中考数学试题分类汇编考点21全等三角形含解析.doc
八上年全国中考数学试卷解析分类汇 全等三角形含答案
全等三角形一选择题1.(2014•广东深圳,第8题3分)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.A C∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.2.(2014•福建厦门,第6题3分)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质..分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:在△ABC和△DEB中,,∴△ABC≌△DEB(SSS),∴∠ACB=∠DE B.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.二填空题1. (2014•广东广州,第15题3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等,假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.2. (2014•江苏淮安,第17题3分)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.3. (2014•湖北鄂州,第16题3分)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.4. (2014•常德,第15题3分)如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°解答:解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为60°.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.5. (2014•柳州,第18题3分)如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=S32.其中结论正确的序号是①②③.考点:全等三角形的判定与性质;等边三角形的性质.分析:①根据相似三角形面积的比等于相似比的平方判断;②根据SAS即可求得全等;③根据面积公式即可判断.解答:①S1:S2=AC2:BC2正确,解:∵△ADC与△BCE是等边三角形,∴△ADC∽△BCE,∴S1:S2=AC2:BC2.②△BCD≌△ECA正确,证明:∵△ADC与△BCE是等边三角形,∴∠ACD=∠BCE=60°∴∠ACD+∠ACB=∠BCE+∠ACD,即∠ACE=∠DCB,在△ACE与△DCB中,,∴△BCD≌△ECA(SAS).③若AC⊥BC,则S1•S2=S32正确,解:设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC的高=a,△BCE的高=b,∴S1=a a=a2,S2=b b=b2,∴S1•S2=a2b2=a2b2,∵S3=ab,∴S32=a2b2,∴S1•S2=S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.6. (2014•青海西宁,第20题,2分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.解答:解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.点评:此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.7.(2014•齐齐哈尔,13题3分)如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三解答题1.(2014•辽宁本溪,第25题12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE 绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.考点:全等三角形的判定与性质;等腰三角形的性质;三角形中位线定理;旋转的性质.分析:(1)因为AF是直角三角形ABE的中线,所以BE=2AF,然后通过△ABE≌△ACD 即可求得.(2)延长EA交BC于G,在AG上截取AH=AD,证出△ABH≌△ACD从而证得BH=CD,然后根据三角形的中位线等于底边的一半,求得BH=2AF,即可求得.解答:(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在RT△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,在△ABH与△ACD中∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.点评:本题考查了三角形全等的判定和性质,等腰三角形的性质,三角形中位线的性质等.2. (2014•广东广州,第18题9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是推出AO=CO.3. (2014•湖北鄂州,第18题8分)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.4. (2014•湖北潜江仙桃,第19题6分)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,F B.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:欲证明∠1=∠2,只需证得四边形EDFB是平行四边形或△ABF≌△CDE即可.解答:解:方法一:补充条件①BE∥DF.证明:如图,∵BE∥DF,∴∠BEC=∠DF A,∴∠BEA=∠DFC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE与△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF,∴四边形BFDE是平行四边形,∴ED∥BF,∴∠1=∠2;方法二:补充条件③AE=CF.证明:∵AE=CF,∴AF=CE.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS),∴∠1=∠2.点评:本题考查了平行四边形的判定与性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.5. (2014•吉林,第18题5分)如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AE C.考点:全等三角形的判定.专题:证明题.分析:根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.解答:证明:∵∠BAC=∠DAE,∴∠BAC﹣BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,∴△ABD≌△AEC(SAS).点评:本题考查了全等三角形的判定,判断三角形全等的方法有:SSS,SAS,ASA,AAS,以及判断两个直角三角形全等的方法HL.6. (2014•江苏淮安,第21题8分)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.考点:菱形的判定;翻折变换(折叠问题).专题:证明题.分析:由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF.解答:证明:∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形.点评:本题考查了平行四边形的判定,菱形的判定,线段垂直平分线,全等三角形的性质和判定等知识点,注意:对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.7. (2014•江苏淮安,第26题10分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=A C.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.考点:切线的性质.分析:(1)连接DC,根据AB是⊙C的切线,所以CD⊥AB,根据CD=,得出∠A=30°,因为AC=BC,从而求得∠ACB的度数.(2)通过△ACD≌△BCF求得∠AFB=90°,已知AC=8,根据已知求得AF=!2,由于∠A=30°得出BF=AB,然后依据勾股定理求得BF的长,即可求得三角形的面积.解答:解:(1)连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵CF=AC,CF=CE,∴AE=CE,∴ED=AC=EC,∴ED=EC=CD,∴∠ECD=60°,∴∠A=30°,∵AC=BC,∴∠ACB=120°.(2)∵∠A=30°,AC=BC,∴∠ABC=30°,∴∠BCE=60°,在△ACD与△BCF中∴△ACD≌△BCF(SAS)∴∠ADC=∠BFC,∵CD⊥AB,∴CF⊥BF,∵AC=8,CF=A C.∴CF=4,∴AF=12,∵∠AFB=90°,∠A=30°,∴BF=AB,设BF=x,则AB=2x,∵AF2+BF2=AB2,∴(2x)2﹣x2=122解得:x=4即BF=4∴△ABF的面积===24,点评:本题考查了切线的性质,全等三角形的判定及性质,勾股定理的应用等,构建全等三角形是本题的关键.8 (2014•铜仁,第21题10分)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=A C.(1)你添加的条件是∠B=∠C;(2)请写出证明过程.考点:全等三角形的判定与性质.分析:(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.解答:解:(1)添加的条件是∠B=∠C,故答案为:∠B=∠C;(2)证明:在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=A C.点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.9. (2014•长春,第22题9分)探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CB D.应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.考点:全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.分析:探究:先判断出△ABC是等边三角形,根据等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BD,然后利用“边角边”证明即可;应用:连接AC,易知△ABC是等边三角形,由探究可知△ACE和△CBD全等,根据全等三角形对应角相等可得∠E=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.解答:解:探究:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AD,∴BE+BC=AD+AB,即CE=BD,在△ACE和△CBD中,,∴△ACE≌△CBD(SAS);应用:如图,连接AC,易知△ABC是等边三角形,由探究可知△ACE≌△CBD,∴∠E=∠D,∵∠BAE=∠DAG,∴∠E+∠BAE=∠D+∠DAG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.点评:本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质,熟记性质并确定出三角形全等的条件是解题的关键,(2)作辅助线构造出探究的条件是解题的关键.10. (2014•柳州,第25题10分)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为l,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得P A=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴,∴P A=PB,∴P A=AB=∴当P A=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11. (2014•辽宁大连,第19题,9分)如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.考点:全等三角形的判定与性质.专题:证明题.分析:根据两直线平行,同位角相等可得∠A=∠FBD,∠D=∠ACE,再求出AC=BD,然后利用“角边角”证明△ACE和△BDF全等,根据全等三角形对应边相等证明即可.解答:证明:∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠D=∠ACE,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(ASA),∴AE=BF.点评:本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形的判定方法并确定出全等的条件是解题的关键.12. (2014•辽宁沈阳,第18题,8分)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:欲证明OE=OF,只需证得△ODE≌△OCF即可.解答:证明:如图,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,AC=BD,OD=BD,OC=AC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,即∠EDO=∠FCO,∴在△ODE与△OCF中,,∴△ODE≌△OCF(SAS),∴OE=OF.点评:本题考查了全等三角形的判定与性质,矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.13. (2014•内蒙古赤峰,第19题10,分)如图,已知△ABC中AB=A C.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.考点:全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图.专题:作图题;证明题.分析:(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.解答:(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF.点评:本题考查了全等三角形的判断与性质,等腰三角形的性质,作一条线段等于已知线段,角平分线的作法,确定出全等三角形的条件是解题的关键.14. (2014•青海西宁,第24题,8分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).考点:全等三角形的应用;勾股定理的应用.分析:(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∴∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.解答:(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△ACD中:AD2+CD2=AC2,∴(4a)2+(3a)2=252,∵a>0,解得a=5,答:砌墙砖块的厚度a为5cm.点评:此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.15. (2014•山东济南,第27题,9分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD 的第四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F1,G1,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形A′B′C′D′,使B′,C′分别在直线l2,l4上①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.考点:几何变换综合题.分析:(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AED′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠ED′N=60°,可求出AE=1,EO,EN,ED′的长,进而由勾股定理可知菱形的边长.解答:解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AED′和Rt△B′MA中,,∴Rt△AED′≌Rt△B′MA(HL),∴∠D′AE+∠B′AM=90°,∠B′AD′+α=90°,∴∠B′AD′=90°﹣α;②过点E作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠ED′N=60°,AE=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:=.点评:此题主要考查了勾股定理以及全等三角形的判定与性质等知识,熟练应用全等三角形的判定方法是解题关键.16.(2014•北京,第13题5分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=D B.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(2014•福建龙岩,第20题10分)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P(1)求证:CE=BF;(2)求∠BPC的度数.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.解答:(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.点评:本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.(2014•福建漳州,第19题8分)如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)考点:全等三角形的判定.专题:开放型.分析:先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.解答:AC=DE.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.19.(2014•齐齐哈尔,26题8分)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN 上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.解答:题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.点评:本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.20.(2014•贵阳,第24题12分)如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EF A=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.。
中考数学真题分类汇编及解析(二十三)全等三角形
(2022•云南中考)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【解析】选D.因为OB平分∠AOC,所以∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意.(2022•金华中考)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL【解析】选B.在△AOB和△DOC中,{OA=OD∠ADB=∠DOCOB=OC,所以△AOB≌△DOC(SAS)。
(2022•扬州中考)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC【解析】选C.A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;(2022•成都中考)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【解析】选B .因为AC ∥DF ,所以∠A =∠D ,因为AC =DF ,所以当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC =∠DEF 时,可根据“AAS ”判定△ABC ≌△DEF ;当添加AB =DE 时,即AE =BD ,可根据“SAS ”判定△ABC ≌△DEF .(2022•黄冈中考)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ∠A =∠D ,使△ABC ≌△DEF .【解析】添加条件:∠A =∠D .因为AB ∥DE ,所以∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,所以△ABC ≌△DEF (ASA ).答案:∠A =∠D .(答案不唯一)(2022•龙东中考)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 OB=OD (答案不唯一) ,使△AOB ≌△COD .【解析】添加的条件是OB =OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,所以△AOB ≌△COD (SAS ).答案:OB =OD (答案不唯一).因为EF ⊥BC ,所以∠EFB =90°.又∠A =90°,所以 ∠A =∠EFB , ①因为AD ∥BC ,所以 ∠AEB =∠FBE , ②又 BE =EB , ③所以△BAE ≌△EFB (AAS ).同理可得 △EDC ≌△CFE (AAS ), ④所以S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD .【解析】由题知,在△BAE 和△EFB 中,因为EF ⊥BC ,所以∠EFB =90°.又∠A =90°,所以∠A =∠EFB ,①因为AD ∥BC ,所以∠AEB =∠FBE ,②又 BE =EB ,③所以△BAE ≌△EFB (AAS ).同理可得△EDC ≌△CFE (AAS ),④所以S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD ,答案:①∠A =∠EFB ,②∠AEB =∠FBE ,③BE =EB ,④△EDC ≌△CFE (AAS ).所以∠ADC =90°.因为∠F =90°,所以① ∠ADC =∠F .因为EF ∥BC ,所以② ∠1=∠2 .又因为③ AC =AC ,所以△ADC ≌△CFA (AAS ).同理可得:④ △ADB ≌△BEA (AAS ) .S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .【解析】证明:因为AD ⊥BC ,所以∠ADC =90°.因为∠F =90°,所以∠ADC =∠F ,因为EF ∥BC ,所以∠1=∠2,因为AC =AC ,在△ADC 与△CFA 中,{AC =AC∠1=∠2∠ADC =∠F,所以△ADC ≌△CFA (AAS ).同理可得:④△ADB ≌△BEA (AAS ),所以S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .答案:①∠ADC =∠F ,②∠1=∠2,③AC =AC ,④△ADB ≌△BEA (AAS ).【证明】因为AB ∥DE ,所以∠A =∠EDF .在△ABC 和△DEF 中,{∠A =∠EDF∠B =∠EBC =EF,所以△ABC ≌△DEF (AAS ).所以AC =DF ,所以AC ﹣DC =DF ﹣DC ,即:AD =CF .(2022•乐山中考)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【解析】因为点B 为线段AC 的中点,所以AB =BC ,因为AD ∥BE ,所以∠A =∠EBC ,因为BD ∥CE ,所以∠C =∠DBA ,在△ABD 与△BCE 中{∠A =∠EBCAB =BC ∠DBA =∠C,所以△ABD ≌△BCE .(ASA )(2022•衡阳中考)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【解析】:因为AB =AC ,所以∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,所以△ABD ≌△ACE (SAS ),所以AD =AE(2022•陕西中考)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【解析】:因为DE ∥AB ,所以∠EDC =∠B ,(2022•桂林中考)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.【证明】(1)因为BF=DE,BF﹣EF=DE﹣EF,所以BE=DF;(2)因为四边形ABCD为平行四边形,所以AB=CD,且AB∥CD,所以∠ABE=∠CDF,在△ABE和△CDF中,{AB=CD∠ABE=∠CDF BE=DF.所以△ABE≌△CDF(SAS).(2022•玉林中考)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB=AC;②DB =DC;③∠BAD=∠CAD.若以其中两个等式作为已知条件,能否得到余下一个等式成立?解决方案:探究△ABD与△ACD全等.问题解决:(1)当选择①②作为已知条件时,△ABD与△ACD全等吗?全等(填“全等”或“不全等”),理由是三边对应相等的两个三角形全等;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求△ABD≌△ACD的概率.【解析】(1)在△ABD和△ACD中,{AB=ACAD=ADDB=DC,所以△ABD≌△ACD(SSS).答案:全等,三边对应相等的两个三角形全等;(2)树状图:所有可能出现的结果(①②)(①③)(②①)(②③)(③①)(③②)共有六种等可能的情况,符合条件的有(①②)(①③)(②①)(③①)有四种,令△ABD ≌△ACD 为事件A ,则P (A )=23.(2022•福建中考)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【证明】因为BF =EC ,所以BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠E BC =EF,所以△ABC ≌△DEF (SAS ),所以∠A =∠D . (2022•长沙中考)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【解析】(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC ,因为CB ⊥AB ,CD ⊥AD ,所以∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,所以△ABC ≌△ADC (AAS );(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB •BC =12×4×3=6, 所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.答:四边形ABCD 的面积是12.(2022•吉林中考)如图,AB =AC ,∠BAD =∠CAD .求证:BD =CD .【解析】在△ABD 与△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,。
八年级数学全等三角形中考真题汇编[解析版]
八年级数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.2.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∠=︒,在x轴或y轴上取点C,使得ABC∆为等腰三角形,符合条件的C点有ABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A 重合,故此时符合条件的点有3个;线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.4.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.5.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.6.如图,在△ABC中,AB的中垂线交BC于D,AC的中垂线交BC于E,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB的中垂线可得BAD∠,再根据AC的中垂线可得EAC∠,再结合∠BAC=126°即可计算出∠EAD.【详解】根据AB的中垂线可得BAD∠=B根据AC的中垂线可得EAC∠=C∠18012654B C︒︒︒∠+∠=-=又126BAD DAE EAC BAC︒∠+∠+∠=∠=+C+126B DAE︒∴∠∠∠=72DAE︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.7.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
2023年湖北省中考数学模拟题知识点分类汇编:三角形(附答案解析)
2023年湖北省中考数学模拟题知识点分类汇编:全等三角形一.选择题(共3小题)
1.(2021•西陵区模拟)如图,∠ACB=90°,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,
)
交CE的延长线于点D,AE=5cm,BD=2cm,则DE的长是(
A.8cm B.5cm C.3cm D.2cm 2.(2021•潜江模拟)如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的)
个数有(
A.1个B.2个C.3个D.4个3.(2021•鄂州模拟)如图所示,已知EA⊥AB,BC∥EA,ED=AC,AD=BC,则下列式子
)
不一定成立的是(
A.∠EAF=∠ADF B.DE⊥AC C.AE=AB D.EF=FC
二.填空题(共8小题)
4.(2022•湖北模拟)如图,△AOB和△COD都是等腰直角三角形,OA=OB,OC=OD,∠AOB=∠COD=90°,BD分别与AC、OC交于点E、F.下列结论:①∠OBD=∠
第1页(共43页)。
中考数学模拟试题分类汇编三角形全等
三角形全等一、选择题 1、(2012年江西南昌十五校联考)如图,在下列条件中,不能..证明△ABD ≌△ACD 的是条件( ).A. ∠B =∠C ,BD =DCB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. BD =DC , AB =AC 答案:A2、 3、二、填空题1、(2012年,辽宁省营口市)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 。
答案: 42(2012荆州中考模拟).如图, (甲)是四边形纸片ABCD ,其中∠B =120︒,∠D =50︒。
若将其右下角向内折出 PCR ,恰使CP∥AB ,RC∥AD ,如图(乙)所示,则∠C = °.答案:95︒三、解答题1、(2012年福建福州质量检查)(每小题7分,共14分)(1) 如图,在平行四边形ABCD 中,E 为BC 中点,AE 和延长线与DC 的延长线相交于点F .证明:△AB E ≌△FCE .ABCDEF第17(1)题图第17(2)题图AC DR图(乙) AD图(甲)(2) 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角α为45°,看这栋高楼底部的俯角β为60°,热气球与高楼的水平距离AD =80m ,这栋高楼有多高(3≈1.732,结果保留小数点后一位)?答案:(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD , ······························································································· 2分 ∴∠F =∠F AB . ·························································································· 4分 ∵E 是BC 的中点, ∴BE =CE , ······························································ 5分 又∵ ∠AEB =∠FEC , ·············································································· 6分 ∴ △ABE ≌△FCE . ·················································································· 7分 (2)解:如图,α=45°,β=60°,AD =80.在Rt △ADB 中, ∵tan α=BDAD,∴BD =AD ·tan α=80×tan45°=80.………2分 在Rt △ADC 中, ∵tan β=CD AD,∴CD =AD ·tan β=80×tan60°=803.……5分∴BC =BD +CD =80+803≈218.6.答:这栋楼高约为218.6m . ………………7分2、(2012昆山一模)已知:如图所示,在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G.(1)求证:BF=AC(2)猜想CE与BG的数量关系,并证明你的结论.答案:3、(2012兴仁中学一模)(10分)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.D CE【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .4.(2012温州市泰顺九校模拟)(本题6分) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分DCEB DC AE F B D CAEF∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分5. (2012年江苏海安县质量与反馈)如图,ABC △和ECD △都是等腰直角三角形,90ACB DCE ==︒∠∠,D 为AB 边上一点. (1)求证:ACE BCD △≌△;(2)设AC 和DE 交于点M ,若AD =6,BD =8,求ED 与AM 的长.答案:(1)证明全等;(2) DE=10; AM=2724. 6、(2012温州市泰顺九校模拟) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明. 答案:解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分 ∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分7(河南省信阳市二中)(9分)已知:如图,四边形ABCD 是平行四边形,延长BC 到E ,使AE =AB ,连接AC 、DE .(1)写出图中三对你认为全等的三角形(不再添加其他字母和辅助线); (2)选择你在(1)中写出的任意一对全等三角形进行证明. A D B CE M第1题图 B D CAEF、答案:( 1)①△ABC ≌△CDA ;②△ACE ≌△DEC ;③△CAD ≌△EDA ;④△ABC ≌△EAD .……………………………………………………………………3分 (2)证明:△ABC ≌△CDA . ………………………………………………………4分 ∵四边形ABCD 是平行四边形,∴AD =BC ,∠DAC =∠BCA .…………………………………………………………6分 又∵AC =CA ,∴△ABC ≌△CDA (SAS ).…………………………………………………………9分 8、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB ,C EDB∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.9、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .10、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD .∴AB =AF .11、(2012双柏县学业水平模拟考试)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:OB =OD .答案 :证明:在△ABC 和≌△ADC 中∵ ∠1=∠2 AC =AC ∠3=∠4 ∴ △ABC ≌△ADC ∴ AB =AD∴ △ABD 是等腰三角形,且∠1=∠2 ∴ OB =OD12、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB , DCB A O 12 3 4∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.13、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .14、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD . ∴AB =AF .15、(杭州市2012年中考数学模拟)如图,已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证: BE =CF . 答案:证明:∵AC ∥DF ∴∠ACB =∠F在△ABC 与△DEF 中ACB F A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△DEF ∴ BC = EF∴ BC –EC = EF –EC 即BE = CF 16.(杭州市2012年中考数学模拟)如图,在边长为6的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点,Q 连接.BQ⑴ 试证明:无论点P 运动到AB 上何处时,都有;ADQ ABQ ∆≅∆⑵ 当ADQ ∆的面积与正方形ABCD 面积之比为1:6时,求BQ 的长度,并直接写出....此时点P 在AB 上的位置. C D Q答案:(1) 证明:在正方形ABCD 中,AD AB DAQ BAQ AQ AQ =⎧⎪∠=∠⎨⎪=⎩∴ADQ ABQ ∆≅ (2) 解:∵ADQ ∆的面积与正方形ABCD 面积之比为1:6且正方形面积为36∴ADQ ∆的面积为6过点Q 作QE AD ⊥于,E QF AB ⊥于,F ∵ADQ ABQ ∆≅ ∴QE QF = ∴162AD QE ⋅= ∴2QE QF ==∵90BAD QEA QFA ∠=∠=∠=∴四边形AEQF 为矩形 ∴2AF QE ==∴624BF =-=在Rt QBF ∆中,BQ ===此时P 在AB 的中点位置(或者回答此时3AP =)17. (杭州市2012年中考数学模拟)如图:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A 和点C ,与抛物线2y ax ax b =++交于点B ,其中点A (0,2),点B (– 3,1),抛物线与y 轴交点D (0,– 2).(1) 求抛物线的解析式; (2) 求点C 的坐标;(3) 在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.答案:解:(1) 将(–3,1),(0,–2)代入得:1193222a a b a b b ⎧=-+=⎧⎪⎪⎨⎨-=⎪⎪⎩=-⎩解得 ABCD PQEF∴ 抛物线的解析式为:211222y x x =+- (2) 过B 作BE ⊥x 轴于E ,则E (–3,0),易证△BEC ≌△COA∴ BE = AO = 2 CO = 1 ∴ C (–1,0)(3) 延长BC 到P ,使CP = BC ,连结AP ,则△ACP 为以AC 为直角边的等腰直角三角形 过P 作PF ⊥x 轴于F ,易证△BEC ≌△DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P (1,– 1)将(1,– 1)代入抛物线的解析式满足 若90CAP ∠=︒,AC = AP 则四边形ABCP 为平行四边形过P 作PG ⊥y 轴于G ,易证△PGA ≌△CEB ∴ PG = 2 AG = 1 ∴ P (2,1)在抛物线上∴ 存在P (1,– 1),(2,1)满足条件18.(海南省2012年中考数学科模拟)(本题满分11分)如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。
2021年全国各地中考数学真题分类汇编(通用版)三角形(三)(含答案与解析)
2021年全国各地中考数学真题分类汇编(通用版)三角形(三)参考答案与试题解析一.选择题(共5小题)1.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1D.解:设AB=AD=BC=CD=3a,∵四边形ABCD是正方形,∴∠DAE=∠DCF=45°,∠DAM=∠DCN=90°,在△DAE和△DCF中,,∴△DAE≌△DCF(SAS),∴∠ADE=∠CDF,在△DAM和△DCN中,,∴△DAM≌△DCN(ASA),∴AM=CN,∵AB=BC,∴BM=BN,∵CN∥AD,∴==,∴CN=AM=a,BM=BN=2a,∴===,故选:A.2.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是()A.B.C.60D.80解:∵AC=100,sin A=,∴BC=60,∴AB==80,故选:D.3.(2021•贵港)如图,在△ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是()A.3B.4C.5D.6解:如图,取BC的中点T,连接AT,ET.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABD=∠BCE,∴∠CBD+∠BCE=90°,∴∠CEB=90°,∵CT=TB=6,∴ET=BC=6,AT===10,∵AE≥AT﹣ET,∴AE≥4,∴AE的最小值为4,故选:B.4.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.5.(2021•铜仁市)如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.二.填空题(共9小题)6.(2021•海南)如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).7.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.8.(2021•桂林)如图,在△ABC中,点D,E分别是AB,AC的中点,若DE=4,则BC=8.解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故答案是:8.9.(2021•梧州)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是326米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)解:由题意,在Rt△ABC中,∵AC=40,∠A=83°,tan A=,∴BC=tan A•AC≈8.14×40=325.6≈326(米).故答案为:326.10.(2021•广西)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30﹣10)米(结果保留根号).解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).11.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是9.解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.12.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.13.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为(4,2)或(﹣4,﹣2).解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).14.(2021•贵阳)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是2﹣2,2.解:如图,设△GEF为正方形ABCD的一个内接正三角形,作正△GEF的高EK,连接KA,KD,∵∠EKG=∠EDG=90°,∴E、K、D、G四点共圆,∴∠KDE=∠KGE=60°,同理∠KAE=60°,∴△KAD是一个正三角形,则K必为一个定点,∵正三角形面积取决于它的边长,∴当FG⊥AB,边长FG最小,面积也最小,此时边长等于正方形边长为2,当FG过B点时,即F'与点B重合时,边长最大,面积也最大,此时作KH⊥BC于H,由等边三角形的性质可知,K为FG的中点,∵KH∥CD,∴KH为三角形F'CG'的中位线,∴CG'=2HK=2(EH﹣EK)=2(2﹣2×sin60°)=4﹣2,∴F'G'====2﹣2,故答案为:2﹣2,2.三.解答题(共12小题)15.(2021•海南)如图,在某信号塔AB的正前方有一斜坡CD,坡角∠CDK=30°,斜坡的顶端C 与塔底B的距离BC=8米,小明在斜坡上的点E处测得塔顶A的仰角∠AEN=60°,CE=4米,且BC∥NE∥KD,AB⊥BC(点A,B,C,D,E,K,N在同一平面内).(1)填空:∠BCD=150度,∠AEC=30度;(2)求信号塔的高度AB(结果保留根号).解:(1)∵BC∥DK,∴∠BCD+∠D=180°,又∵∠D=30°,∴∠BCD=180°﹣30°=150°,∵NE∥KD,∴∠CEN=∠D=30°,又∵∠AEN=60°,∴∠ACE=∠AEN﹣∠CEN=60°﹣30°=30°,故答案为:150,30;(2)如图,过点C作CG⊥EN,垂足为G,延长AB交EN于点F,在Rt△CEG中,∵∠CEG=30°,CE=4m,∴CG=CE=2(m)=BF,∴EG=CG=2(m),设AB=x,则AF=(x+2)m,EF=BC+EG=(8+2)m,在Rt△AEF中,∵∠AEN=60°,∴AF=EF,即x+2=(8+2),x=(4+8)m,即信号塔的高度AB为(4+8)m.16.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2;(2)∵点O是BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS).17.(2021•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB>AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.解:(1)如图,点D即为所求.(2)如图,点E即为所求.18.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.(1)证明:∵AE⊥BF,∠ABE=90°,∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,∴∠EAB=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF;∵tan∠EAB=,∵BE=BC,∴=3,∵G为AD的中点,∴AG=3,∴HB=1,∴AH=5,∴GH==.19.(2021•贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是AE=CF;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE=OA,∵OA=OD,∴OE=OA=OD=5,∴∠AED=90°,∵OA=OE,OC=OF,∠AOE=∠COF,∴=,∴△AOE∽△COF,∴=,∵CF=OA=5,∴=,∴AE=,∴DE===.20.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:21.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为①、③,结论为②;(2)证明你的结论.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.22.(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△DCA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.23.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.24.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠F AM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)解:根据题意可知:四边形ABDM是矩形,∴AB=MD=120m,在Rt△AME中,ME=AM tan45°=AM,在Rt△AMF中,MF=AM tan60°=AM,∵EF=MF﹣ME=40m,∴AM﹣AM=40,∴AM≈54.8(m),∴MF≈54.8×1.73≈94.80(m),∴DF=120﹣94.80=25.2(m),25.2÷3≈8.4,∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.25.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,∵∠EBD=∠FDB=∠DFE=90°,∴四边形BDFE为矩形,∴EF=BD,DF=BE=1.6m,∴AF=AD﹣DF=41.6﹣1.6=40(m),在Rt△AEF中,sin∠AEF===,即sinα=.答:仰角α的正弦值为;(2)在Rt△AEF中,EF===30(m),在Rt△ACD中,∠ACD=63°,AD=41.6,∵tan∠ACD=,∴CD==≈21.22(m),∴BC=BD+CD=30+21.22≈51(m).答:B,C两点之间的距离约为51m.26.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。
2019年全国中考数学真题分类汇编:全等三角形(有答案)
2019年全国中考数学真题分类汇编:全等三角形一、选择题1. (2019年山东省滨州市)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB =40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.1【考点】全等三角形的判定与性质、三角形的外角性质、角平分线的判定【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选:B.2. (2019年山东省青岛市)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【考点】三角形的内角和、全等三角形的判定和性质、三角形的外角的性质【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.二、填空题1. (2019年湖北省襄阳市)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是(只填序号).【考点】全等三角形的判定【解答】解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A =∠D ,则可由AAS 判定△ABC ≌△DCB ;若添加②AC =DB ,则属于边边角的顺序,不能判定△ABC ≌△DCB ; 若添加③AB =DC ,则属于边角边的顺序,可以判定△ABC ≌△DCB . 故答案为:②. 三、解答题1.(2019年乐山市)如图10,线段AC 、BD 相交于点E ,DE AE = ,CE BE =.求证:C B ∠=∠.【考点】全等三角形的判定和性质 【解答】证明:在AEB ∆和DEC ∆中,DE AE = ,CE BE =,DEC AEB ∠=∠AEB ∆∴≌DEC ∆,故C B ∠=∠,得证.2. (2019年重庆市)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP . (1)若DP =2AP =4,CP =,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =CM +2CE .【考点】平行四边形的性质、全等三角形的判定和性质、勾股定理 【解答】(1)解:作CG ⊥AD 于G ,如图1所示: 设PG =x ,则DG =4﹣x ,在Rt △PGC 中,GC 2=CP 2﹣PG 2=17﹣x ,在Rt △DGC 中,GC 2=CD 2﹣GD 2=52﹣(4﹣x )2=9+8x ﹣x 2, ∴17﹣x 2=9+8x ﹣x 2, 解得:x =1,即PG =1, ∴GC =4, ∵DP =2AP =4,CE 图10∴S△ACD=×AD×CG=×6×4=12;(2)证明:连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=MC+2EC.3. (2019年山东省枣庄市)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN【考点】等腰直角三角形的性质、全等三角形的判定和性质、勾股定理【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△AMN中,,∴△BME ≌△AMN (ASA ), ∴BE =AN ,∴AB +AN =AB +BE =AE =AM .4. (2019年云南省)如图,AB =AD ,CB =CD. 求证:∠B =∠D.【考点】全等三角形的判定和性质【解答】证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC AD AB ∴△ABC ≌ADC (SSS ) ∴∠B =∠D5.(2019年广西贺州市)如图,在矩形ABCD 中,E ,F 分别是BC ,AD 边上的点,且AE =CF .(1)求证:△ABE ≌△CDF ;(2)当AC ⊥EF 时,四边形AECF 是菱形吗?请说明理由.【考点】矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定 【解答】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠D =90°,AB =CD ,AD =BC ,AD ∥BC , 在Rt △ABE 和Rt △CDF 中,,∴Rt △ABE ≌Rt △CDF (HL );(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下: ∵△ABE ≌△CDF , ∴BE =DF , ∵BC =AD , ∴CE =AF , ∵CE ∥AF ,∴四边形AECF 是平行四边形, 又∵AC ⊥EF ,∴四边形AECF 是菱形.6. (2019年江苏省苏州市)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.BAC EAF ∴∠=∠AE AB AC AF==又, ()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒, 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒ BAC EAF 又△≌△ 28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒7.(2019年江苏省泰州市)如图,线段AB =8,射线BG ⊥AB ,P 为射线BG 上一点,以AP 为边作正方形APCD ,且点C 、D 与点B 在AP 两侧,在线段DP 上取一点E ,使∠EAP=∠BAP .直线CE 与线段AB 相交于点F (点F 与点A 、B 不重合).(1)求证:△AEP ≌△CEP;(2)判断CF 与AB 的位置关系,并说明理由; (3)求△AEF 的周长.【考点】全等三角形、正方形的性质【解答】(1)证明:∵四边形APCD 正方形,∴DP 平分∠APC , PC =PA,OBED∴∠APD =∠CPD =45°, ∴△AEP ≌△CEP.(2) CF ⊥AB .理由如下: ∵△AEP ≌△CEP,∴∠EAP =∠ECP , ∵∠EAP=∠BAP . ∴∠BAP =∠FCP ,∵∠FCP +∠CMP =90°,∠AMF =∠CMP , ∴∠AMF +∠PAB =90°, ∴∠AFM =90°, ∴CF ⊥AB .(3)过点 C 作CN ⊥PB .可证得△PCN ≌△APB,∴ CN =PB =BF, PN =AB,∵△AEP ≌△CEP, ∴AE =CE, ∴AE+EF+AF=CE+EF+AF =BN+AF =PN+PB+AF =AB+CN+AF =AB+BF+AF =2 AB =16.8.(2019年江苏省无锡市)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .【考点】全等三角形、等腰三角形的判定 【解答】(1)证明:∵AB=AC ,∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC9. (2019年陕西省)如图,点A 、E 、F 、B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD .求证:CF =DE . 【考点】全等三角形 【解答】证明:∵AE =BF ,∴AF =BE ∵AC ∥BD ,∴∠CAF =∠DBE 又AC =BD , ∴△ACF ≌△BDE ∴CF =DE10.(2019年浙江省衢州市)已知:如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE=DF ,连结AE ,AF.求证:AE=AF.【考点】菱形的性质【解答】 证明:∵四边形ABCD 是菱形, ∴AB=AD ,∠B=∠D , ∵BE=DF∴△ABE ≌△ADF . ∴AE=CF11. (2019年浙江省温州市)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【考点】全等三角形的判定和性质,平行线的性质【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.12.(2019年甘肃省)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【考点】正方形的性质、全等三角形的判定和性质【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.13. (2019年湖北省宜昌市)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.【考点】全等三角形的判定与性质、角平分线的定义、三角形内角和定理【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.14. (2019年甘肃省武威市)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.【考点】全等三角形的判定与性质、正方形的性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质【解答】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.15. (2019年辽宁省本溪市)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON =∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).【考点】全等三角形的判定和性质、三角形的有关性质、分类讨论思想【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.16. (2019年辽宁省大连市)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定和性质【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.17. (2019年贵州安顺市)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB、AD、DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB =FC ,从而把AB,AD,DC 转化在一个三角形中即可判断AB 、AD 、DC 之间的等量关系________________________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.【考点】全等三角形的判定和性质【解答】(1) AD =AB+DC(2) AB =AF+CF证明:如图②,延长AE 交DF 的延长线于点G∵E 是BC 的中点,∴CE =BE ,∵AB ∥DC ,∴∠BAE =∠G.在△AEB 和△GEC 中⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE GEC AEB G BAE∴△AEB ≌△GEC ∴AB =GC.∵AE 是∠BAF 的平分线 ∴∠BAG =∠FAG ,∵∠BAG ∠G , ∴∠FAG =∠G , ∴FA =FG,∵CG =CF + FG,∴AB =AF+CF18.(2019年西藏)如图,点E 、C 在线段BF 上,BE =CF ,AB =DE ,AC =DF .求证:∠ABC =∠DEF .【考点】全等三角形的判定【解答】解:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 与△DEF 中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
2021年全国各地中考数学真题分类汇编(通用版)三角形(二)(含答案与解析)
2021年全国各地中考数学真题分类汇编(通用版)三角形(二)参考答案与试题解析一.选择题(共3小题)1.(2021•长春)如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为()A.30sinα米B.米C.30cosα米D.米解:由图可知,在△ABC中,AC⊥BC,∴sinα==,∴BC=30sinα米.故选:A.2.(2021•陕西)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.3.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.二.填空题(共7小题)4.(2021•吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m,则坝高CF为 2.7m.解:如图,过C作CF⊥AB于F,则DE∥CF,∴,即,解得CF=2.7,故答案为:2.7.5.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为(3,1).解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).6.(2021•吉林)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.以点C为圆心,CB长为半径画弧,分别交AC,AB于点D,E,则图中阴影部分的面积为π﹣(结果保留π).解:连接CE,∵∠A=30°,∴∠B=90°﹣∠A=60°,∵CE=CB,∴△CBE为等边三角形,∴∠ECB=60°,BE=BC=2,∴S扇形CBE==π∵S△BCE=BC2=,∴阴影部分的面积为π﹣.故答案为:π﹣.7.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC 是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CP A=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则P A+PB+PC=5;若AB=2,BC=2,AC=4,P为△ABC的费马点,则P A+PB+PC=2.解:如图,过A作AD⊥BC,垂足为D,过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,∵AB=AC=,BC=2,∴,∴,∴PD=1,∴,∴,∴P A+PB+PC=5;②如图:∵AB=2,BC=2,AC=4,∴AB2+BC2=16,BC2=16,∴AB2+BC2=AC2∠ABC=90°,∵,∴∠BAC=30°,将△APC绕点A逆时针旋转60°,由旋转可得:△APC≌△AP'C',∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠P AP'=60°,∴△APP′是等边三角形,∴∠BAC'=90°,∵P为△ABC的费马点,即B,P,P',C'四点共线时候,P A+PB+PC=BC',∴P A+PB+PC=BP+PP'+P'C'=BC'==,故答案为:5,.8.(2021•山西)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯AB的坡度i=5:12(i为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.解:由题意得:∠ACB=90°,AB=0.5×40=20(米),∵扶梯AB的坡度i=5:12=,∴设BC=5a米,则AC=12a米,由勾股定理得:(5a)2+(12a)2=202,解得:a=(负值已舍去),∴BC=(米),故答案为:.9.(2021•本溪)如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=.解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,tan∠ABC==,∵∠ADC=∠ABC,∴tan∠ADC=.故答案为.10.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,三.解答题(共12小题)11.(2021•吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).12.(2021•丹东)如图,一架无人机在空中A处观测到山顶B的仰角为36.87°,山顶B在水中的倒影C的俯角为63.44°,此时无人机距水面的距离AD=50米,求点B到水面距离BM的高度.(参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75,sin63.44°≈0.89,cos63.44°≈0.45,tan63.44°≈2.00)解:过点A作AH⊥BM交于点H,由题意可得:AD=HM=50米,设BM=x米,则MC=BM=x米∵BH=BM﹣HM∴BH=(x﹣50)米,∴在Rt△ABH中,∵HC=HM+MC∴HC=(50+x)米,在Rt△AHC中,,∴,解得x=110,即BM=110米,答:点B到水面距离BM的高度约为110米.13.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.14.(2021•吉林)图①、图2均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.解:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.15.(2021•大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC =EF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.16.(2021•山西)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,≈1.41).解:过点A作AH⊥EF于点H,交直线DG于点M,过点B作BN⊥DG于点N,BP⊥AH于点P,则四边形BNMP和四边形DEHM均为矩形,如图所示:∴PM=BN,MH=DE=5cm,∴BP∥DG,∴∠CBP=∠BCD=75°,∴∠ABP=∠ABC﹣∠CBP=120°﹣75°=45°,在Rt△ABP中,∠APB=90°,sin45°=,∴AP=AB•sin45°=100×=50cm,在Rt△BCN中,∠BNC=90°,sin75°=,∴BN=BC•sin75°≈80×0.97=77.6cm,∴PM=BN=77.6cm,∴AH=AP+PM+MH=5077.6+5≈153.1cm.答:指示牌最高点A到地面EF的距离约为153.1cm.17.(2021•营口)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即临D处学校和E处图书馆之间的距离是580m.18.(2021•大连)如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为57°,观测旗杆底部B的仰角为50°,求旗杆AB的高度(结果取整数).(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192;sin57°≈0.839,cos57°≈0.545,tan57°≈1.540)解:在Rt△BCD中,tan∠BDC=,∴BC=CD•tan∠BDC=20×tan50°≈20×1.192=23.84(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=20×tan57°≈20×1.540=30.8(m),∴AB=AC﹣BC=30.8﹣23.84≈7(m).答:旗杆AB的高度约为7m.19.(2021•陕西)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)解:在△ADC中,设AD=x,∵AD⊥BD,∠ACD=45°,∴CD=AD=x,在△ADB中,AD⊥BD,∠ABD=30°,∴AD=BD•tan30°,即x=(16+x),解得:x=8+8,∴AB=2AD=2×(8)=16,∴钢索AB的长度约为(16)m.20.(2021•本溪)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m/s的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)解:(1)由题意,CD=8×15=120(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=CD•tan60°=120×=120(m),答:无人机的高度AC是120米;21.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;cos B;0.72;27648.22.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=∠AOB=×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴.∴.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.。
2019中考数学试题分类汇编 考点21 全等三角形(含解析)
2019中考数学试题分类汇编:考点21 全等三角形一.选择题(共9小题)1.(2019•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.(2019•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.3.(2019•河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.4.(2019•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD 的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.(2019•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.6.(2019•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.7.(2019•成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.8.(2019•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选:B.9.(2019•绵阳)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB的面积.再求出OA与OB 的比值即可解决问题;【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S△ABC=×2×2=2,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,∴S△AOC=2×=3﹣,故选:D.二.填空题(共4小题)10.(2019•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.11.(2019•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED (只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.12.(2019•绍兴)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.13.(2019•随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=×BD×OE=×BE×DF,可得DF=,进而得出EF=,再根据S△ABF=S梯形ABFD﹣S△ADF,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,∵S△BDE=×BD×OE=×BE×DF,∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,EF==,∵S△ABF=S梯形ABFD﹣S△ADF,∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.三.解答题(共23小题)14.(2019•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).15.(2019•云南)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.16.(2019•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.17.(2019•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可.(2)根据全等三角形的性质即可解决问题.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.18.(2019•通辽)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.19.(2019•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.(2019•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【解答】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E.21.(2019•恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.22.(2019•哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.23.(2019•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.24.(2019•咸宁)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.25.(2019•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;26.(2019•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).27.(2019•宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.28.(2019•铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;29.(2019•温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.30.(2019•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.31.(2019•苏州)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.32.(2019•嘉兴)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.33.(2019•滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.34.(2019•怀化)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.35.(2019•娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.36.(2019•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。
2022年中考数学真题汇编:全等三角形2(含解析)
(2)若 ,求 的长.
25.(2022贵阳)如图,在正方形 中, 为 上一点,连接 , 的垂直平分线交 于点 ,交 于点 ,垂足为 ,点 在 上,且 .
(1)求证: ;
(2)若 , ,求 的长.
26.(2022北京)如图, 是 的直径, ,过点 作 交 的延长线于点 ,延长 交 于点 ,若 为 的中点,求证:直线 为 的切线.
2022年中考数学真题分类练习: 全等三角形
1.(2022大庆)下列说法不正确的是( )
A.有两个角是锐角的三角形是直角或钝角三角形
B.有两条边上的高相等的三角形是等腰三角形
C.有两个角互余的三角形是直角三角形
D.底和腰相等的等腰三角形是等边三角形
2.(2022云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使 DOE FOE,你认为要添加的那个条件是()
11.(2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数 的图象经过点C, 的图象经过点B.若 ,则 ________.
12.(2022铜仁)如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF= ,则BD的长为______(结果保留很号).
(2)迁移探究
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
A. B. C. D. 最小值为
7.(2022黔东南)如图, 、 分别与 相切于点 、 ,连接 并延长与 交于点 、 ,若 , ,则 的值为()
全国各地2022年中考数学真题分类解析汇编:全等三角形
全等三角形一、选择题1.(四川资阳,第6题3分)以下命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形考点:命题与定理.分析:利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,应选D.点评:此题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.2.(2014•毕节地区,第5题3分)以下表白正确的选项是()3.(2014·台湾,第9题3分)如图,坐标平面上,△ABC与△DEF 全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A 点的坐标为(﹣3,1),B 、C 两点在方程式y =﹣3的图形上,D 、E两点在y 轴上,则F 点到y 轴的距离为何?( )A .2B .3C .4D .5分析:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.解:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P . ∴∠DPF =∠AKC =∠CHA =90°. ∵AB =BC , ∴∠BAC =∠BC A . 在△AKC 和△CHA 中。
⎩⎨⎧∠AKC =∠CHA ,AC =CA ,∠BAC =∠BCA .∴△AKC ≌△CHA (ASA ),∴KC =H A .∵B 、C 两点在方程式y =﹣3的图形上,且A 点的坐标为(﹣3,1), ∴AH =4.∴KC =4. ∵△ABC ≌△DEF , ∴∠BAC =∠EDF ,AC =DF . 在△AKC 和△DPF 中,⎩⎨⎧∠AKC =∠DPF ,∠BAC =∠EDF , AC =DF .∴△AKC ≌△DPF (AAS ),∴KC =PF =4. 应选C .点评:此题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.4. (2014•益阳,第7题,4分)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件是( )(第1题图)A.A E=CF B.B E=FD C.B F=DE D.∠1=∠2考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;应选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.5. (江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第2题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
专题09 三角形(第04期)-2021年中考数学试题分项版解析汇编(解析版)
一、选择题1. (2021贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【答案】D.考点:平行线的性质..2. (2021贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.3. (2021贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,∴1115 BD ABCD AC==,∵E是BC中点,∴11151321515 CECA+==,∵EF∥AD,.∴1315 CF CECA CD==,∴CF=1315CA=13.故选C.考点:平行线的性质;角平分线的性质..4. (2021湖南株洲第5题)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155°D.160°【答案】B.考点:三角形内角和定理.5. (2021湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.2D.2【答案】D.【解析】试题分析:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,∵∠2=∠3, ∴△DQF ∽△FQE ,∴12DQ FQ DF FQ QE EF ===, ∵DQ =1,∴FQ =2,EQ =2,∴EQ +FQ =2+2, 故选D. .考点:旋转的性质;平行线的判定与性质;等腰直角三角形.6. (2021内蒙古通辽第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( ) A .540元 B .1080元 C.1620元 D .1800元 【答案】C考点:相似三角形的应用7. (2021郴州第8题)小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180 B .0210 C .0360 D .0270【答案】B .【解析】试题分析:∵∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D +∠4+∠F =∠2+∠D +∠3+∠F =∠2+∠3+30°+90°=210°,故选B .考点:三角形的外角的性质. .8. (2021广西百色第10题)如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(31)+B .20(31)- C. 200 D .300 【答案】A考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.9. (2021哈尔滨第8题)在Rt ABC △中,90C ∠°,4AB ,1AC ,则cos B 的值为( ) A.154B.14C.1515D.41717【答案】A 【解析】试题分析:∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC =2241- =15,则cosB =BCAB=154,故选A .考点:锐角三角函数的定义.10. (2021哈尔滨第9题)如图,在ABC △中,,D E 分别为,AB AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点E ,则下列结论中一定正确的是( )A.ADAEAB ECB.AC AEGF BDC.BD CEAD AED.AG ACAF EC【答案】C考点:相似三角形的判定与性质.11. (2021黑龙江绥化第6题)如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为( )A.2:3B.3:2C.4:5D.4:9【答案】A考点:位似变换.12. (2021黑龙江绥化第9题)某楼梯的侧面如图所示,已测得BC的长约为3.5米,BCA约为29,则该楼梯的高度AB可表示为()A.3.5sin29米B.3.5cos29米C.3.5tan29米D.3.5 cos29米【答案】A 【解析】试题分析:在Rt△ABC中,∵sin∠ACB=ABBC,∴AB=BCsin∠ACB=3.5sin29°,故选A..考点:解直角三角形的应用﹣坡度坡角问题.13. (2021湖南张家界第5题)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A .6B .12C .18D .24 【答案】B . 【解析】试题分析:∵D 、E 分别是AB 、AC 的中点,∴AD =12AB ,AE =12AC ,DE =12BC ,∴△ABC 的周长=AB +AC +BC =2AD +2AE +2DE =2(AD +AE +DE )=2×6=12.故选B .. 考点:相似三角形的判定与性质;三角形中位线定理.14. (2021辽宁大连第8题)如图,在ABC ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,点E 是AB 的中点,a DE CD ==,则AB 的长为( )A .a 2B .a 22 C. a 3 D .a 334 【答案】B.考点:直角三角形斜边上的中线.15. (2021海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .6【答案】B.考点:等腰三角形的性质.16. (2021河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线 【答案】A. 【解析】试题分析:根据等底等高的三角形的面积相等解答. ∵三角形的中线把三角形分成两个等底同高的三角形, ∴三角形的中线将三角形的面积分成相等两部分. 故选A .考点:三角形的面积;三角形的角平分线、中线和高.17. (2021河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是() A .3 B .4 C. 8 D .9 【答案】B. 【解析】试题分析:设AD =x ,根据等边三角形的性质得到∠A =∠B =∠C =60°,由垂直的定义得到∠ADF =∠DEB =∠EFC =90°,解直角三角形即可得到结论.. 设AD =x ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°, ∵DE ⊥AC 于点E ,EF ⊥BC 于点F ,FG ⊥AB ,∴∠ADF =∠DEB =∠EFC =90°,∴AF =2x ,∴CF =12﹣2x , ∴CE =2CF =24﹣4x ,∴BE =12﹣CE =4x ﹣12,∴BD =2BE =8x ﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.考点:等边三角形的性质;含30度角的直角三角形. .18. (2021贵州六盘水第12题)三角形的两边,a b的夹角为60°且满足方程23240x x,则第三边长的长是( )A.6B.22C.23D.32【答案】考点:一元二次方程;勾股定理.二、填空题1. (2021湖南株洲第11题)如图示在△ABC中∠B=.【答案】25°. 【解析】试题分析:∵∠C =90°,∴∠B =90°﹣∠A =90°﹣65°=25°; 故答案为:25°..考点:直角三角形的性质.2. (2021湖北咸宁第16题)如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论: ①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的14,则:902180π⨯=π.所以④不正确;综上所述,本题正确的有:①②③;考点:三角形综合题..3. (2021湖南常德第14题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.【答案】0≤CD ≤5. 【解析】试题分析:当点D 与点E 重合时,CD =0,当点D 与点A 重合时,∵∠A =90°,∠B =60°,∴∠E =30°,∴∠CDE =∠E ,∠CDB =∠B ,∴CE =CD ,CD =CB ,∴CD =12BE =5,∴0≤CD ≤5,故答案为:0≤CD ≤5. 考点:含30度角的直角三角形;直角三角形斜边上的中线..4. (2021黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则ACB ∠的度数为 .【答案】113°或92°.考点:1.相似三角形的性质;2.等腰三角形的性质.5. (2021黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .【答案】(0,(2)2016)或(0,21008).考点:规律型:点的坐标.6. (2021黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 . 【答案】30°或150°或90°.. 【解析】试题分析:①BC 为腰, ∵AD ⊥BC 于点D ,AD =12BC ,∴∠ACD =30°, 如图1,AD 在△ABC 内部时,顶角∠C =30°,如图2,AD 在△ABC 外部时,顶角∠ACB =180°﹣30°=150°,②BC 为底,如图3, ∵AD ⊥BC 于点D ,AD =12BC ,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°..考点:1.含30度角的直角三角形;2.等腰三角形的性质.7. (2021黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2n-112考点:1.三角形中位线定理;2.等腰直角三角形.8. (2021上海第15题)如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE a = ,BE b =,那么向量CD 用向量a 、b 表示为 .【答案】2b a +考点:1.平面向量;2.平行线的性质9. (2021辽宁大连第15题)如图,一艘海轮位于灯塔P 的北偏东060方向,距离灯塔nmile 86的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处.此时,B 处与灯塔P 的距离约为 nmile .(结果取整数,参考数据:4.12,7.13≈≈)【答案】102. 【解析】试题分析:根据题意得出∠MPA =∠PAD =60°,从而知PD =AP •sin ∠PAD =433,由∠BPD =∠PBD =45°根据BP =sin PDB∠,即可求出即可..考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.三、解答题1. (2021湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析. .【解析】试题分析:①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.2. (2021湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度A B.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2021郴州第19题)已知ABC ∆中,ABC ACB ∠=∠,点,D E 分别为边,AB AC 的中点,求证:BE CD =.【答案】详见解析. 【解析】试题分析:由∠ABC =∠ACB 可得AB =AC ,又点D 、E 分别是AB 、AC 的中点.得到AD =AE ,通过△ABE ≌△ACD ,即可得到结果.考点:全等三角形的判定及性质.4. (2021郴州第22题)如图所示,C城市在A城市正东方向,现计划在,A C两城市间修建一条高速铁路60方向上,在线段AC上距A城市(即线段AC),经测量,森林保护区的中心P在城市A的北偏东030方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,120km的B处测得P在北偏东0请问计划修建的这条高速铁路是否穿越保护区,为什么?)(参考数据:3 1.732【答案】这条高速公路不会穿越保护区,理由详见解析.【解析】试题分析:作PH⊥AC于H.求出PH与100比较即可解决问题.试题解析:结论;不会.理由如下:作PH⊥AC于H.考点:解直角三角形的应用.5. (2021郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE =60°,又由(1)知∠CDE =60°,∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE =90°,从而∠BCD =30°,∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s ,综上所述:当t =2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.6. (2021湖北咸宁第18题) 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.7. (2021湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.考点:解直角三角形的应用.8. (2021湖南常德第26题)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •A C .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.9. (2021哈尔滨第24题)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠∠°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD ; (2)如图2,若AC DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB ≌△DCE (SAS ),△EMC ≌△BCN (ASA ),△AON ≌△DOM (AAS ),△AOB ≌△DOE (HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10. (2021黑龙江齐齐哈尔第23题)如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.【答案】(1)证明见解析;(2)EF =52 .考点:1.全等三角形的判定与性质;2.勾股定理.11. (2021湖北孝感第18题)如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD .【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得∠B =∠D ,根据平行线的判定,可得答案.试题解析:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,AB CDBE DF=⎧⎨=⎩,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥C D.考点:全等三角形的判定与性质.12. (2021内蒙古呼和浩特第18题)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD CE=;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC∆的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=12BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=12 BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,BE CDCE BDBC CB=⎧⎪=⎨⎪=⎩,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=12BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.13.(2021内蒙古呼和浩特第22题)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30︒角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70︒角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【答案】A,B两地的距离AB长为200(3﹣tan20°)米.在直角△BCM中,∵tan20°=BMCM,∴BM=200tan20°,∴AB =AM ﹣BM =2003﹣200tan 20°=200(3﹣tan 20°),因此A ,B 两地的距离AB 长为200(3﹣tan 20°)米.考点:解直角三角形的应用.14. (2021青海西宁第24题)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC 上的,A B 两点分别对南岸的体育中心D 进行测量,分别没得0030,60,200DAC DBC AB ∠=∠==米,求体育中心D 到湟水河北岸AC 的距离约为多少米(精确到1米,3 1.732≈)?【答案】体育中心D 到湟水河北岸AC 的距离约为173米.在直角△BHD 中,sin 60°=32002DH DH BD ==,∴DH =1003≈100×1.732≈173.答:体育中心D到湟水河北岸AC的距离约为173米.考点:解直角三角形的应用.15. (2021上海第21题)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥B C.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE =5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.16. (2021湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =2.3米,求像体AD 的高度(最后结果精确到0.1米,参考数据:sin 70.5°≈0.943,cos 70.5°≈0.334,tan 70.5°≈2.824)【答案】4.2m .考点:解直角三角形的应用.17. (2021辽宁大连第24题)如图,在ABC ∆中,090=∠C ,4,3==BC AC ,点E D ,分别在BC AC ,上(点D 与点C A ,不重合),且A DEC ∠=∠.将DCE ∆绕点D 逆时针旋转090得到''E DC ∆.当''E DC ∆的斜边、直角边与AB 分别相交于点Q P ,(点P 与点Q 不重合)时,设y PQ x CD ==,.(1)求证:DEC ADP ∠=∠;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.【答案】(1)见解析;(2)5512(3),627255612.12257x xyx x⎧-+<<⎪⎪=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩(2)解:如图1中,当C′E′与AB相交于Q时,即61257x<≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=45y,PN=43×12(3﹣x),∴23(3﹣x)+45y=x,∴255122y x=-,考点:旋转的性质;函数关系式;矩形的判定与性质;解直角三角形.18. (2021辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将ACD ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD +∠ACB =180°;(2)512;(3)1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理.19. (2021海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.20. (2021新疆乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】∵cos 37°=EB BC, ∴EB =BC •cos 37°≈0.8×10=8海里,EF =AD =17.32海里,∴FC =EF ﹣CE =11.32海里,AF =ED =EB +BD =18海里,在Rt △AFC 中,AC =22221811.32AF FC +=+≈21.26海里, 21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题。
上海民办杨浦实验学校数学全等三角形中考真题汇编[解析版]
上海民办杨浦实验学校数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为______cm .【答案】10310-【解析】解:连接BD ,在菱形ABCD 中,∵∠ABC =120°,AB =BC =AD =CD =10,∴∠A =∠C =60°,∴△ABD ,△BCD 都是等边三角形,分三种情况讨论:①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D 重合时,PA 最小,最小值PA =10;②若以边PB 为底,∠PCB 为顶角时,以点C 为圆心,BC 长为半径作圆,与AC 相交于一点,则弧BD (除点B 外)上的所有点都满足△PBC 是等腰三角形,当点P 在AC 上时,AP 最小,最小值为10310-;③若以边PC 为底,∠PBC 为顶角,以点B 为圆心,BC 为半径作圆,则弧AC 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点A 重合时,PA 最小,显然不满足题意,故此种情况不存在;综上所述,PA 的最小值为10310-(cm ).故答案为:10310-.点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.如图,已知等边ABC∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt △CMG 中,2222543MG CM CG =-=-=,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.5.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.6.如图,在Rt △ABC 中,∠ACB =90°,AB 的垂直平分线DE 交BC 的延长线于F ,若∠F =30°,DE =1,则EF 的长是_____.【答案】2【解析】【分析】连接BE ,根据垂直平分线的性质、直角三角形的性质,说明∠CBE =∠F ,进一步说明BE =EF ,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB 的垂直平分线DE 交BC 的延长线于F ,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.7.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt △ABM 中,AM =22AB BM -=43;如图2,当∠AMB =90°时,∵O 是AB 的中点,AB =8,∴OM =OA =4,又∵∠AOC =60°,∴△AOM 是等边三角形,∴AM =AO =4;如图3,当∠ABM =90°时,∵∠BOM =∠AOC =60°,∴∠BMO =30°,∴MO =2BO =2×4=8,∴Rt △BOM 中,BM =22MO OB -=43,∴Rt △ABM 中,AM =22AB BM +=47.综上所述,当△ABM 为直角三角形时,AM 的长为43或47或4.故答案为43或47或4.8.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM垂直于OA于M,作PN垂直于OB 于点N,证明△PMD≌△PND,进而求出DF长度,从而求出OF的长度.【详解】如图所示,作DM垂直于OA于M,作PN垂直于OB于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC 是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ ,所以△AEP≌△CFQ,所以AE=CF ,PE=QC.同理可证,△DEP≌△DFQ ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE ,所以DE=12AC=12. 故答案为12.10.如图,在△ABC 中,AB=AC ,AB 边的垂直平分线DE 交AC 于点D .已知△BDC 的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD ,然后根据△BDC 的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD ,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.12.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.13.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°,∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线,∴2∠FBC+2∠FCB =90°∴∠FBC+∠FCB =45°∴∠BFC =135°故④正确.∵AG ∥BC ,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.14.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=12,得出△A1B1A2的边长为12,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠OB1A1=60°-30°=30°,∴∠MON=∠OB1A1,∴B1A1=OA1=12,∴△A1B1A2的边长为12,同理得:∠OB2A2=30°,∴OA2=A2B2=OA1+A1A2=12+12=1,∴△A2B2A3的边长为1,同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.15.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.16.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.17.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.18.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.19.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=∠CDA,则∠BAC的大小是()A.100°B.90°C.80°D.120°【答案】A【解析】【分析】由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG是AE的中垂线,CF是AD的中垂线,∴AB=BE,ACECD∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+∠EAC=180°∴∠BAD+∠EAC=60°∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A【点睛】本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.20.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.。
中考数学三角形复习试题以及答案
三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =(b+c-a)+(a+c-b)=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个B.4个C.3个D.2个考点:等腰三角形答案:A(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是( )考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线4.(1)与三角形三个顶点距离相等的点是这个三角形的( )A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;(2)O为内心时,∠BOC=90°+ ∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C。
中考数学真题分类汇编第二期专题21全等三角形试题含解析
全等三角形一. 选择题1.(2018?遂宁?4分)以下说法正确的选项是()A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直均分D.六边形的内角和是540°【分析】直接利用全等三角形的判断以及矩形、菱形的性质和多边形内角和定理.【解答】解: A. 有两条边和一个角对应相等的两个三角形全等、错误、必定是两边及其夹角分别对应相等的两个三角形全等;B.正方形既是轴对称图形又是中心对称图形、正确;C.矩形的对角线相等且互相均分、故此选项错误;D.六边形的内角和是720°、故此选项错误.应选: B.【议论】此题主要观察了全等三角形的判断以及矩形、菱形的性质和多边形内角和定理、正确掌握相关性质是解题要点.2.(2018?贵州安顺?3分)如图、点、分别在线段、上、与订交于点、已知、现增加以下哪个条件仍不能够判断().....A. B. C. D.【答案】 D【分析】分析:欲使△ABE≌△ ACD、已知 AB=AC、可依照全等三角形判判定理AAS、 SAS、 ASA增加条件、逐一证明即可.详解:∵ AB=AC、∠ A 为公共角、A. 如增加∠ B=∠ C、利用 ASA即可证明△ ABE≌△ ACD;B. 如添 AD=AE、利用 SAS即可证明△ ABE≌△ ACD;C.如添 BD=CE、等量关系可得AD=AE、利用 SAS即可证明△ ABE≌△ ACD;D.如添 BE=CD、因为 SSA、不能够证明△ABE≌△ ACD、所以此选项不能够作为增加的条件.应选 D.点睛:此题主要观察学生对全等三角形判判定理的理解和掌握、此类增加条件题、要修业生应熟练掌握全等三角形的判判定理.3. ( 2018·黑龙江龙东地区· 3 分)如图、四边形 ABCD中、 AB=AD、AC=5、∠ DAB=∠DCB=90°、则四边形ABCD的面积为()A. 15B.12.5 C .14.5 D .17【分析】过 A 作 AE⊥ AC、交 CB的延长线于E、判断△ ACD≌△ AEB、即可获取△ ACE是等腰直角三角形、四边形 ABCD的面积与△ ACE的面积相等、依照S△ACE=×5× 、即可得出结论.【解答】解:如图、过 A 作 AE⊥ AC、交 CB的延长线于E、∵∠ DAB=∠DCB=90°、∴∠ D+∠ABC=180°=∠ ABE+∠ABC、∴∠ D=∠ ABE、又∵∠ DAB=∠CAE=90°、∴∠ CAD=∠EAB、又∵ AD=AB、∴△ ACD≌△ AEB、∴A C=AE、即△ ACE是等腰直角三角形、∴四边形 ABCD的面积与△ ACE的面积相等、∵S△ACE= ×5×5=12.5 、∴四边形ABCD的面积为12.5 、应选: B.【议论】此题主要观察了全等三角形的判断与性质、全等三角形的判断是结合全等三角形的性质证明线段和角相等的重要工具.在判断三角形全等时、要点是选择合适的判断条件.在应用全等三角形的判准时、要注意三角形间的公共边和公共角、必要时增加合适辅助线构造三角形.4. (2018?贵州黔西南州 ?4分)以下各图中 A.B.c 为三角形的边长、则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】依照三角形全等的判断方法得出乙和丙与△ABC全等、甲与△ ABC不全等.【解答】解:乙和△ ABC全等;原由以下:在△ ABC和图乙的三角形中、满足三角形全等的判断方法:SAS、所以乙和△ ABC全等;在△ ABC和图丙的三角形中、满足三角形全等的判断方法:AAS、所以丙和△ ABC全等;不能够判断甲与△ABC全等;应选: B.【议论】此题观察了三角形全等的判断方法、判断两个三角形全等的一般方法有:SSS、SAS、、HL.注意: AAA.SSA 不能够判断两个三角形全等、判断两个三角形全等时、必定有边的参加、若有两边一角对应相等时、角必定是两边的夹角.5.( 2018 年湖南省娄底市)如图、△ ABC中、AB=AC、AD⊥ BC于D点、DE⊥AB于点E、BF⊥ AC于点F、DE=3cm、则 BF= 6 cm.【分析】先利用HL 证明 Rt △ ADB≌ Rt △ ADC、得出 S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB、又 S△ABC=AC?BF、将AC=AB代入即可求出BF.【解答】解:在Rt △ ADB与 Rt△ ADC中、、∴R t △ ADB≌Rt △ ADC、∴S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB、∵S△ABC=AC?BF、∴AC?BF=3AB、∴BF=3、∴B F=6.故答案为 6.【议论】此题观察了全等三角形的判断与性质、等腰三角形的性质、三角形的面积、利用面积公式得出等式是解题的要点.6.(2018?遂宁?4分)以下说法正确的选项是()A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直均分D.六边形的内角和是540°【分析】直接利用全等三角形的判断以及矩形、菱形的性质和多边形内角和定理.【解答】解: A. 有两条边和一个角对应相等的两个三角形全等、错误、必定是两边及其夹角分别对应相等的两个三角形全等;B.正方形既是轴对称图形又是中心对称图形、正确;C.矩形的对角线相等且互相均分、故此选项错误;D.六边形的内角和是720°、故此选项错误.应选: B.【议论】此题主要观察了全等三角形的判断以及矩形、菱形的性质和多边形内角和定理、正确掌握相关性质是解题要点.二. 填空题1.(2018?江苏宿迁? 3分)如图、在平面直角坐标系中、反比率函数(x>0)与正比率函数y=kx 、(k> 1)的图象分别交于点、若∠ AOB=45°、则△ AOB的面积是 ________.【答案】 2【分析】作BD⊥x轴、 AC⊥y轴、 OH⊥AB(如图)、设 A( x1、y1)、 B( x2、y2)、依照反比率函数k 的几何意义得 x1y1=x 2y2=2;将反比率函数分别与y=kx 、y= 联立、解得 x1=、x2=、进而得x1x2=2、所以y1=x2、y2=x1、依照 SAS得△ ACO≌△ BDO、由全等三角形性质得AO=BO、∠ AOC=∠BOD、由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠°、依照AAS得△ ACO≌△ BDO≌△ AHO≌△ BHO、依照三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO= x1y1+ x2y2=×2+×2=2.【详解】如图:作BD⊥x轴、 AC⊥y轴、 OH⊥AB、设 A( x1、 y1)、 B( x2、y2)、∵A. B 在反比率函数上、∴x1y1=x2y2=2、∵、解得: x1= 、又∵、解得: x2=、∴x1x2=×=2、∴y1=x 2、 y 2=x1、即 OC=OD、 AC=BD、∵BD⊥x轴、 AC⊥y轴、∴∠ ACO=∠BDO=90°、∴△ ACO≌△ BDO(SAS)、∴AO=BO、∠ AOC=∠BOD、又∵∠ AOB=45°、 OH⊥AB、∴∠ AOC=∠BOD=∠AOH=∠°、∴△ ACO≌△ BDO≌△ AHO≌△ BHO、∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO= x1y1+x2y2=×2+×2=2、故答案为: 2.【点睛】此题观察了反比率函数系数k 的几何意义、反比率函数与一次函数的交点问题、全等三角形的判断与性质等、正确增加辅助线是解题的要点.2.( 2018?达州 ?3 分)如图、 Rt △ ABC中、∠ C=90°、 AC=2、 BC=5、点 D 是 BC 边上一点且 CD=1、点 P 是线段 DB上一动点、连接 AP、以 AP为斜边在 AP的下方作等腰 Rt△ AOP.当 P 从点 D 出发运动至点 B 停止时、点O的运动路径长为.【分析】过 O点作 OE⊥ CA于 E、 OF⊥ BC于 F、连接 CO、如图、易得四边形 OECF为矩形、由△ AOP为等腰直角三角形获取 OA=OP、∠ AOP=90°、则可证明△ OAE≌△ OPF、所以 AE=PF、OE=OF、依照角均分线的性质定理的逆定理获取 CO均分∠ ACP、进而可判断当 P 从点 D出发运动至点 B 停止时、点 O的运动路径为一条线段、接着证明CE=(AC+CP)、尔后分别计算P 点在 D 点和 B 点时 OC的长、进而计算它们的差即可获取P 从点 D【解答】解:过O点作 OE⊥ CA于 E、 OF⊥ BC于 F、连接 CO、如图、∵△ AOP为等腰直角三角形、∴OA=OP、∠ AOP=90°、易得四边形OECF为矩形、∴∠ EOF=90°、 CE=CF、∴∠ AOE=∠POF、∴△ OAE≌△ OPF、∴A E=PF、 OE=OF、∴C O均分∠ ACP、∴当 P 从点 D 出发运动至点 B 停止时、点 O的运动路径为一条线段、∵AE=PF、即 AC﹣ CE=CF﹣CP、而 CE=CF、∴C E= (AC+CP)、∴OC= CE=(AC+CP)、当 AC=2、 CP=CD=1时、 OC=×(2+1)=、当 AC=2、 CP=CB=5时、 OC=×(2+5)=、∴当 P 从点 D 出发运动至点 B 停止时、点O的运动路径长=﹣=2.故答案为2.【议论】此题观察了轨迹:灵便运用几何性质确定图形运动过程中不变的几何量、进而判断轨迹的几何特色、尔后进行几何计算.也观察了全等三角形的判断与性质.3.( 2018?湖州?4 分)在每个小正方形的边长为1 的网格图形中、每个小正方形的极点称为格点.以极点都是格点的正方形ABCD的边为斜边、向内作四个全等的直角三角形、使四个直角极点E、 F、 G、 H 都是格点、且四边形EFGH为正方形、我们把这样的图形称为格点弦图.比方、在如图1所示的格点弦图中、正方形ABCD 的边长为、此时正方形EFGH的而积为 5.问:当格点弦图中的正方形ABCD的边长为时、正方形EFGH 的面积的所有可能值是13 或 49(不包括5).【分析】当 DG=、CG=2222、可得正方形 EFGH的面积为 13.当 DG=8、时、满足 DG+CG=CD、此时 HG=222EFGH的面积为 49.CG=1时、满足 DG+CG=CD、此时 HG=7、可得正方形【解答】解:当 DG=、 CG=2时、满足222、可得正方形EFGH的面积为 13.DG+CG=CD、此时 HG=当 DG=8、 CG=1时、满足222DG+CG=CD、此时 HG=7、可得正方形 EFGH的面积为 49.故答案为13 或 49.【议论】此题观察作图﹣应用与设计、全等三角形的判断、勾股定理等知识、解题的要点是学会利用数形结合的思想解决问题、属于中考填空题中的压轴题.4.(2018?金华、丽水? 4分)如图、△ABC的两条高 AD 、 BE 订交于点 F、请增加一个条件、使得△ADC ≌△ BEC(不增加其他字母及辅助线)、你增加的条件是________.【分析】【解答】从题中不难得出∠ADC=∠BEC=90°、而且∠ACD=∠ BCE(公共角)、则只需要加一个对应边相等的条件即可、所以从“ CA=CB、CE=CD、BE=AD”中添加一个即可。
2021年全国各地中考数学真题分类汇编 三角形(湖北专版)(解析卷)
2021年全国各地中考数学真题类汇编(湖北专版)三角形答案与试题解析一.选择题(共7小题)1.(黄石)如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:①以B为圆心,任意长为半径作弧,分别交BA、BC于M、N两点;②分别以M、N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作射线BP,交边AC于D点.若AB=10,BC=6,则线段CD的长为( )A.3B.C.D.解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC===8,∵S△ABD+S△BCD=S△ABC,∴•DE×10+•CD×6=×6×8,即5CD+3CD=24,∴CD=3.故选:A.2.(襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为( )A.10尺B.11尺C.12尺D.13尺解:设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2﹣h2=(10÷2)2,解得h=12,∴水深为12尺,故选:C.3.(鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )A.1米B.(4﹣)米C.2米D.(4+)米解:连接OC交AB于D,连接OA,∵点C为运行轨道的最低点,∴OC⊥AB,∴AD=AB=3(米),在Rt△OAD中,OD===(米),∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,故选:B.4.(十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是( )A.(15+)m B.5m C.15m D.(5+)m解:由题意可得,四边形ABCD是矩形,BC=15m,AB=1.5m,∴BC=AD=15m,AB=CD=1.5m,在Rt△ADE中,∠EAD=30°,AD=15m,∴DE=AD•tan∠EAD=15×=5(m),∴CE=CD+DE=(5+1.5)(m).故选:D.5.(恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是( )A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD解:由图可得,BC==2,CD==,BD==5,∴BC2+CD2=(2)2+()2=25=BD2,∴△BCD是直角三角形,∵EF∥GD,∴△BFE∽△BGD,∴,即,解得EF=1.5,∴CE=CF﹣EF=4﹣1.5=2.5,∴=,故选项A错误;由图可知,显然△ABC和△CBD不全等,故选项B错误;∵AC=2,CD=,∴AC≠CD,故选项C错误;∵tan∠ABC==,tan∠==,∴∠ABC=∠CBD,故选项D正确;故选:D.6.(随州)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了( )A.1米B.1.5米C.2米D.2.5米解:如图所示,在Rt△ABC中,AC=sinα×AB==6(米);在Rt△DEC中,DC=cosβ×DE==6(米),EC===8(米);∴AE=EC﹣AC=8﹣6=2(米).故选:C.7.(宜昌)如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为( )A.B.C.D.解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.二.填空题(共5小题)8.(黄石)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=5米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为45°,则电线杆AB的高度约为 10.5 米.(参考数据:≈1.414,≈1.732,结果按四舍五入保留一位小数)解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4米,∴DF=2米,CF=(米),由题意得∠E=45°,∴EF=DF=2米,∴BE=BC+CF+EF=5+2+2=(7+2)米,∴AB=BE=7+2≈10.5(米),故答案为10.5.9.(湖北)如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s.同时在地面C处分别测得A处的仰角为75°,B处的仰角为30°,则这架无人机的飞行高度大约是 20 m(≈1.732,结果保留整数).解:过A点作AH⊥BC于H,过B点作BD垂直于过C点的水平线,垂足为D,如图,根据题意得∠ACD=75°,∠BCH=30°,AB=3×10=30m,∵AB∥CD,∴∠ABH=∠BCD=30°,在Rt△ABH中,AH=AB=15m,∵tan∠ABH=,∴BH===15,∵∠ACH=∠ACD﹣∠BCD=75°﹣30°=45°,∴CH=AH=15m,∴BC=BH+CH=(15+15)m,在Rt△BCD中,∵∠BCD=30°,∴BD=BC=≈20(m).答:这架无人机的飞行高度大约是20m.故答案为20.10.(恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故26.11.(随州)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,并使点C′落在AB边上,则点B所经过的路径长为 π .(结果保留π)解:在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,∴∠BAC=60°,cos∠ABC=,∴AB=2,∵将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,∴∠BAB'=∠BAC=60°,∴点B所经过的路径长==π,故π.12.(荆州)如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为 6.3 cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=8(cm),∠ABM=90°﹣60°=30°,故6.3.三.解答题(共10小题)13.(黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.14.(湖北)已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图1,当BC=CD时,作△ABC的中线BF;(2)如图2,当BC≠CD时,作△ABC的中线BG.解:(1)如图1中,线段BF即为所求.(2)如图2中,线段BG即为所求.15.(襄阳)如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为52°,观测旗杆底部B的仰角为45°,求旗杆AB的高度(结果保留小数点后一位.参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.41).解:在Rt△BCD中,∵tan∠BDC=,∴BC=CD•tan∠BDC=20×tan45°=20(m),在Rt△ACD中,∵tan∠ADC=,∴AC=CD•tan∠ADC=20×tan52°≈20×1.28=25.6(m),∴AB=AC﹣BC=5.6(m).答:旗杆AB的度约为5.6m.16.(荆门)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)若AB=3,BE=x,用x表示DF的长.(1)证明:∵正方形ABCD,∴∠B=90°,AB=BC,∵FH⊥BH,∴∠H=90°=∠B,∠F=90°﹣∠FEH,∵∠AEF=90°,∴∠AEB=90°﹣∠FEH,∴∠AEB=∠F,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS),∴EH=AB=BC,BE=FH,∴EH﹣EC=BC﹣EC,即CH=BE;(2)连接DF,过F作FP⊥CD于P,如图:∵∠H=∠DCH=∠FPC=90°,∴四边形PCHF是矩形,由(1)知:BE=FH=CH,∴四边形PCHF是正方形,∴PF=CP=CH=BE=x,∵DC=AB=3,∴DP=DC﹣CP=3﹣x,Rt△DPF中,DF=,∴DF==.17.(鄂州)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之间的距离;(2)求C地与信号发射塔P之间的距离.(计算结果保留根号)解:(1)依题意知:∠PAB=45°,∠PBG=15°,∠GBC=75°,过点B作BD⊥AP于D点,∵∠DAB=45°,,∴AD=BD=4,∵∠ABD=∠GBD=45°,∠GBP=15°,∴∠PBD=60°,∵BD=4,∴,∴PA=(4+4)(km);(2)∵∠PBD=60°,BD=4,∴PB=8,过点P作PE⊥BC于E,∵∠PBG=15°,∠GBC=75°,∴∠PBE=60°,∵PB=8,∴BE=4,,∵BC=12,∴CE=8,∴PC=4(km).18.(十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.解:(1)证明:如图,在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴AF=FC,∴平行四边形AECF是菱形.(2)如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,∴GE=AE=1,AG=GE=,∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=,∴AB=BG=.19.(随州)如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:△ABE≌△CDF;(2)证明四边形BEDF是菱形.证明:(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)如图,连接BD,交AC于O,∵四边形ABCD是菱形,∴BD⊥AC,AO=CO,BO=DO,∵AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,又∵BD⊥EF,∴平行四边形BEDF是菱形.20.(宜昌)如图,在△ABC中,∠B=40°,∠C=50°.(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的 垂直平分线 ,射线AE是∠DAC的 角平分线 ;(2)在(1)所作的图中,求∠DAE的度数.解:(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的垂直平分线,射线AE是∠DAC的角平分线.故垂直平分线,角平分线.(2)∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=B=40°,∵∠B=40°,∠C=50°,∴∠BAC=90°,∴∠CAD=50°,∵AE平分∠CAD,∴∠DAE=∠CAD=25°.21.(恩施州)乡村振兴使人民有更舒适的居住条件,更优美的生活环境,如图是怡佳新村中的两栋居民楼,小明在甲居民楼的楼顶D处观测乙居民楼楼底B处的俯角是30°,观测乙居民楼楼顶C处的仰角为15°,已知甲居民楼的高为10m,求乙居民楼的高.(参考数据:≈1.414,≈1.732,结果精确到0.1m)解:作DE⊥BC于E,CF⊥BD于F,在Rt△BED中,BE=AD=10m,∠EDB=30°,∴∠EBD=60°,BD=2BE=20m,在Rt△CBF中,∠CBF=60°,∴BF=BC,CF=BC,在Rt△CDF中,∠CDF=45°,∴DF=CF=BC,∵BD=BF+DF,∴BC+BC=20,∴BC=≈14.6(m),答:乙居民楼的高约为14.6m.22.(荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.。
全国各地中考数学分类汇编:全等三角形(含解析)
全等三角形一.选择题1. (2016·陕西·3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.2. (2016·辽宁丹东·3分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB 的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.3. (2016·黑龙江龙东·3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4 B.3 C.2 D.1【考点】四边形综合题.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.4.(2016·湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选(B)5.(2016·山东省德州市·3分)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=.上述结论中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;旋转的性质.【分析】①作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.②由①Rt△AME≌Rt△FNE,即可得到结论正确;③经过简单的计算得到BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,④用面积的和和差进行计算,用数值代换即可.【解答】解:①如图,在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.∵AM不一定等于CN,∴AM不一定等于CN,∴①错误,②由①有Rt△AME≌Rt△FNE,∴∠AME=∠BNE,∴②正确,③由①得,BM=CN,∵AD=2AB=4,∴BC=4,AB=2∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,∴③正确,④如图,由①得,CN=CF﹣FN=2﹣AM,AE=AD=2,AM=FN∵tanα=,∴AM=AEtanα∵cosα==,∴cos2α=,∴=1+=1+()2=1+tan2α,∴=2(1+tan2α)∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN=(AE+BN)×AB﹣AE×AM﹣BN×BM=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)=AE+AM﹣AE×AM+AM2=AE+AEtanα﹣AE2tanα+AE2tan2α=2+2tanα﹣2tanα+2tan2α=2(1+tan2α)=.∴④正确.故选C.【点评】此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是Rt△AME≌Rt△FNE,难点是计算S△EMN.二.填空题1. (2016·辽宁丹东·3分)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为(3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}).【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB 全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).2.(2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.三.解答题1.(2016·山东省东营市·10分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.【知识点】等腰三角形——等腰三角形的现性质、特殊的平行四边形——正方形的性质、旋转——旋转的特性、全等三角形——全等三角形的判判定和性质、相似三角形——相似三角形的判判定和性质【思路分析】(1)先用“SAS”证明△CAF ≌△BAD ,再用全等三角形的性质即可得BD =CF 成立;(2)利用△HFN 与△AND 的内角和以及它们的等角,得到∠NHF =90°,即可得①的结论;(3)连接DF ,延长AB ,与DF 交于点M ,利用△BMD ∽△FHD 求解. 【解答】(l)解:BD =CF 成立.证明:∵AC =AB ,∠CAF =∠BAD =θ;AF =AD ,△ABD ≌△ACF ,∴BD =CF . (2)①证明:由(1)得,△ABD ≌△ACF ,∴∠HF N =∠ADN ,在△HFN 与△ADN 中,∵∠HFN =∠AND ,∠HNF =∠AND ,∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF .②解:如图,连接DF ,延长AB ,与DF 交于点M . 在△MAD 中,∵∠MAD =∠MDA =45°,∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中,∵∠MDB =∠HDF ,∴△BMD ∽△FHD . ∴AB =2,AD =32,四边形ADEF 是正方形,∴MA =MD =322=3.∴MB =3-2=1,DB =12+32=10. ∵MD HD =BD FD .∴3 HD =106. ∴DH =9105.【方法总结】本题考查了全等三角形的判判定和性质,全等三角形的性质是证明等角、等线段的最为常用的方法;图形的旋转中,对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;2.(2016·云南省昆明市)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.3. (2016·重庆市A卷·7分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.4. (2016·重庆市B卷·7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.5. (2016·浙江省绍兴市·8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.6.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD 于H,点O是AB中点,连接OH,则OH=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH= ,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°CH⊥BD,∵AC=BC=3,CD=1,∴BD= 10,∴△CDH∽△BDC,∴,∴CH= ,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.7.(2016·广西桂林·8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F 分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)如图所示;(2)由全等三角形的判定定理SAS证得△BEO≌△DFO,得出全等三角形的对应边相等即可.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.又∵E,F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF.∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),∴BE=DF.8.(2016·广西百色·8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.9.(2016·贵州安顺·10分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.10.(2016·黑龙江哈尔滨·8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE 于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ11.(2016广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.12.(2016贵州毕节)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC 与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.3.(2016河北)(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图解析:证明三角形全等的条件,SSS,SAS,ASA,AAS,直角三角形(HL),此题中只给了边,没有给角,又不是直角三角形,只能用SSS证明,用已知去求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学试题分类汇编:考点21 全等三角形一.选择题(共9小题)1.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.3.(2018•河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.4.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b ﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.6.(2018•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.7.(2018•成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.8.(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选:B.9.(2018•绵阳)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB 的面积.再求出OA与OB的比值即可解决问题;【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CD B=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S△ABC=×2×2=2,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,∴S△AOC=2×=3﹣,故选:D.二.填空题(共4小题)10.(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.11.(2018•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB ∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED (只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.12.(2018•绍兴)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.13.(2018•随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=×BD×OE=×BE×DF,可得DF=,进而得出EF=,再根据S△ABF=S梯形ABFD﹣S△ADF,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,∵S△BDE=×BD×OE=×BE×DF,∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,EF==,∵S△ABF=S梯形ABFD﹣S△ADF,∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.三.解答题(共23小题)14.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).15.(2018•云南)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.16.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.17.(2018•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC 即可.(2)根据全等三角形的性质即可解决问题.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.18.(2018•通辽)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.19.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【解答】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E.21.(2018•恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.22.(2018•哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF 得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.23.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.24.(2018•咸宁)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD ≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=O C=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.25.(2018•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;26.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).27.(2018•宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.28.(2018•铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;29.(2018•温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.30.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.31.(2018•苏州)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.32.(2018•嘉兴)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.33.(2018•滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BA D=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.34.(2018•怀化)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.35.(2018•娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.36.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。