《余角和补角》 word版 公开课一等奖教案 (新版)新人教版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦!

余角和补角

教学目标

1.知识与技能

(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.

(2)了解方位角,能确定具体物体的方位.

2.过程与方法

(通过余角、补角性质的推导和应用,初步掌握图形语言与符号语言之间的相互转化.初步接触和体会演绎推理的方法和表述,)进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.

3.情感态度与价值观

体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.

重、难点与关键

1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.

2.难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质是难点.

3.关键:了解推理的意义和推理过程,是掌握性质的关键.

教具准备

三角板、量角器、多媒体设备.

教学过程

一、引入新课

1.提出问题:

(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?

(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?

学生活动:独立思考,小组交流,得出结论:都是90°.

2.提出问题.

(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?

2 1

(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?

教师活动:打开多媒体,让学生观察方格图.

学生活动:观察思考,小组交流,得出结论:都是180°.

教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.

二、新授

1.余角与补角.

教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.

(如果两个角的和等于90º(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角.)

(如果两个角的和等于180º(平角),就说这两个角互为补角,即其中一个角是另一个角的补角. )

(注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).)

2.巩固反思.

(1)填空:

①47°18′的余角是______,补角是_______.

②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.

(2)已知一个角是它补角的3倍,求这个角.

注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.

(3)课本第143页练习.

学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.

教师活动:巡视学生完成练习的情况,并给予适当的评价.

3.余角与补角的性质.

(1)提出问题:

观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?

教师活动:操作多媒体,演示方格图.

学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.

教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?

学生活动:观察思考后得出∠2=∠4.

(2)说明理由:

注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.

例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?

教师活动:指导学生分析题意,并写出说理过程,归纳性质.

学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.

板书:等角的补角相等.

师生互动:类比补角的性质,得出余角的性质.

板书:等角的余角相等.

三、五分钟测试

1.如右图,∠EDC=∠CDF=90°,∠1=∠2.

(1)图中哪些角互为余角?哪些角互为补角?

(2)∠ADC与∠BDC有什么关系?为什么?

(3)∠ADF与∠BDE有什么关系?为什么?

学生活动:独立完成练习,并进行小组交流和自我评价.

教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.

2.认识方位角.

提出问题:课本第143页例2.

如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.

教师活动:用多媒体演示课本图3.4-10(1),讲解方位角和表示方位的射线,•在学生完成题中的问题后操作多媒体演示画图过程.

注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.

学生活动:在教师指导下画出问题中的每一条射线.

3.知识拓展

提出问题:

小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)

相关文档
最新文档