砌体结构裂缝成因及预防措施

合集下载

砌体结构裂缝成因及预防措施

砌体结构裂缝成因及预防措施

砌体结构裂缝成因及预防措施砌体结构裂缝成因及预防措施砌体结构是建筑中一种常见的结构形式,它采用砖、石等材料砌筑而成。

但随着时间的推移和使用条件的变化,很容易出现裂缝等损害,降低了结构的安全性和使用寿命。

因此,对于砌体结构的裂缝成因及预防措施,这是一个必须关注并实际应用的技术。

一、砌体结构裂缝的成因1.地基不均匀沉降地基的不均匀沉降是导致砌体结构裂缝的主要原因之一。

当地基沉降不均时,建筑物的上部将受到不同程度的偏移和扭曲,从而导致裂缝的形成。

2.温度变化温度变化也是导致砌体结构裂缝的原因之一。

在寒冬和炎热的夏季,由于温度的急剧变化,建筑物的砌体会出现收缩和膨胀,使得结构产生应力引起裂缝。

3.设计缺陷砌体结构的设计或者细节缺陷也是产生裂缝的原因之一。

例如,不合理的结构设计、构造细节或者选择素材不当等等,都可能导致结构强度不足,从而导致侧向位移、损坏和裂缝的产生。

二、预防砌体结构裂缝的措施1.地基处理为了防止砌体结构裂缝的出现,必须首先注意地基的处理。

正确的地基处理可以避免不均匀沉降的出现,以及减少因水土流失、潮湿或冻胀等现象所造成的影响。

在建造过程中必须注意地基的抗压性,不要在地基处理时匆忙地进行施工。

2.正确选择砌体材料除了合理的地基处理,正确的选择砌体材料也是防止砌体结构裂缝产生的关键。

选择高质量的砖块或石块可以保证结构的耐久性和强度。

同时,在施工场地上要选取干爽的场地,避免泥土混入筛子,石弦、草等杂物混入砖中,影响砌体结构的质量和坚固性。

3.结构的设计和施工正确的结构设计和施工也是预防砌体结构裂缝的重要措施。

在设计过程中要选用合理的结构设计方案,考虑到其承载和地基沉降的情况;施工方面要严格按照规范要求来进行,遵守各项施工安全要求,确保施工过程的稳定性和可持续性。

4. 使用合适的裂缝预防材料对于有特殊要求的砌体结构,可以考虑使用合适的裂缝预防材料来提高其抗裂能力。

例如,可在砌砖时添加高效橡胶材料,可以有效提高砌体的抗裂等性能,减少因温度与水分的历经所造成的对砌体结构的损伤。

砌体常见裂缝的原因分析与预防措施

砌体常见裂缝的原因分析与预防措施

砌体常见裂缝的原因分析与预防措施砌体出现裂缝是非常普遍的质量事故之一。

砌体轻微细小裂缝影响外观和使用功能,严重的裂缝可能影响砌体的承载力,甚至引起倒塌。

在很多情况下裂缝的发生与发展往往是重大事故的先兆,对此必须认真分析,妥善处理。

砌体中发生裂缝的原因主要有:地基不均匀沉降,地基不均匀冻胀,温度变化引起的伸缩,建筑材料使用不当及建筑构造处理不合理等。

一、地基不均匀沉降引起的裂缝(一)原因分析地基发生不均匀沉降后,沉降大的部分砌体与沉降小的部分砌体产生相对位移,从而使砌体中产生附加的拉力或剪力,当这种附加内力超过砌体的强度时,砌体中便产生裂缝。

这种裂缝往往与地面成45°左右夹角,上宽下窄,斜缝朝向凹陷处(沉陷大的部位)。

(二)预防措施预防地基不均匀沉降引起的裂缝主要措施有:1、合理设置沉降缝。

在房屋体型复杂,特别是高度相差大时,应设沉降缝。

沉降缝应从基础开始分开,且有足够的宽度。

2、加强上部结构的整体刚度,提高墙体的抗剪能力,使砌体可适应甚至调整地基的不均匀沉降。

3、加强地基验槽工作,发现有不良地基应及时妥善处理,然后才可进行基础施工。

4、不宜将建筑物设置在不同刚度的地基上,如同一区段建筑,一部分用天然地基,一部分用桩基等。

必须采用不同地基时,要妥善处理,进行必要的计算分析。

二、地基冻胀引起的裂缝(一)原因分析地基土上层温度降到0℃以下时,上部开始冻结,下部水由于毛细管作用不断上升在冻结层中形成冰晶,体积膨胀,使土体向上隆起。

隆起的程度与冻结层厚度及地下水位高低有关,一般隆起可达几毫米至几十毫米,其折算冻胀力可达2--10Mpa,而且往往是不均匀的。

建筑物的自重往往难以抗拒冻胀隆起的力,因而建筑物的某一局部就被顶了起来,和地基不均匀沉降类似地引起房屋开裂。

这类冻胀裂缝在寒冻地区的一、二层小型建筑物中很常见。

设计人员对冻胀危害性认识不足,认为是小建筑,基础埋浅一点就可以了;或者施工人员素质欠佳,遇到冻土很坚硬,难以开挖,擅自抬高基础埋深,从而造成冻胀裂缝。

砌体结构裂缝产生原因及整改措施(5篇模版)

砌体结构裂缝产生原因及整改措施(5篇模版)

砌体结构裂缝产生原因及整改措施(5篇模版)第一篇:砌体结构裂缝产生原因及整改措施砌体结构裂缝产生原因及整改措施裂缝的性质引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。

根据工程实践和统计资料这类裂缝几乎占全部可遇裂缝的80%以上。

而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,简称干缩裂缝,以及由温度和干缩共同产生的裂缝。

温度裂缝温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。

最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。

导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。

剪应力在墙体内的分布为两端附近较大,中间渐小,顶层大,下部小。

温度裂缝是造成墙体早期裂缝的主要原因。

这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。

干缩裂缝烧结粘土砖,包括其它材料的烧结制品,其干缩变形很小,且变形完成比较快。

[KG-*2]只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。

[KG-*2]但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。

[KG-*2]对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。

〖KG-*2〗如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。

轻骨料块体砌体的干缩变形更大。

干缩变形的特征是早期发展比较快,如砌块出窑后放臵28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。

但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。

浅谈砌体结构裂缝成因分析及预防措施

浅谈砌体结构裂缝成因分析及预防措施

浅谈砌体结构裂缝成因分析及预防措施砌体结构墙体裂缝从大的方面可分为受力裂缝与非受力裂缝两大类。

各种荷载直接作用下墙体产生的相应形式的裂缝,称为受力裂缝,如结构的强度不足、刚度不足、稳定不足等产生的裂缝。

而砌体收缩、湿度变化、地基沉降不均匀等引起的裂缝是非受力裂缝,又称变形裂缝,这类裂缝几乎占全部可见裂缝的80%左右。

一、裂缝成因分析1.外荷载破坏裂缝混凝土砌体在集中荷载作用下易产生裂缝,其原因是混凝土砌体的抗剪及抗拉应力与砖砌体相比仅为砖砌体的45%~58%,由于混凝土砌块砌体刚度与砖砌体相比较易产生应力集中,常沿砌体灰缝产生拉裂,原本是抗拉和抗剪强度较低的砌块砌体却又受到了较大拉和剪的作用,因此,最容易产生裂缝。

2.差异沉降引起的裂缝砌体结构墙体基础往往以条形基础或板式基础为主,允许有一定的沉降量和差异沉降量,特别是在深厚软弱地基地区其沉降量和差异沉降量更大。

由于这种较大的沉降量和差异沿沉降量,加之砌块结构变形协调能力要比传统的砖混结构差,致使墙体在变形挠曲作用下产生较大的剪应力或主拉应力,墙体极易产生裂缝。

3.温度裂缝温度的变化会引起材料的热胀、冷缩,在约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝混凝土砌块砌体的线膨胀系数比砖砌体的大1倍,因此小型砌块砌体对温度的敏感性比砖砌体高,更容易因温度变形引起裂缝。

温度裂缝的特点是:向阳面墙体多于背阳面、夏季多于冬季,屋面设置保温隔热层的结构墙体裂缝少。

而未设置或设置了但达不到保温隔热目的的房屋则裂缝较多,顶层设置构造柱越密,设置圈梁的墙体裂缝越少,反之则越多。

温度裂缝一般呈对称分布;温度裂缝一般在房屋的顶层,偶尔才向下发展;温度裂缝经一年后基本稳定,不再扩展。

4.干缩裂缝黏土砖是由黏土制坯经烧结而成的,成品后干缩极小,且变形完成比较快。

只要不使用新出窑的砖,一般不考虑砌体本身的干缩变形引起的附加应力。

另外,这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。

砌体结构裂缝成因和防治措施

砌体结构裂缝成因和防治措施
强度不够 , 这些都会造成整个砌体 的强 度不够 。而造成砂浆强度偏低 的原 因是 使用 了不合格 的水泥 , 施 工配合 比不准确 , 施工时不润湿砖等 。砌体质量较差或砌体灰缝 饱满度 不当 , 也会 影响到砌体 的强度 , 而这些 都可能在砌 体结构 中产生裂缝 。 预防措施 : ①严把质量关 , 坚决杜绝使用不合格建筑材料 。 ② 制订合理的施工措施 , 做到过程控制 。
体性比较差 , 抗拉和抗 剪强度低 , 容易产生裂缝。而一般裂缝 为细 小的, 往往被人忽略 , 但长 时间后 , 裂缝会扩大面积 , 降低建筑物的抗震 能力。砌体裂缝种类很 多, 形态各异, 而引起裂 缝 的原 因有温度 变化 、 地基 不均 匀沉降、 荷载增加 、 设 计不合理 、 材料 选用不 当等 多种 因 素。 以下对砌 体裂缝分析 了一些预 防措施 , 以期 为今后 的施工人 员积 累一些有 益的经验 。 关键词 :砌体结构 ; 裂缝原 因; 防治措施 中图分类号 :T U7 4 6 . 3 文献标识码 :A 文章编 号 : 1 0 0 0 — 8 1 3 6 ( 2 0 1 3 ) 1 8 — 0 0 9 1 — 0 2
随着建筑行业 的发展 , 砌体结构 出现各种形式的裂缝 , 程度
温度变化引起的裂缝 一般 出现在墙体上 。 热胀冷缩温度变化
轻重不一 。 轻者影响美观 , 造成漏水 ; 严 重者影响使用功能 , 形成 结构安全 隐患 , 降低结构 的承载力 、 刚度 、 稳定性 、 整体性 和耐久 性 。分析产生裂缝的原因 , 采取防止措施 , 就显得尤为重要 。
刘 锐: 砌体结构裂缝成因和防治措施
砌 体 结构 裂 缝成 因和 防治 措 施
刘 锐
( 山西一建集 团有 限公 司,山西 临汾 0 4 3 0 0 0 )

砌体结构裂缝产生原因分析及控制措施

砌体结构裂缝产生原因分析及控制措施

砌体结构裂缝产生原因分析及控制措施砌体结构是目前常见的一种建筑结构形式,它由砖块或石块以特定的方式堆砌而成。

然而,在使用和施工过程中,砌体结构常常会出现裂缝,给结构的稳定性和安全性带来潜在威胁。

因此,分析砌体结构裂缝产生原因,并采取相应的控制措施非常重要。

本文将从以下几个方面进行分析和探讨。

一、裂缝产生的原因分析1.自重荷载:砌体结构的自重是一种常见的荷载,它会产生沉降和变形,进而导致结构内部和外部出现裂缝。

2.温度影响:砌体结构在温度变化的影响下,会发生热胀冷缩,其中冷缩是较为常见的情况。

冷缩会使得砌体结构收缩,从而引起裂缝的产生。

3.构造收缩:砌体结构中的材料在一定的湿度条件下会发生变形和收缩,这也是裂缝产生的原因之一4.地基沉降:砌体结构在底部支撑不良的情况下,地基会发生沉降,导致结构产生变形和裂缝。

5.不均匀荷载:不均匀荷载的作用会导致砌体结构中产生应力集中的现象,进而产生裂缝。

二、控制措施1.设计阶段控制:在砌体结构的设计阶段,应该充分考虑结构的稳定性和变形控制,选择合适的材料和结构形式,并进行适当的结构计算和模拟分析,以减少裂缝的产生。

2.施工阶段控制:在砌体结构的施工过程中,应严格控制混凝土的浇筑工艺和材料的质量,确保结构的均匀性和稳定性。

3.增加伸缩缝:在砌体结构的设计和施工中,应合理设置伸缩缝,以减少温度和收缩引起的裂缝。

4.加强地基处理:在砌体结构的地基处理中,应采取适当的措施来增加地基的承载能力和稳定性,以减少地基的沉降和变形。

5.定期维护检查:定期对砌体结构进行维护检查,及时发现和修复裂缝,预防裂缝的进一步扩大和影响结构的安全性。

综上所述,砌体结构裂缝的产生是由于多种原因的综合作用,要有效控制裂缝的产生,需要在设计、施工和维护过程中全面考虑和采取相应的措施。

只有通过科学合理的控制措施,才能提高砌体结构的稳定性和安全性。

填充墙砌体开裂原因及控制措施

填充墙砌体开裂原因及控制措施

填充墙砌体开裂原因及控制措施1.施工质量不合格:填充墙施工时,如果层块粘贴不均匀,砂浆配比不当,或者施工速度过快,都可能导致砌体开裂。

这是填充墙开裂的最常见原因之一2.材料问题:使用质量差的砌块或砂浆,或者未经过严格的检查和测试的材料,也会导致填充墙砌体开裂。

砌块的质量差会导致砌体强度不足,而砂浆质量差则会降低填充墙的粘结强度。

3.温度变化:在温度变化较大的地区,填充墙的砌体开裂较为常见。

因为温度的升降会导致填充墙材料发生膨胀和收缩,进而导致砌体产生应力,最终导致开裂。

4.地基沉降:建筑物的基础沉降不均匀,或者地基土壤承载力不足,都可能导致填充墙开裂。

地基沉降会导致墙体发生变形,引起砌体应力过大,从而引发开裂。

针对填充墙砌体开裂的控制措施如下:1.加强施工管理:加强对填充墙施工质量的把控,提高工人的施工技术水平和质量意识。

确保施工过程中砌块的粘贴均匀,砂浆配比合理,施工速度适中。

2.选择质量可靠的材料:保证使用规格符合要求、质量可靠的砌块和砂浆。

对材料进行必要的检查和测试,确保其符合相应的标准和要求。

3.控制温度变化:在温度变化较大的地区,可采取适当的措施来控制填充墙的温度变化。

例如在施工过程中避免高温施工,使用遮阳网等措施防止砌体的过度干燥。

4.加强地基处理:在设计和施工中加强地基处理,确保地基的均匀沉降并提高地基土壤的承载力。

可以采用灌浆加固、地基加固等措施来解决地基问题,从而减少填充墙的开裂概率。

5.监测和维修:在填充墙施工完成后,及时对墙体进行监测,并在发现裂缝时及时采取维修措施。

对于已经发生开裂的填充墙,可以采用填堵、钢筋加固等方法来修复裂缝。

综上所述,填充墙砌体开裂的原因多种多样,因此需要采取多种控制措施来减少填充墙开裂的概率。

只有通过加强施工管理、选择合适的材料、控制温度变化、加强地基处理以及监测和维修等措施的综合应用,才能有效地控制填充墙砌体开裂问题,保证建筑物的安全和稳定。

砖砌体裂缝产生的原因及防治措施

砖砌体裂缝产生的原因及防治措施
关键词 : 砖砌体 ; 裂缝 ; 防治措施 中图分类号: U32 T 6 文献标识码 : A 文章编号 :6 35 8 (0 8 0 —7 7O 1 7—7 1 2 O )60 9一2
0 引

因不与其 同步变形而受到拉力作用, 产生较大的拉应 力和剪应力 , 并较大地分布在顶层砌体两端附近。这 种裂缝常见于平屋顶顶层 的两端砌体上 , 以门窗洞 口 边的正八字斜裂缝为典型代表。还见于屋顶梁下沿
缩裂缝和地基不均匀沉降裂缝 。由 自 身荷载或外部 荷载 ( 超载 ) 引起 的裂缝 称 为荷 载裂缝 。
1 1 温度 裂缝 .
砌体的抗拉、 抗弯 、 抗剪强度很低 , 所以砌体对地
基 不均 匀沉 降十分 敏 感 , 当地 基 土 较软 、 建筑 物 较 长
时, 建筑物中部沉降大, 将产 生在两端部呈八字形分 布的斜裂缝 , 局部存在较弱土层时, 在局部沉降大的 部位 产 生斜裂 缝 。
14 荷 载裂 缝 . 砌 体 结构设 计 时一 般 只进 行 承 载力 极 限状态 计 算, 正常使 用极 限状 态往 往 由构 造措 施来满 足 。裂缝
温度变化会引起砌体材料的热胀冷缩 , 砖砌体房 屋在约束条件下 , 当温度引起的变形在构件 中产生的
温度应力大于砌体 的抗拉强度时, 砌体就会产生温度
砌体材料块材 中尤其是烧结黏土砖 , 干缩变形很
小 而且完 成较 快 , 要不 使 用 新 出 窑 的砖 , 般 不考 只 一
虑干缩变形引起的附加应力 , 但这类砌体在遇水潮湿 会产生较大的湿胀 , 并且变形不可恢复。蒸压砖和砌 块当含水量下降时 , 会产生较大的干缩变形, 使砌体
产生 较多 、 较严 重 的干缩变 形 。常见 的此类 裂缝 位于 内外 纵墙 的 中间部 位 , 对称 的倒 八 字形 分布 , 宽 呈 上 下窄 , 建筑 的二层 以下 窗 台边 缘 呈 斜 裂缝 、 向裂 缝 竖 分布 , 顶 梁下呈 水平 裂缝 分布 。 屋

砌体结构变形裂缝成因及预防措施

砌体结构变形裂缝成因及预防措施
科 学 论 坛
砌体 结构变形裂缝 成 因及 预 防措施
韩 玲
砌体结构 的房屋裂缝形式 很多, 且其裂缝程度 轻重不一 , 影 响房屋正 常使用和外观, 严重的将造成结构安全 隐患, 甚至发生工程事故。 砌体 因收缩 、 温度、 湿度变化, 地基沉 陷不均等 引起 的裂缝是非受力裂 缝, 又称变形裂缝 。 砌体房屋 的裂缝 中变形裂缝 占 8 0 %以上 , 其 中温度裂缝 更为突 出。
’ 混凝土砌块是混凝土拌合物经浇注 、 振捣 、 养生而成。 混凝土在硬化过 程 中逐渐 失水而 干缩 , 砌千缩量 因材料和成型质量 而异, 并随 时间增长而 逐渐减小 。 在 自然条件下 , 成型 2 8天后, 混凝土砌块 收缩趋于稳定 。 其干缩 率为 0 . 0 3 %~ 0 . 0 3 5 %, 含水量在 5 0 %~ 6 0 %左右 。 砌成砌体后 , 在正常使用条 件下, 含水量继续下降, 可达 1 0 %左右, 其干缩率 为 0 . 0 1 8 %~ 0 . 0 7 %[ 6 ] 。 对于 干缩 已趋稳定的混凝土砌块, 如再次被浸湿后 , 会再次 发生干缩 , 通常称为
在 潮 湿 的 空气 中 它 开 始 膨 胀 , 在 开 始 的 几 个 星 期 内膨 胀 最 大 , 膨 胀会 以很 低 的速 率 持 续 几 年 , 砖 的 长 期湿 膨 胀 在 0 . 0 0 0 2和 0 . 0 0 0 9之 间[ 5 ] 。
现浇混凝土挑檐的长度大于 1 2 m时, 宜设置分隔缝 , 分隔缝的宽度不 应小 于2 0 am,缝 内用弹性油膏嵌缝;( r 4 ) 建筑物温度伸 缩缝 的间距戍 满足 现行 《 砌体结构设计规范》的规 定, 控制缝宜在 建筑 物墙体 的适 当部位设置 , 控 制缝的间距 不宜大于 3 0 m。( 5 ) 非地震地区, 在房屋顶 宜设钢 筋混凝士 梁。 若采用钢筋混凝土圈梁, 圈梁不宜外露 。 若不设圈梁, 可在屋盖四周桅 口下的砌体 内, 配置适当转角钢筋。 二) 墙体 材 料 的干 缩 引 起 的 开 裂

砌体结构常见裂缝的成因鉴别及控制措施

砌体结构常见裂缝的成因鉴别及控制措施

砌体结构常见裂缝的成因鉴别及控制措施一、裂缝成因的鉴别1.荷载引起的裂缝:该类裂缝是由于负荷的作用力超过了砌体材料的承载能力所导致的。

例如,长期受到重力荷载、风载、温度应力、地震力等作用,会导致砌体结构的变形和裂缝的产生。

2.材料本身质量问题引起的裂缝:材料本身的质量问题是引起砌体结构裂缝的常见原因之一、例如,砌块表面存在较大的空鼓、疏松、粘结不良等问题,或者砂浆中添加剂掺入不当、配合比设计不合理等,都会引起砌体结构的破坏和裂缝的产生。

3.施工操作不当引起的裂缝:施工操作不当也是砌体结构裂缝的常见原因之一、例如,砌块浸湿程度不均匀、墙体防水层施工不到位、砂浆涂抹厚度不一致等都会导致砌体结构的裂缝产生。

4.温度变化引起的裂缝:由于温度变化引起的热胀冷缩是造成砌体结构裂缝的主要原因之一、随着温度的变化,砌体材料会发生体积的膨胀和收缩,如果受到阻碍,就会产生应力,从而导致裂缝的产生。

二、控制裂缝的措施在砌体结构的施工过程中,应采取以下控制措施来防止和治理裂缝的产生:1.针对荷载引起的裂缝,可以通过加强结构的强度设计、选择合适的材料、合理布置钢筋等方式来增强结构的抗荷载能力,以减少裂缝的产生。

2.针对材料本身质量问题引起的裂缝,可以在采购材料时选择合格的供应商和材料,加强材料的质量控制,确保砌块和砂浆的质量符合标准要求。

3.针对施工操作不当引起的裂缝,可以加强施工人员的培训,确保施工操作规范,严格按照设计要求进行施工,特别是在砌块浸湿、外墙防水层施工、砂浆涂抹等环节要严格控制。

4.针对温度变化引起的裂缝,可以在设计过程中预留适当的伸缩缝,以减少砌体结构受温度变化的影响。

此外,还可以合理选择砌体材料,降低砌体的应力集中,减少裂缝的发生。

5.定期进行砌体结构的检测和维护,对有裂缝的部位进行及时修复和加固,防止裂缝的扩大和破坏。

总结:砌体结构裂缝的成因复杂多样,我们在设计和施工过程中要充分考虑各种因素,采取相应的控制措施,以预防和控制裂缝的发生。

砌体结构裂缝产生的原因与防治措施

砌体结构裂缝产生的原因与防治措施

应 的施 工质量控制等级的要求 ,施 工现场的项 目部应加强 质量
管理, 建立 质量管理制 度 , 制定施工技术标 准 , 建立质量管理体 系和质量保证体 系 ; 二 是严格控制 建筑物 的轴线 、 标高, 做好轴
窗 台梁 , 窗台梁 的高度为砖高 的模数 ; 五是建筑物 的体型力求 简
重要因素 。 2 . 环境 温 差 、 干 湿 度 影 响 造 成 的 结 构 裂缝 。 ( 1 ) 原因分析 : 一
时, 在薄 弱的水平 灰缝 中将产生水平裂缝 ; 三是 当自然温度变化 管理 , 提高施工质量 。 确保砂浆 、 砌体强度符合设计要求 , 采取三

砌筑法 。确保砖砌体砂浆饱满度 , 严禁干砖砌墙 , 并做好砌体
约束产生应力 , 当拉伸变形超过砌体变形极 限时, 在洞 口应力 比
较 集中 , 所 以大多数裂缝从 窗 口对角线 向外扩展 , 靠近窗洞 口处 裂 缝宽度最大 ; 四是屋面受 阳光照射 时间相对较 长 , 辐射热 高 , 变形也 大 , 因应力分布是不 均匀 的 , 即建筑物中间小 , 两端大。当 建 筑物的构造不 当 , 砌体 的断 面较小 , 且小 于主拉力 时 , 就会 出
1 1 / 5 , 大陆桥视野
2 . 强化基础 工程 中测量控 制。测量取数是基础工程施工 的
依据 ,任何工程技术 的正确运用都应 当建立在对实际工程要 素 和环境 的精确测量数 据之 上 ,这一点对于高层建筑基础工程施 工而言尤为重要 。 在桩基基础工程施工过程中的桩位施工来讲 , 应 当确保工 程施 工的规范相符性 , 严 格依 据测量承 台的桩位 , 控
建 筑的影响 。一般而言 , 常用的应对基础沉降 的方法有 三种 : 第

建筑砌体裂缝的产生原因与防治措施

建筑砌体裂缝的产生原因与防治措施

1 2 3
预防温度应力影响
在施工过程中考虑温度变化对砌体产生的影响, 采取相应措施减小温度应力,防止因温度应力导 致裂缝产生。
控制地基不均匀沉降
对地基进行充分勘察和设计,确保地基的稳定性 和均匀承载能力,避免因地基不均匀沉降导致砌 体裂缝产生。
避免外部冲击和振动
防止外部冲击和振动对砌体造成的影响,如在砌 体周围禁止重型机械作业,避免因振动导致裂缝 产生。
提高砌体结构的安全性和耐久性
02
建筑砌体裂缝的产生原因
施工因素
施工工艺不规范
施工时没有严格按照规范进行,导致砌体结构受力不均,产生裂 缝。
施工过程管理不到位
施工现场管理混乱,对施工人员的操作缺乏有效监督,容易产生质 量隐患。
缺乏养护措施
砌体结构施工完成后,没有采取适当的养护措施,导致砌体结构开 裂。
03
建筑砌体裂缝的防治措施
施工过程中的防治措施
严格控制施工流程
确保砌体施工过程中的流程符合 规范,特别是要控制好砌体的垂 直度和饱满度,避免因施工流程
不当导致裂缝产生。
强化施工质量控制
建立完善的施工质量管理体系,加 强对施工人员的培训和考核,保证 砌体施工过程中的质量符合标准。
及时处理施工缺陷
在施工过程中发现的问题,应及时 采取措施处理,避免问题累积导致 裂缝产生。
工程实例三:某桥梁工程墩柱裂缝
• 施工工艺问题:墩柱施工过程中没有按照规范操作,导致 墩柱内部存在质量缺陷。
工程实例三:某桥梁工程墩柱裂缝
防治措施
加强交通管理,限制车辆超载,减轻桥梁的荷载 负担。
加强施工质量控制,确保墩柱施工过程严格按照 规范操作。
从实例中吸取的经验教训

试析砌体结构墙体裂缝原因和防治措施

试析砌体结构墙体裂缝原因和防治措施

试析砌体结构墙体裂缝原因和防治措施一、砌体结构墙体裂缝产生的主要原因1.地基不均匀沉降引起的墙体裂缝由于地质勘探不利,没有搞清地基土层情况,很容易引起地基的不均匀沉降。

当房屋中部的下沉值较两端大时,形成正向弯曲而造成正八字缝;房屋中部的下沉值较两端小时,其形成反向弯曲而造成倒八字缝。

这种情况与第一种情况正好相反;当房屋一端地基较弱,建筑物一端较高或荷载较大时,造成一端沉降大而出现斜裂缝;当房屋出现正八字缝和倒八字缝时,若房屋的刚度较弱,随着沉降的加剧,会在八字缝的中间出现一些竖向裂缝,一般是由砌体内的主拉应力大于砌体的抗拉强度引起的。

2.温度引起的墙体裂缝这类裂缝比较容易出现在墙体与其它构件接触的地方,比如,墙体与圈梁的交接处。

这是因为,由于混凝土的线膨胀系数与普通砖砌体的线膨胀系数有相当大的差别,在相同温差下,混凝土的伸缩要比砖砌体大 1 倍左右。

所以当温度变化较大时,容易产生裂缝。

除了以上情况之外,局部荷载过大、施工工艺与施工方法等也可能引起墙体的裂缝产生。

二、现行规范抗裂措施规范引入的防止或减轻墙体开裂的主要措施,是基于防裂概念的“防”、“放”、“抗”的原则。

“防”,即以适当的屋面构造处理,减小屋盖与墙体的温差、减小屋盖与墙体的变形,效果最佳。

通常采取的措施包括:保证屋面保温层的性能,采用低含水或憎水保温材料,防止屋面渗漏,南方则加设屋面隔热及通风层;外表浅色处理,外墙、屋盖刷白色,可使其内表面降温,隔热指标可显著提高;严格控制块体材料的上墙含水率。

“放”,即采用适当措施,允许屋面或墙体在一定程度上自由伸缩,如屋面设置伸缩缝、滑动层,墙体设置控制缝等,都能有效地降低温度或干缩变形应力。

“抗”,即通过构造措施,如设置圈梁、构造柱、芯柱、提高砌體强度,加强墙体的整体性和抗裂能力,以减小墙体变形、减少裂缝,这是砌体房屋普遍采用的抗裂构造措施。

三、砌体结构开裂的预防措施及处理加固方法1.结构开裂的预防措施砌体结构由于自身的特点,一旦出现了裂缝,处理起来比较困难的。

砌体结构墙体裂缝成因及防治措施有哪些?

砌体结构墙体裂缝成因及防治措施有哪些?

砌体结构墙体裂缝成因及防治措施有哪些?
多、控制难度较大,但总体上不外乎以上几种类型。

只要采取全过程控制的方法,从设计到选材和施工都加强管理,严格遵守相关规范和操作规程,就能大大的减少墙体裂缝产生的可能性,或将裂缝控制到最小范围,从而确保工程质量,提高人们的生活水平。

前言
砌体结构是一种传统的结构形式,具有选材方便、施工简单、工期短、造价低等特点,是最常用的一种结构形式。

但砌体强度较小,结构自重大,砂浆和砖石之间的粘结力变差,抗拉、抗弯和抗剪强度较低,砌体易于开裂。

砌体的裂缝不仅种类繁多,形态各异,而且较普遍,轻微者影响建筑物美观,造成渗漏水,严重者降低建筑结构的承载力、刚度、稳定和整体性、耐久性,甚至还会导致整体倒塌的重大质量事故。

因此,正确分析原因、切实加以防治十分必要。

本文就砌体结构裂缝成因进行了分析,总结了不同原因产生的裂缝的处理措施。

1裂缝成因分析
引起砌体结构裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格、材料的堆放、材料的保管及缺乏工。

砌体结构裂缝的成因及控制措施

砌体结构裂缝的成因及控制措施

砌体结构裂缝的成因及控制措施砌体结构的裂缝存在多样化的体现形式,在分析了出现裂缝的原因之后,就可以实施有效的措施处理裂缝。

当然,只有坚持全程和全面的控制原则,由设计、选材,一直到施工都注重提高管理的有效性,认真地按照有关规程与指标进行,才可以控制砌体结构产生的裂缝在最小的无害范围之内,从而大大地提高砌体结构的使用質量,最终实现人们生活环境的改善与生活质量的提升。

标签:砌体结构;裂缝;成因;控制措施1、砌体结构裂缝产生的原因1.1 温度变化导致裂缝。

热膨胀和冷收缩是砌体结构的显著特点。

当外界环境温度发生明显变化时,会引起相关块体变形,最终导致裂缝。

同时,砌体附加应力的形成和拉应力极限的突破也会导致裂缝的产生。

这种裂缝在实际施工中比较常见,大面积砌体的裂缝和现浇屋面板的裂缝都是由这种原因引起的。

在正常情况下,施工中后期容易开裂,裂缝的大小会随着温度的变化而发生变化。

当天气寒冷时,砌体表面温度的收缩会收缩。

在这种情况下,砌体中会出现相应的拉应力,最终导致砌体开裂。

这种裂缝在浅层裂缝中,对建筑物的质量没有多大的影响,但对建筑物的外观有一定的影响。

因此,在实际施工过程中,必须注意温度控制,最好避免在寒冷季节施工,使砌体温度降至最低。

1.2 不均匀地基结构。

剪切构件、结构构件和斜拉效应引起的结构变形不均匀沉降的结构基础,随着不均匀沉降的发展,引起结构开裂和裂缝扩展。

这种裂缝的形状、大小和方向往往与地基的变形程度有关。

一般来说,地面变形产生的应力较大,裂缝宽度大于45度,具有穿透性。

1.3 外部条件影响。

当不同的性能和作用于構件时,裂纹形状会不同。

一般来说,裂纹的方向应与主拉应力方向正交。

构件受力的原因是多方面的,施工中或使用中都有可能出现裂缝。

例如,在运输、储存和吊装中,如果悬挂点的位置选择不当,可能会使部件装载过多而产生裂缝。

此外,在砌体早期,地震或施工超载可能导致裂缝。

2、砌体结构裂缝的控制措施2.1材料控制在混凝土或砌体结构施工中,施工材料需严格控制,以保证性能的稳定、质量的过关。

砌体结构房屋墙体开裂的原因及预防措施

砌体结构房屋墙体开裂的原因及预防措施

砌体结构房屋墙体开裂的原因及预防措施目前,在我国的中小城市,大量的住宅建筑是多层建筑,所采用的建筑结构形式主要是砌体结构。

砌体结构房屋因其造价相对较低,砌体结构有就地取材,造价低廉,且具有较好的隔热、隔音性能,所以乃被广泛采用。

但其砌体强度较小,结构自重大,砂浆和砖体之间的粘结力较差,抗拉、抗弯和抗剪强度较低,砌体易于开裂。

砌体结构房屋出现裂缝的现象较为普遍,裂缝程度轻重差别也很大。

轻则影响房屋正常使用和美观,严重的将形成结构安全隐患,甚至发生工程事故。

因此,正确分析原因、切实加以防治十分必要,十分迫切。

一、造成墙体裂缝的原因造成砖混结构砌体开裂的原因有很多,但其主要原因有两点:一是温度变化;二是地基基础不均匀沉降。

(一)、温度变化引起的裂缝。

温度的变化会引起材料的热胀、冷缩,在混合结构房屋中,由于墙体与混凝土屋盖等结构的温度膨胀系数不同,当温度变化较大时,在墙体中将产生附加应力,如果温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。

最常见的裂缝是:1、八字形裂缝主要出现在横墙与纵墙两端部,此种裂缝属正八字形的热胀裂缝,随温度升降而变化,当屋面保温层的隔热能力失效时,使得屋面板温度变形大于砌体温度变形,当产生一定的温度应力时,屋面板的推力就传给墙体,因墙体温度附加应力在房屋两端较大,当砌筑砂浆强度较低时,则易发生剪力产生的主拉应力,当超过砌体抗拉极限时,墙体即出现八字形开裂。

2、倒八字形裂缝属冷缩裂隙,主要出现在纵横墙两端的窗洞口处,尤以顶层两端窗洞口处最严重,由于墙体冷缩附加应力在墙体两端较大,当房屋收缩变形大于墙体时,在门窗洞口处产生应力相对集中而导致形成倒八字形裂隙,使墙体开裂。

3、水平裂缝多见于顶层横墙、纵墙、“女儿墙”及山墙处,当屋面保温隔热较差,屋面板受热膨胀对墙体产生水平推力时,由于墙体在端部收缩要大于中部且砌体抗剪能力较低,使纵横墙与屋盖的接触面上产生水平裂缝。

4、垂直裂缝主要出现在窗台墙处、过梁端部及楼层错层处,此种裂隙主要由于温度变化,墙体受到楼板的拉应力作用,在门窗洞口处产生应力集中效应而拉裂,或因冷缩变形,在与墙漆之间变形差异最大的钢筋混凝上梁端和楼板错层处,引起墙体垂直开裂。

论述建筑工程砌体结构裂缝产生的原因及防治

论述建筑工程砌体结构裂缝产生的原因及防治

论述建筑工程砌体结构裂缝产生的原因及防治摘要:砌体结构的房屋出现各种型式的裂缝很常见,不但影响房屋正常使用和美观甚至形成结构安全隐患,甚至发生工程事故。

本文分析了砌体结构裂缝的成因,并针对这些影响因素提出了与之相对应的防治措施。

关键词:砌体结构;裂缝;预防措施一、裂缝产生的原因1、地基不均匀沉降引起的裂缝当地基发生不均匀沉降后,沉降大的部分砌体与沉降小的部分砌体会产生相对位移,从而使砌体中产生附加的拉力或剪力,当这种附加内力超过砌体的强度时,砌体中便产生相对裂缝。

这中裂缝一般都是斜向的,且多发生在门窗洞口上下。

裂缝一般呈倾斜状,因砌体内主拉应力过大而使墙体开裂;裂缝较多出现在纵墙上,较少出现在横墙上,纵墙的抗弯刚度相对较小;在房屋空间刚度被削弱的部位,裂缝比较集中。

2、温差变形引发的砖砌体裂缝这类裂缝较典型和普遍的是建筑物顶层两端内外纵墙上的斜裂缝,其形态呈“八”字或“X”型,且显对称性,严重者会发展至房屋两端 1/3纵长范围内,并由顶层向下几层发展。

此类型缝对那种刚性屋面平屋顶、未设变形缝、隔热层的房屋,更易发生。

产生的直接原因是混凝土结构屋面的伸缩变形牵引其下砖砌体超过其材料抗拉强度的结果。

在阳光照射下屋面板温度可高达 60~70℃,而在其下的砖砌体仅为30~35℃,温差大,加上混凝土线膨胀系数比砖砌体近似大一倍,可计算出砌体中的主拉应力。

3、特殊砌体材料产生的裂缝如混凝土小型空心砌块是竖缝砂浆难以饱满以及特殊的构造要求未能跟上。

灰砂砖等的砌体,一般使用南方地区蒸压灰砂砖,因本身对温差敏感、表面光滑等特殊性,虽然外观、尺寸指标均较好,但在实际使用中对严格的灰砂砖砌体施工规程不熟悉,缺少使用经验,导致除存在粘土砖常见裂缝外,还常见在较长墙段中及外墙窗台下的竖斜裂缝。

刚出厂的灰砂砖稳定性差。

灰砂砖主要由细砂和石灰组成,蒸压养护后,一般不到一周即已出厂,但根据生产经验,灰砂砖在出厂的一月内其释放的热量较大,存在着反复的化学反应过程,而且实际上一时难以完全反应,体积极不稳定。

砌体结构裂缝措施分析

砌体结构裂缝措施分析

THANKS
感谢观看
研究不足与展望
研究不足
目前对砌体结构裂缝的研究仍不够深入,尤其在裂缝产生机理、防治技术等方面 还存在一些盲区。
展望
未来可以进一步加强对砌体结构裂缝产生机理的研究,探索更加有效的防治技术 和方法,提高砌体结构的耐久性和安全性。同时,对于砌体结构的施工工艺和材 料选择等方面也需要加强研究,以全面提升结构的性能和寿命。
06
结论与展望
砌体结构裂缝防治总结
裂缝类型
砌体结构裂缝主要分为温度裂缝 、干燥收缩裂缝、塑性收缩裂缝
等。
防治措施
针对不同类型的裂缝,可采取加 强材料控制、优化设计、提高施 工质量等措施来有效减少裂缝的
产生。
效果评估
经过防治措施的实施,砌体结构 裂缝的数量和长度可以得到有效
控制,提高结构的整体性能。
04
砌体结构裂缝的治理措施
表面修补法
总结词
一种简单、常用的治理方法。
详细描述
适用于对结构承载能力无影响的表面裂缝或深度裂缝, 通过表面涂抹水泥砂浆、防水快凝砂浆等方式进行封闭 裂缝。
局部修复法
总结词
对裂缝局部进行修复的方法。
详细描述
采用局部修复材料(如环氧树脂、聚合物砂浆等)对 裂缝局部进行修复,适用于裂缝较小的情况。
结构设计规范不符合
结构设计不符合现行规范要求,如对砌体结构的荷载取值、计算简图等不准确,导致结构产生裂缝。
环境因素
温度变化
由于温度变化导致的热胀冷缩现象,会使砌体结构产生裂缝。
湿度变化
湿度变化可能引起砌体结构的材料收缩,从而导致裂缝的产生。
03
砌体结构裂缝的预防措施
材料选择与控制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

砌体结构裂缝成因及预防措施来源:中国论文下载中心 [ 06-02-15 15:03:00 ] 作者:童光兵编辑:studa9ngns摘要:本文分析了砌体结构裂缝的成因,对温度裂缝、收缩裂缝以及沉降裂缝的产生机理进行了分析,提供了温度应力、温度变形和干缩变形的估算方法,讨论了影响砌体结构开裂的因素。

针对这些影响因素提出了预防措施关键词:砌体结构变形裂缝产生机理温度变形干缩变形预防措施Causes and Measures of Treatment for Cracks in Masonry Structure BuildingsTong Guangbing目前,砌体结构的房屋出现各种型式的裂缝,非常常见。

其裂缝程度轻重不一,差别很大。

轻则影响房屋正常使用和美观,严重的将形成结构安全隐患,甚至发生工程事故。

随着住宅商品化的发展,房屋裂缝问题越来越引起人们的关注。

⒈裂缝的类型及成因按裂缝的成因,墙体裂缝可分为受力裂缝和非受力裂缝两大类。

各种直接荷载作用下,墙体产生的裂缝称为受力裂缝。

而砌体因收缩、温度、湿度变化,地基沉陷不均等引起的裂缝是非受力裂缝,又称变形裂缝。

砌体房屋的裂缝中变形裂缝占80%以上[1],其中温度裂缝更为突出。

相对于受力裂缝,变形裂缝的产生机理和影响因素复杂得多,本文主要分析砌体结构的变形裂缝。

1.1砌体房屋的温度变形1.1.1 温度裂缝的主要形态最常见的温度裂缝出现在混凝土平屋盖房屋的顶层两端墙体和山墙上。

如在门窗洞边的正“八”字斜裂缝、山墙上部的斜裂缝、平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝、以及水平包角裂缝(包括女儿墙)等。

温度裂缝是造成墙体早期裂缝的主要原因。

这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。

温度裂缝有明显的规律性:两端重中间轻,顶层重往下轻,阳面重阴面轻。

1.1.2 温度裂缝产生机理对于砖砌体的结构,砖砌体的线膨胀系数5×10-6,是混凝土的一半。

当外界温度升高时,混凝土顶盖变形大,墙体变形相对较小,导致砖砌体和混凝土屋盖之间产生约束应力。

使屋盖受压,墙体受拉、受剪。

当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。

混凝土砌块墙体的线膨胀系数与混凝土屋盖相同。

在夏季阳光照射下,两者之间存在一定的温差。

屋面最高温度可达40℃~50℃,而顶层外墙平均最高温度约为30℃~35℃。

屋面和顶层外墙存在10℃~15℃的温差,两者的温差可能引起墙体开裂。

另外,从材料上看,相同砂浆强度等级下抗拉、抗剪强度混凝土砌块比砖砌体小了很多,沿齿缝截面弯拉强度仅为砖砌体的30%~35%,沿通缝弯拉强度仅为砖砌体的45%~50%,抗剪强度仅为砖砌体的50%~55%。

因此,在相同受力状态下,混凝土砌块抵抗拉力和剪力的能力要比砖砌体小很多,所以更容易开裂。

1.1.3 温度应力的估算砌体结构的温度应力可通过下式估算[2]:(1-1)(1-2)当顶板与墙体材料不同时,式中,Cx-水平阻力系数,混凝土板与墙体Cx=0.3~0.6N/mm3,混凝土板和钢筋混凝土圈梁Cx=1.0N/mm3;t-墙厚;b-一面墙负担的楼板宽度;h-顶板厚度;Es-混凝土的弹性模量;α1-墙的线膨胀系数,砖砌体5×10-6;α2-顶板线膨胀系数,混凝土10×10-6;T1-墙的温度;T2-顶板的温度;L-墙长。

式(1-1)中τmax为弹性剪应力。

考虑升温较快,取应力松弛系数H(t)=0.7~0.8,则砌体的徐变剪应力为:(1-3)对于顶层墙体,墙体的压应力较小,墙体的剪应力近似等于主拉应力。

根据式(1-1),墙体的剪应力与温差、水平阻力系数Cx以及建筑物长度有关。

从式(1-1)可知,墙体剪应力与温差成正比。

因此,采取隔热措施以减少温差,可达到减小主拉应力的目的;墙体剪应力与成正比。

如水平阻力系数Cx降低30%,则剪应力降低16%。

因此,可通过在钢筋混凝土屋面板与墙体圈梁的接触面处设置水平滑动层来减少顶板与墙体的约束作用,滑动层可采用两层油毡夹滑石粉或橡胶片等[3];剪应力和建筑物的长度呈非线性关系,增加长度,剪应力随之增加。

1.1.4 温度变形的估算粘土和混凝土砌体都有与温度变化成比例的特性,温度变形的大小可以根据热膨胀系数计算。

构件受到温度变化为△T的构件,长度变化△L可以表达为(1-4)其中,△L-温度变形;α-热膨胀系数,砖砌体5×10-6,混凝土砌块10×10-6;L-受到温度变化的构件长度;△T-温度变化。

1.2砌体房屋的收缩变形1.2.1 收缩裂缝的形态因砌块收缩引起的墙体裂缝,在混凝土砌块房屋中比较普遍。

在内外墙、在房屋的各层均可能出现。

干缩裂缝形态一般有:⑴在墙体中部出现的阶梯形裂缝;⑵环块体周边灰缝的裂缝;⑶在外墙的窗下墙出现竖向均匀裂缝;⑷山墙等大墙面出现的竖向、水平向裂缝。

收缩裂缝一般多出现在下部几层,有的砌块房屋山墙大墙面中间部位出现了由底层一直延伸至3、4层的竖向裂缝。

由于砌筑砂浆强度不高,灰缝不饱满,干缩引起的裂缝往往呈发丝状分散在灰缝缝隙中,清水墙时不易被发现,当有粉刷抹面时就显露出来。

干缩引起的裂缝宽度不大,且裂缝宽度较均匀。

1.2.2 收缩裂缝的产生机理粘土砌体和混凝土砌体对含水率变化的反应不同。

粘土砌块随含水率的增加而膨胀。

在含水率降低时砖不会收缩。

即这种膨胀不会因为在大气温度中变干而收缩[4]。

砖中的含水量取决于原材料的种类和烧制温度范围。

当砖从窑中取出时尺寸最小,然后随着含水率的增加而膨胀。

当砖暴露在潮湿的空气中它开始膨胀,在开始的几个星期内膨胀最大,膨胀会以很低的速率持续几年,砖的长期湿膨胀在0.0002和0.0009之间[5]。

混凝土砌块是混凝土拌合物经浇注、振捣、养生而成。

混凝土在硬化过程中逐渐失水而干缩,砌干缩量因材料和成型质量而异,并随时间增长而逐渐减小。

在自然条件下,成型28天后,混凝土砌块收缩趋于稳定。

其干缩率为0.03%~0.035%,含水量在50%~60%左右。

砌成砌体后,在正常使用条件下,含水量继续下降,可达10%左右,其干缩率为0.018%~0.07%[6]。

对于干缩已趋稳定的混凝土砌块,如再次被浸湿后,会再次发生干缩,通常称为第二干缩。

混凝土砌块在含水饱和后的第二干缩,稳定时间比成型硬化过程的第一干缩时间要短,一般为15天左右。

第二干缩的收缩率约为第一干缩的80%左右。

当混凝土砌块的收缩受到约束并且收缩引起的拉应力超过了块材的抗拉强度或块材与砂浆之间的抗弯强度,会出现收缩裂缝。

收缩裂缝不是结构裂缝,但它们破坏了墙体外观。

1.2.3 收缩变形的估算粘土和混凝土砌体对含水率变化的反应不同。

当失去水分时,混凝土砌块会收缩,而粘土砌块会随含水率的增大而膨胀。

由水分变化引起的变形可以根据与热膨胀相同的原理估计[6]:(1-4)式中,k-对粘土砌体采用湿膨胀系数k e,对混凝土砌体采用收缩系数k m;L-砌体长度;-收缩变形。

《砌体标准联合委员会(Masonry Standards Joint Committee,缩写为MSJC)规范》[6]规定粘土砌体的湿膨胀系数值k e为0.0003。

由控湿的混凝土砌块砌筑的砌体k m=0.15s l,由非控湿的混凝土砌块砌筑的砌体k m=0. 5s l。

s l为混凝土砌块的总线性干缩值,其值不超过0.00065。

1.3 地基变形在软土、填土、冲沟、古河道、暗渠以及各种不均匀地基上建造结构物,或者地基虽然相当均匀,但是荷载差别过大,结构物刚度差别悬殊时,应特别注意由于地基不均匀沉降引起的裂缝。

1.3.1 地基不均匀沉降裂缝的形态地基不均匀沉降裂缝的形态是多种多样的,有些裂缝尚随时间长期变化,裂缝宽度较宽,有时宽至数厘米。

裂缝主要分为剪切裂缝和弯曲裂缝。

地基不均匀沉降裂缝常见的有:正八字裂缝和斜向裂缝。

沉降裂缝多出现在房屋中下部且发生于房屋中下部的裂缝较上部宽度大。

1.3.2地基不均匀沉降裂缝的产生机理⑴墙体中下部区域的正八字裂缝一般情况下,地基受到上部传递的压力,引起地基的沉降变形呈凹形,常称为“盆形沉降曲面”。

这是由于中部压力相互影响高于边缘处相互影响,以及边缘处非受载区地基对受载区下沉有剪切阻力等共同作用的结果,导致地基反力在边缘区较高。

这种沉降使建筑物形成中部沉降大、端部沉降小的弯曲,产生正弯距。

结构中下部受拉,端部受剪,特别是由于端部地基反力梯度很大,端部的剪应力很大,墙体由于剪力形成的主拉应力破裂,裂缝呈正八字形。

由于墙体中上部受压并形成“拱”作用,墙体裂缝越靠近地基和门窗孔越严重。

且中下部开裂区的墙体有自重下坠作用,造成垂直方向拉应力,可能形成水平裂缝。

⑵墙体斜向裂缝当地基中部有回填砂、石,或中部地基坚硬而端部软弱,或由于荷载相差悬殊,建筑物端部沉降大于中部时,会形成负弯距。

主拉应力将引起墙体的斜裂缝或倒八字裂缝。

局部的沉降不均不仅可以引起斜裂缝,由于垂直沉降还可能引起砌体的水平裂缝。

1.3.3 影响地基沉降裂缝的因素地基、基础、建筑物构成一个整体,共同工作。

其内力和变形形态与土的性质、建筑物与地基的刚度、基础与建筑物的尺寸形状、材料的弹塑性性质、徐变等有关。

⑴地基与建筑物的相对刚度为考虑地基与建筑物的共同工作,地基与建筑物的相对刚度可根据葛尔布诺夫方法确定,该法中弹性地基的柔性指数:(1-5)式中,E0-地基土的变形模量;μ0—地基土的泊松比;EJ—地基上梁、板或箱体刚度;a,b-基础的半长和半宽。

柔性指数表示了建筑物和地基的相对刚度。

从式中可以看出,⑴建筑物和基础抗弯刚度越大,基础的长度和宽度越小,则柔性指数就越小,结构物或基础的相对刚度越大。

这时在外荷载作用下,地基的反压力越往两端集中,则中部弯矩越大,这就需要结构具有足够的强度,满足结构物最大弯矩的要求;⑵在较好的地基上,地基的变形模量较高,而地基上基础的抗弯刚度较小,结构物的几何尺寸较长,则柔性指数相应增大。

这时基础结构接近于柔性板,此时地基的沉降与荷载的分布有关。

地基承受荷载大的地方,该处的沉降和变形较大,基础承受的弯矩较小。

⑵徐变建筑物的下沉、水平位移、温度、湿度变化引起的变形,除了绝对数量外,变形速率是一个重要因素。

只要变形是缓慢的,则多数建筑物能经受较大的变形而不破坏。

其主要原因就是由于建筑材料都具有徐变特性,在变形过程中,其内应力会随着变形速度的下降而松弛。

⑶建筑物的形状平面形状复杂的建筑物,如“I”、“T”、“L”、“E”字形等,在纵横单元交叉处基础密集,地基附加应力重叠,使地基沉降量增大。

同时,此类建筑物整体性差,刚度不对称,在地基产生不均匀沉降时容易发生墙体开裂[8]。

因此,遇不良地基时,在满足使用的情况下应尽量采用平面形状简单的建筑形式。

相关文档
最新文档