一定比这个角大。( × ) 4)互余的两个角一定都是锐角,两个锐角一 定互余. (× ) 5)如果∠1=30°,∠2=25°,∠3=35°,那么 ∠1、∠2、∠3这三个角互为余角. ( × )
三、开动脑筋
一张长方形纸片,沿一个 角折叠后,折痕与长方形的边 形成了几个角? ∠1与∠2有什么数量关系? ∠1+∠2=90° ∠3与∠4又有什么数量关系? ∠3+∠4=180°
1
2
4 3
2
1
4 3
如果两个角的和为90° (直角),那么称 这两个角 互为余角 ,简称“互余”。 如果两个角的和为180°(平角),那 么称这两个角 互为补角,简称“互补”。
0 0
∵ ∠∠ 2= 90
0 0
∠ 1+∠ 3 = 90 ∴ ∠2 = ∠3
∠ 3+ ∠ 4 = 90
又∵ ∠ 1
= ∠3
(同角的余角相等)
∴∠2 =∠4
(等角的余角相等)
巩固练习
认真观察下面的图形,回答下列问题:
(1)图中有哪几对互余的角?
C 2
1
∠A与∠B互余 ,∠A与∠2互余
提问答疑,理解定义
(1)定义中的“互为”一词如何理解?
如果1与2互余,那么1的余角是2 ,同样2 的余角是1 ;如果1与2互补,那么1的补角是2 , 同样2的补角是1。
(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。
(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3
性质
谢谢各位的光临与指导
如图两堵墙围一个 角 AOB ,但人不能进入 围墙,我们如何去测这个角的大小呢?
A
动动脑
C
O
B
开动脑筋 已知一个角的补角是这个角的余角的4倍, 求这个角的度数。
解:设这个角为x°,那么它的余角为(90-x) °, 它的补角为(180-x) °,则
180-x=4(90-x) 解得x=60 答:这个角是60o。
∠1与∠B互余 ,∠1与∠2互余
(2)图中哪几对角是相等的角(直角除外)?
A
D
B
说明它们相等的原因。
∠B=∠2 ∠A=∠1
(同角的余角相等) (同角的余角相等)
互余
互补
两角间 1 2 90 1 2 180 的数量 (1 90 2) (1 180 2) 关系 对应 图形 同角或等角的 余角相等 同角或等角的 补角相等
4 3
1
2
同角或等角的余角相等。
变式
如图,画出∠1的补角
2
1
3
1
解: ∠2与∠3相等. 理由:∵∠1与∠ 2互补, ∠1与∠3互补, ∴∠ 2= 180 ° - ∠1, ∠3= 180 ° - ∠1 ∴∠2=∠3
同角的补角相等;
性质:同角或等角的余角相等。
同角或等角的补角相等。
几何语言: 几何语言: