运筹学课程设计
运筹课程设计案例
运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。
2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。
3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。
技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。
2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。
3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。
2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。
3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。
本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。
在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。
通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。
教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。
教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。
教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。
运筹学选课问题课程设计
运筹学选课问题课程设计一、课程目标知识目标:1. 掌握运筹学基本概念,了解其在现实生活中的应用;2. 学习并掌握线性规划、整数规划等基本优化方法;3. 理解选课问题的数学模型,并能运用相关优化方法进行求解。
技能目标:1. 培养学生运用数学知识解决实际问题的能力;2. 提高学生运用运筹学方法进行问题分析、建模和求解的技能;3. 培养学生运用计算机软件(如Excel、Lingo等)进行数据处理和求解的能力。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发学习热情;2. 培养学生团队协作、共同解决问题的精神;3. 增强学生面对复杂问题时的信心和毅力,培养勇于挑战的精神。
课程性质分析:本课程为选修课,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。
学生特点分析:学生为高中年级,具有一定的数学基础和逻辑思维能力,但可能对运筹学了解较少。
教学要求:1. 结合实际案例,引导学生理解并掌握运筹学基本概念和方法;2. 注重培养学生的动手实践能力,鼓励学生运用所学知识解决实际问题;3. 关注学生的情感态度,激发学习兴趣,提高学生的综合素质。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域等,让学生对运筹学有初步的认识。
教材章节:第一章 运筹学概述内容安排:1课时2. 线性规划:讲解线性规划的基本概念、数学模型、求解方法(单纯形法、图形法等)。
教材章节:第二章 线性规划内容安排:3课时3. 整数规划:介绍整数规划的基本概念、特点,以及求解方法(分支定界法、割平面法等)。
教材章节:第三章 整数规划内容安排:2课时4. 选课问题数学模型:分析选课问题的背景,构建数学模型,探讨求解方法。
教材章节:第四章 应用实例内容安排:2课时5. 计算机软件应用:介绍Excel、Lingo等软件在运筹学问题求解中的应用。
教材章节:第五章 运筹学软件应用内容安排:2课时6. 实践环节:设计选课问题的实际案例,让学生动手实践,运用所学知识解决问题。
运筹运输问题课程设计
运筹运输问题课程设计一、课程目标知识目标:1. 让学生掌握运筹学中运输问题的基本概念,包括线性规划、运输表和供需平衡等;2. 使学生了解运输问题的数学模型及其在实际物流中的应用;3. 引导学生运用运筹学方法解决运输问题,提高学生的数学建模能力。
技能目标:1. 培养学生运用线性规划方法构建运输问题的数学模型,并能运用相关算法求解;2. 培养学生运用运输表进行问题分析和方案设计的能力;3. 提高学生运用运筹学知识解决实际问题的能力。
情感态度价值观目标:1. 激发学生对运筹学及物流领域的兴趣,培养学生主动探索和积极创新的科学精神;2. 培养学生具备团队协作精神,学会与他人共同解决问题;3. 增强学生的社会责任感,认识到运筹学在优化资源配置、提高社会效益方面的重要性。
本课程针对高年级学生,结合学科特点和教学要求,以实用性为导向,将课程目标分解为具体的学习成果。
通过本课程的学习,学生将能够运用所学知识解决实际运输问题,提高数学建模和问题分析能力,同时培养良好的团队协作和社会责任感。
二、教学内容1. 运筹学基本概念:介绍线性规划、网络流、供需平衡等基本概念,对应教材第一章内容。
2. 运输问题数学模型:讲解运输问题的数学描述和建模方法,以教材第二章为例,包括运输表的构建和求解算法。
- 运输表:阐述如何根据实际问题构建运输表,分析供需关系。
- 求解算法:介绍北西角法、最小成本法、位势法等运输问题求解算法。
3. 运输问题应用案例分析:结合实际案例,分析运输问题在不同场景下的应用,以教材第三章内容为参考。
4. 运筹学软件操作:教授学生运用运筹学软件(如LINDO、CPLEX等)求解运输问题,提高实际操作能力。
5. 课程实践:分组进行运输问题案例分析,培养学生团队协作和问题解决能力,对应教材第四章。
本教学内容根据课程目标制定,确保科学性和系统性。
教学大纲明确,进度合理,使学生能够循序渐进地掌握运筹学在运输问题中的应用。
运筹学课设
摘要运筹学是一门应用数学和计算机等工具来研究各类有限资源的合理利用是以期达到最优的解决方案的科学。
通过对数据的调查、收集与统计分析,以及具体模型的建立,最终实现问题的最优解决方案。
此课题研究的是大学生出入职场如何理财的问题。
大学生通过对自己所能承受的投资风险的测定和对自己理财目标的确定,组织各类投资搭配,以期获得最大的投资收益。
经过对实际问题的抽象建模,使其完全符合运筹学线性规划的理论。
按照线性规划理论对大学生出入职场的理财问题进行分析得到合理的投资方案。
按大学生固定的年收入分析如何合理的选择储蓄、债券、基金、股票、保险、期贷,从而获得最优的收益。
通过对收集数据的整理、分析,建立运筹学模型,并用运筹学软件进行求解。
所以通过对实际问题的分析,经过抽象和延伸,建立起投资理财的线性规划模型。
结合模型的特点,对模型的求解进行了讨论与分析,将模型应用于背景问题,得出相应的最优决策方案,就可以对问题一一进行解答。
关键词:理财、投资、线性规划、统计分析目录1.问题的提出 (3)1.1研究背景 (3)1.2研究的主要内容与目的 (3)1.3研究的实际意义 (3)2.问题的分析 (3)2.1问题的特点 (3)2.2问题的实现方法 (3)3.数学模型的建立 (4)3.1基础数据的确定 (4)3.2变量的设定 (5)3.3目标函数的建立 (6)3.4限制条件的确定 (6)3.5模型的建立 (6)4模型的求解分析 (7)4.1模型的求解 (7)4.2模型的分析与评价 (9)5结论与建议 (10)5.1研究结论 (10)5.2建议与对策 (10)1.问题的提出大学生初入职场如何理财1.1研究背景理财是大学生对自己人生的一种长远规划,即通过对财务资源的适当管理来实现个人生活目标的一个过程,是一个为实现整体理财的目标设计的统一的互相协调的计划。
大学生步入社会就会逐步面临赡养父母、结婚、买房、购车等问题,这些无不与理财投资有着密切的关系。
运筹学课程设计总结
运筹学课程设计总结一、教学目标本课程的教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:通过本课程的学习,学生将掌握运筹学的基本概念、方法和应用,包括线性规划、整数规划、动态规划、概率论和统计学等。
2.技能目标:学生将能够运用运筹学的方法解决实际问题,提高问题分析和解决的能力。
具体包括:(1)能够运用线性规划解决最大(小)化问题;(2)能够运用整数规划解决组合优化问题;(3)能够运用动态规划解决多阶段决策问题;(4)能够运用概率论和统计学方法分析不确定性问题。
3.情感态度价值观目标:通过本课程的学习,学生将培养严谨的科学态度、团队合作精神和创新意识,提高综合素质。
二、教学内容本课程的教学内容主要包括以下几个部分:1.运筹学基本概念和方法:线性规划、整数规划、动态规划、概率论和统计学等;2.线性规划:图解法、单纯形法、灵敏度分析等;3.整数规划:分支定界法、动态规划法等;4.动态规划:多阶段决策问题、最优化原理等;5.概率论和统计学:随机事件、随机变量、数学期望、方差、协方差、假设检验等。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:用于传授基本概念、理论和方法;2.案例分析法:通过实际案例,让学生学会运用运筹学方法解决问题;3.实验法:上机实验,巩固理论知识,提高实际操作能力;4.讨论法:分组讨论,培养学生的团队合作精神和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《运筹学导论》、《线性规划与应用》、《整数规划》等;2.参考书:相关领域的研究论文、书籍等;3.多媒体资料:课件、教学视频等;4.实验设备:计算机、投影仪等。
以上教学资源将有助于实现本课程的教学目标,提高学生的综合素质。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和理解能力;2.作业:布置适量作业,检验学生对知识的掌握和运用能力;3.考试:包括期中考试和期末考试,全面测试学生的知识水平和运用能力。
运筹学教程第五版课程设计 (2)
运筹学教程第五版课程设计一、课程概述本课程是针对运筹学教程第五版的课程设计,旨在通过实践性的课程设计,让学生深入了解运筹学在实际问题中的应用与解决方法,同时提高学生的逻辑思维和数学建模能力。
二、课程目标•熟练掌握运筹学的基本概念和方法;•熟悉运筹学在实际问题中的应用;•能够独立完成一定难度的数学建模和问题求解;•培养学生的团队合作精神和解决实际问题的能力。
三、教学内容1.运筹学基本概念–目标函数、约束条件–线性规划问题2.线性规划的求解方法–单纯形法–对偶理论–整数规划3.线性规划在实际问题中的应用–生产计划与调度–物流配送问题–设备优化调度问题4.特殊规划问题的求解方法–整数规划的求解方法–非线性规划问题–动态规划问题四、教学方法本课程采取理论结合实践的授课方式,通过课堂教学和实验实践相结合,让学生在实践中深入了解运筹学的基本理论和方法,同时培养学生的数学建模能力和实际问题解决能力。
1.课堂讲授–讲解运筹学的基本理论和方法–培养学生的数学建模能力和逻辑思维能力2.实验实践–实际问题求解,让学生将所学理论与实际问题相结合–团队合作,培养学生的团队意识和协作能力3.课堂讨论–学生团队对问题的讨论和解决方案的设计五、考核方式1.期末考试–考核学生对运筹学基本概念、理论和方法的掌握程度2.课程设计–学生团队完成具体的实际问题的分析、建模、求解和报告–考核学生数学建模和实际问题解决能力,以及团队合作能力六、参考教材《运筹学教程第五版》朱启鸣,等。
中国人民大学出版社,2017年七、总结本课程是运筹学基础教育的重要组成部分,在实践中培养学生各方面能力,具有重要的现实意义。
希望通过本课程的学习,学生能够掌握运筹学基础知识,同时培养学生的团队协作精神和解决实际问题的能力。
运筹学动态规划课程设计
运筹学动态规划课程设计一、课程目标知识目标:1. 理解动态规划的基本概念、原理和应用场景;2. 学会建立动态规划模型,掌握动态规划的核心要素:状态、决策、状态转移方程和边界条件;3. 掌握解决实际问题时运用动态规划方法的能力,如最短路径问题、背包问题等。
技能目标:1. 能够运用动态规划思想分析和解决相关问题,提高问题求解效率;2. 培养逻辑思维能力和数学建模能力,通过编写代码实现动态规划算法;3. 提高团队协作能力,通过小组讨论、分享心得,共同解决复杂问题。
情感态度价值观目标:1. 培养学生对运筹学及动态规划的兴趣,激发学习热情;2. 树立正确的价值观,认识到运筹学在优化决策、资源分配等方面的重要意义;3. 培养学生面对困难时保持积极态度,勇于克服挑战,不断提高自身能力。
本课程针对高年级学生,结合运筹学动态规划部分的知识点,注重理论与实践相结合。
课程性质为理论与实践并重,要求学生具备一定的数学基础和编程能力。
通过本课程的学习,旨在使学生掌握动态规划的基本原理和方法,培养其在实际问题中的应用能力,提高解决复杂问题的综合素质。
同时,注重培养学生的团队协作精神和积极向上的情感态度。
二、教学内容本章节教学内容主要包括以下几部分:1. 动态规划基本概念与原理:介绍动态规划的定义、特点和应用场景,讲解动态规划的基本原理,如最优子结构、无后效性等。
2. 动态规划模型建立:学习如何建立动态规划模型,包括定义状态、决策、状态转移方程和边界条件,分析实际问题时如何抽象为动态规划模型。
3. 动态规划算法及应用:- 最短路径问题:讲解Dijkstra算法、Floyd算法等动态规划方法解决最短路径问题;- 背包问题:介绍0-1背包问题、完全背包问题等,分析动态规划求解方法;- 其他应用:如最长公共子序列、最大子段和等问题的动态规划求解。
4. 动态规划编程实践:结合实际问题,编写代码实现动态规划算法,提高编程能力。
5. 动态规划案例分析:分析典型动态规划案例,让学生了解动态规划在实际问题中的应用。
运筹学下篇课程设计
运筹学下篇课程设计一、课程目标知识目标:1. 理解运筹学基本概念,掌握线性规划、整数规划、非线性规划等核心模型;2. 学会运用运筹学方法解决实际问题,分析问题的约束条件和目标函数,建立数学模型;3. 了解运筹学在实际应用领域的案例,如生产计划、物流配送、项目管理等。
技能目标:1. 能够运用运筹学软件(如Lingo、CPLEX等)求解数学模型,并进行结果分析;2. 培养逻辑思维和解决问题的能力,提高团队协作和沟通表达能力;3. 学会运用运筹学方法进行数据分析和决策,提高数据敏感度和决策能力。
情感态度价值观目标:1. 培养对运筹学的兴趣,激发学生探索运筹学在实际生活中的应用;2. 树立正确的价值观,认识到运筹学在优化资源配置、提高效率等方面的重要性;3. 培养严谨、务实的学习态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级学生,结合学生特点和教学要求,注重理论与实践相结合,以培养学生解决实际问题的能力为核心。
课程目标旨在使学生在掌握运筹学基本知识的基础上,提高解决实际问题的能力,培养具备创新精神和实践能力的优秀人才。
通过本课程的学习,学生将能够更好地应对未来学习和工作中的挑战。
二、教学内容本课程教学内容主要包括以下几部分:1. 运筹学基本概念与理论:介绍线性规划、整数规划、非线性规划等基本概念、原理及求解方法,涉及课本第1-3章内容。
2. 运筹学方法与应用:分析运筹学在生产计划、物流配送、项目管理等领域的实际应用,结合课本第4-6章案例,使学生了解运筹学在实际问题中的运用。
3. 运筹学软件操作与模型求解:学习运用运筹学软件(如Lingo、CPLEX等)进行数学建模与求解,涵盖课本第7-8章内容。
4. 运筹学案例分析与实践:分析典型运筹学案例,引导学生运用所学知识解决实际问题,提高学生解决实际问题的能力,涉及课本第9-10章内容。
5. 运筹学前沿与发展趋势:介绍运筹学领域的前沿动态和发展趋势,激发学生探索未知、追求创新的兴趣,涵盖课本第11章内容。
运筹学食谱课程设计
运筹学食谱课程设计一、课程目标知识目标:1. 学生能理解运筹学在餐饮行业中的应用,掌握食谱优化、食材组合等方法。
2. 学生能运用线性规划、整数规划等运筹学基本模型解决食谱设计问题。
3. 学生了解并掌握餐饮成本控制、营养均衡等相关知识。
技能目标:1. 学生能运用运筹学方法,独立完成一份符合营养需求、成本控制的食谱设计。
2. 学生具备分析、解决实际餐饮问题的能力,能对现有食谱进行优化调整。
3. 学生能通过小组合作,进行有效沟通,共同解决食谱设计过程中的问题。
情感态度价值观目标:1. 学生培养对运筹学的兴趣,认识到其在日常生活中的实用性。
2. 学生树立食品安全、营养均衡的餐饮观念,关注饮食健康。
3. 学生在团队协作中,学会尊重他人意见,培养合作精神和责任感。
课程性质:本课程为实践性较强的学科,结合运筹学理论与餐饮实际,培养学生解决实际问题的能力。
学生特点:高中年级学生,具备一定的数学基础和逻辑思维能力,对实际应用有较高的兴趣。
教学要求:注重理论与实践相结合,引导学生运用所学知识解决实际问题,培养学生的创新意识和团队协作能力。
通过课程学习,使学生能够将运筹学知识应用于实际餐饮场景,提高生活品质。
二、教学内容本章节教学内容主要包括以下几部分:1. 运筹学基本概念:介绍运筹学的定义、应用领域及其在餐饮行业中的重要性。
2. 食谱优化方法:- 线性规划:讲解线性规划在食谱设计中的应用,如食材配比、成本控制等。
- 整数规划:介绍整数规划在食谱设计中的应用,如食材选购量的确定。
3. 餐饮成本控制:分析餐饮成本构成,探讨成本控制方法及策略。
4. 营养均衡与食品安全:- 营养均衡:讲解膳食指南、营养素需求,使学生了解如何设计营养均衡的食谱。
- 食品安全:强调食品安全意识,介绍食品安全相关知识。
5. 教学案例:分析实际餐饮案例,引导学生运用所学知识解决实际问题。
教学内容安排和进度:第一课时:运筹学基本概念、线性规划介绍第二课时:整数规划、餐饮成本控制第三课时:营养均衡与食品安全第四课时:教学案例分析、小组讨论与实践教材章节及内容:第一章:运筹学概述第二章:线性规划第三章:整数规划第四章:餐饮成本控制与营养均衡第五章:食品安全教学内容注重科学性和系统性,结合实际案例,使学生能够学以致用,提高解决实际问题的能力。
《运筹学》课程设计教学大纲
《运筹学》课程教学大纲《运筹学》课程设计教学大纲课程编号:093210924课程学分:4学分总学时数:68学时开课单位:理学院包括两个教学大纲:《运筹学》课程教学大纲、《运筹学》课程设计教学大纲运筹学Operational Research教学大纲一、课程类别信息与计算科学、数学与应用数学专业必修课二、教学对象信息与计算科学、数学与应用数学专业大二学生三、教学目的在系统讲授运筹学基本理论的基础上,重在培养学生利用运筹学理论解决实际问题的创新实践能力,使学生掌握运筹学的思想方法以及它的模型结构和求解算法,培养学生对实际问题的建模能力和借助计算机软件迅速求解的能力。
四、课程教学基本要求及基本内容(一)运筹学基本理论第一章绪论教学要求:1.了解运筹学的发展历史;2.明确课程的学习要求。
主要内容:1.运筹学的发展历史2.课程的学习要求第二章线性规划模型教学要求:1.具有初步的建立实际问题线性规划模型的能力;2.准确、熟练的应用单纯形法计算四个以下决策变量的线性规划问题;3.熟练的应用数学软件计算线性规划问题;4.理解、掌握线性规划对偶问题的经济含义及对偶单纯形法;5.了解线性规划的灵敏度分析及其应用。
主要内容:1.线性规划问题的数学模型及标准形式2.线性规划模型的图解法3.线性规划模型的单纯形法4.线性规划的对偶理论5.灵敏度分析6.线性规划模型的典型实例第三章运输问题模型教学要求:1.理解掌握运输问题的本质,并能正确地建立实际运输问题的数学模型;2.熟练掌握求解运输问题的表上作业法;3.准确、熟练地将产销不平衡问题转化为产销平衡问题;4.熟练地应用数学软件解决运输问题。
主要内容:1.问题的概述2.运输问题模型3.表上作业法4.产销不平衡的运输问题5.运输问题模型典型实例第四章整数规划模型教学要求:1.理解掌握整数规划问题的本质,并能正确地建立实际整数规划问题的数学模型;2.能够借助数学软件应用分支定界法熟练求解整数规划问题;3.理解、掌握分配问题的本质,并能够熟练、正确地应用匈牙利法求解分配问题;4.熟练地应用逻辑变量建立数学模型,并利用隐枚举法求解0-1规划问题;5.熟练应用数学软件求解整数规划问题。
运筹学完整教案2
《运筹学》教案(本教案适用于32课时的班级)第一章线性规划与单纯形法1、教学计划第 1 次课 2 学时第 2 次课 2 学时第 3 次课 2 学时2、课件1.1线性规划问题及其数学模型线性规划模型的建立就是将现实问题用数学的语言表达出来。
例1:某工厂要安排生产Ⅰ、Ⅱ两种产品,每单位产品生产所需的设备、材料消耗及其利润如下表所示。
问应如何安排生产计划使工厂获利最多?解:设生产产品Ⅰ、Ⅱ的数量分别为1x 和2x 。
首先,我们的目标是要获得最大利润,即2132max x x z +=其次,该生产计划受到一系列现实条件的约束,设备台时约束:生产所用的设备台时不得超过所拥有的设备台时,即8221≤+x x原材料约束:生产所用的两种原材料A 、B 不得超过所用有的原材料总数,即1641≤x1242≤x非负约束:生产的产品数必然为非负的,即0,21≥x x由此可得该问题的数学规划模型:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,1241648232max 21212121x x x x x x x x z总结:线性规划的一般建模步骤如下: (1)确定决策变量确定决策变量就是将问题中的未知量用变量来表示,如例1中的1x 和2x 。
确定决策变量是建立数学规划模型的关键所在。
(2)确定目标函数确定目标函数就是将问题所追求的目标用决策变量的函数表示出来。
(3)确定约束条件将现实的约束用数学公式表示出来。
线性规划数学模型的特点(1)有一个追求的目标,该目标可表示为一组变量的线性函数,根据问题的不同,追求的目标可以是最大化,也可以是最小化。
(2)问题中的约束条件表示现实的限制,可以用线性等式或不等式表示。
(3)问题用一组决策变量表示一种方案,一般说来,问题有多种不同的备选方案,线性规划模型正式要在这众多的方案中找到最优的决策方案(使目标函数最大或最小),从选择方案的角度看,这是规划问题,从目标函数最大或最小的角度看,这是最优化问题。
运筹学物流运输课程设计
运筹学物流运输课程设计一、课程目标知识目标:1. 让学生掌握运筹学中物流运输的基本概念、原理和方法。
2. 使学生了解并能够运用线性规划、网络流等运筹学知识解决物流运输中的实际问题。
3. 帮助学生掌握物流运输中的成本分析、路径优化、货物分配等关键环节。
技能目标:1. 培养学生运用运筹学方法解决实际物流运输问题的能力。
2. 培养学生运用数学建模、数据分析等工具对物流运输问题进行研究和分析的能力。
3. 提高学生的团队协作和沟通能力,使其能够就物流运输问题进行有效讨论和交流。
情感态度价值观目标:1. 培养学生对物流运输行业的兴趣,激发他们探索物流领域知识的热情。
2. 培养学生具备良好的职业道德,关注环境保护和社会责任,将可持续发展理念融入物流运输实践。
3. 培养学生面对复杂问题时,保持积极乐观的心态,勇于克服困难,不断探索和进取。
课程性质分析:本课程为选修课,旨在帮助学生将运筹学知识应用于实际物流运输问题,提高解决实际问题的能力。
学生特点分析:学生具备一定的数学基础,具有较强的逻辑思维和分析能力,对实际问题充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,鼓励学生参与课堂讨论,提高其运用知识解决实际问题的能力。
通过本课程的学习,使学生能够达到上述课程目标,为未来的学习和工作打下坚实基础。
二、教学内容1. 物流运输基础概念:介绍物流运输的定义、功能、分类及其在国民经济中的地位和作用。
教材章节:第一章第一节2. 运筹学基本原理:讲解线性规划、整数规划、网络流等运筹学基本原理及其在物流运输中的应用。
教材章节:第二章3. 物流运输成本分析:分析物流运输成本构成、计算方法以及降低成本的有效途径。
教材章节:第三章第一节4. 路径优化与货物分配:介绍最短路径、最大流、最小费用流等算法,并应用于物流运输路径优化和货物分配问题。
教材章节:第三章第二节、第四章5. 物流运输实例分析:结合实际案例,分析物流运输中的问题,运用所学知识提出解决方案。
运筹学课程设计(lingo和excel规划求解)
使用整数规划或线性规 划模型,将任务的选择 和员工的分配表示为决 策变量,以最小化任务 完成时间和成本为目标 函数,同时考虑员工的 能力、任务的要求等约 束条件。
使用Lingo或Excel的规 划求解功能对模型进行 求解,得到最优的任务 分配方案。
通过对求解结果的分析 ,可以了解最优任务分 配的各项参数,如各任 务的完成时间、成本以 及员工的任务分配情况 等,为公司制定实际的 任务分配计划提供参考 。
选择求解方法
根据问题的特点和要求,选择合 适的求解方法,如逆序解法、顺 序解法等。
05 Lingo在运筹学中的应用
线性规划问题求解
构建Lingo模型
使用Lingo语言编写模型文件,包括目标函 数、约束条件和变量定义。
描述线性规划问题
确定决策变量、目标函数和约束条件。
求解线性规划问题
运行Lingo程序,得到最优解及目标函数值 。
求解动态规划问题
运行Lingo程序,得到最优决策序列及目标函数值。
06 Excel在运筹学中的应用
数据处理与可视化分析
数据清洗和整理
利用Excel的数据筛选、排序、查找和替换等功能,对原始 数据进行清洗和整理,为后续分析提供准确的数据基础。
数据可视化
通过Excel的图表功能,如柱状图、折线图、散点图等,将 数据以直观的方式展现出来,便于发现数据间的关系和趋 势。
案例三
非线性规划问题,如投资决策、最优控制等 。
04 运筹学模型建立与求解
线性规划模型建立
确定决策变量
根据问题背景,选择合适的决策变量,并确定其取值 范围。
构建目标函数
根据问题的优化目标,构建线性目标函数,通常是最 小化或最大化某个表达式。
“运筹学”课内实验任务书
课内实验指导书运筹学模块化课内实脸二、实验/实训目的收集和统计拟定模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。
三、实验/实训内容利用EXCEL/SPSS/LINDo的求解运筹学问题。
建模后,需自学规划软件的对话框式解法,然后得出答案和敏感性分析报告。
)四、实验实训报告内容根据提出的问题,建立相应的模型,运用运筹学计算软件求解所建立的运筹学模型。
五、实验/实训要求I、每5・6人为一个团队,以团队为单位选择以下模块中的其中一个模块进行,团队提交实验报告1份,每个模块题目所选团队不超过4个(自行交流调节)。
2、提交的课程设计报告内容由以下部分组成:问题描述问题分析假设及符号说明建立模型软件求解结果结果分析六、实验内容模块L北方某金属罐铸造厂生产计划的优化分析北方某金属罐铸造厂历史悠久,一直是制造各类金属罐的专业厂家。
其主要产品有4中,遵照厂家的意见,分别用代号A、B、C、D表示,产品销售情况良好,市场对这4种产品的需求量很大,而且预测结果表明,需求还有进一步扩大的趋势,但有些客户希望能有更多的不同功能的新产品问世,至少对原产品在现有基础上加以改进以满足某些特殊需要。
这就面临着进一步扩大在生产,努力开发适销对路新产品的问题。
已经做的一些基础工作是:对引进新的制罐技术和生产线有关资料和信息的调查和整理;对目前生产计划情况的成本核算及分析等等。
但对如何调整当前的生产计划?是否下决心引进新技术和生产线?开发出来的新产品何时投入批量生产和正式投产最为有利?等一系列问题尚缺乏科学的、定量的决策依据。
而厂里目前最关心的是资源问题,主要是各种加工设备的生产能力情况。
关于生产计划的优化后分析就是在这样的背景下提出来的。
为了研究这个问题,首先必需将现有的4种主要产品生产的简单过程及生产计划的有关资料熟悉一下。
生产主要过程生产A、B、C、D4种金属罐主要经过4个阶段:第1阶段是冲压:金属板经冲压机冲压,制造成金属罐所需要的零件;第2阶段是成形:在该车间里把零件制成符合规格的形状;第3阶段是装配:在装配车间,各种成形的零件按技术要求焊接在一起成为完整的金属罐;最后阶段是喷漆:装配好的金属罐送到喷漆车间被喷上防火的瓷漆装饰外表。
运筹学课程设计
运筹学 课程设计一、课程目标知识目标:1. 理解运筹学的基本概念,掌握线性规划、整数规划等基本模型;2. 学会运用图与网络分析解决问题,掌握关键路径法、最小生成树等算法;3. 了解库存管理、排队论等运筹学在实际生活中的应用。
技能目标:1. 能够运用运筹学方法解决实际问题,提高问题分析和解决能力;2. 培养逻辑思维和数学建模能力,提高数学素养;3. 提高团队协作和沟通能力,学会在小组讨论中分享观点、倾听他人意见。
情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发学习热情;2. 培养学生的创新意识和实践能力,使其敢于面对挑战,勇于解决问题;3. 增强学生的社会责任感,认识到运筹学在国家和企业发展中的重要作用。
课程性质分析:本课程为高中年级的选修课程,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。
学生特点分析:高中年级的学生具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇,但可能对理论性较强的知识缺乏兴趣。
教学要求:1. 注重理论与实践相结合,提高课程的实用性;2. 采用案例教学,激发学生学习兴趣;3. 强化小组讨论和团队合作,培养学生的沟通能力和协作精神。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域,使学生了解运筹学的基本框架。
教材章节:第一章 运筹学导论2. 线性规划:讲解线性规划的基本理论、数学模型以及求解方法,如单纯形法、对偶问题等。
教材章节:第二章 线性规划3. 整数规划:介绍整数规划的概念、分类以及求解方法,如分支定界法、割平面法等。
教材章节:第三章 整数规划4. 图与网络分析:讲解图的基本概念、最小生成树、最短路径、关键路径等算法。
教材章节:第四章 图与网络分析5. 库存管理:分析库存管理的基本原理,介绍库存控制、订货策略等。
教材章节:第五章 库存管理6. 排队论:介绍排队论的基本概念、排队系统性能指标,分析排队策略。
教材章节:第六章 排队论7. 运筹学应用案例:分析实际生活中的运筹学应用,如交通运输、生产调度等,提高学生运用运筹学方法解决实际问题的能力。
运筹课程设计报告怎么写
运筹课程设计报告怎么写一、教学目标本课程的教学目标是使学生掌握运筹学的基本概念、方法和应用,能够运用运筹学的知识解决实际问题。
具体来说,知识目标包括掌握线性规划、整数规划、动态规划、非线性规划等基本运筹方法;技能目标包括能够运用运筹学方法解决实际问题,具备一定的数学建模和编程能力;情感态度价值观目标包括培养学生的创新意识、团队合作能力和解决问题的能力。
二、教学内容本课程的教学内容主要包括运筹学的基本概念、方法和应用。
具体来说,教学大纲如下:1.运筹学概述:介绍运筹学的定义、发展历程和应用领域。
2.线性规划:介绍线性规划的基本概念、原理和方法,包括图解法、单纯形法和灵敏度分析等。
3.整数规划:介绍整数规划的基本概念、原理和方法,包括分支定界法、动态规划和贪心算法等。
4.动态规划:介绍动态规划的基本概念、原理和方法,包括最优化原理和状态转移方程等。
5.非线性规划:介绍非线性规划的基本概念、原理和方法,包括无约束优化和有约束优化等。
6.运筹应用案例:分析实际问题,运用运筹学方法进行求解和优化。
三、教学方法为了实现教学目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
具体来说:1.讲授法:通过讲解运筹学的基本概念、原理和方法,使学生掌握基本的运筹学知识。
2.讨论法:学生进行小组讨论,培养学生的思考能力和团队合作能力。
3.案例分析法:分析实际问题,引导学生运用运筹学方法进行求解和优化,提高学生的应用能力。
4.实验法:通过编程实验,使学生熟练掌握运筹学方法的编程实现,培养学生的动手能力。
四、教学资源为了支持教学内容和教学方法的实施,本课程将选择和准备以下教学资源:1.教材:选用权威、实用的运筹学教材,作为学生学习的主要参考资料。
2.参考书:推荐一些相关的参考书籍,供学生深入学习和拓展视野。
3.多媒体资料:制作课件、教学视频等多媒体资料,丰富教学手段,提高学生的学习兴趣。
4.实验设备:提供计算机实验室,供学生进行编程实验和实践操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
运筹学是一门研究系统优化的科学,而线性规划是运筹学的一个重要分支,理论上最完善,实际应用的最广泛。
线性规划所解决的问题主要分为两类:一类是在资源(人力、无理、财力……)一定的情况下如何利用有限的资源完成最多的任务,即如何对有限的资源作出最佳方式的调配和最有利的使用,以便最充分地发挥资源的效能去获取最佳的经济效益;另一类是在任务确定的情况下如何利用最小的资源来完成这个任务。
本文是通过对基本问题的调查和分析,经过抽象和延伸,建立起儿童蔬菜营养最优配置研究的通用线性规划模型,结合模型的特点,在限制条件下对模型进行了讨论与分析,将模型应用于案例的背景问题,利用Lindo软件对此线性规划的混合策略问题进行求解、分析。
关键词:线性规划、最优配置、混合策略、Lindo
目录
第一章问题研究的意义...................................................................... 错误!未定义书签。
1.1研究的主要内容与目的 (1)
1.2 研究的意义 (1)
1.3 研究的方法与主要思路 (1)
第二章问题的提出 (1)
第三章模型的建立及求解 (2)
3.1 变量的设定 (2)
3.2 目标函数的建立 (2)
3.3 约束条件的确定 (3)
3.4 模型的建立 (3)
3.5 模型的求解 (4)
第三章结果分析 (5)
总结 (10)
致谢 (11)
参考文献 (12)
第一章、问题研究的意义
1. 1研究的主要内容与目的
本次调查的主要内容是儿童在生长过程中需要补充的各种营养成份,重点选取日常生活中人们不注意而又非常重要的营养成份来研究。
通过互联网的查阅及相关
市场的调查,从而得到该问题的相关数据,再结合实际情况制定出儿童最优营养配
置方案。
研究的最终目的是通过最优营养配置方案的制定,给儿童提供相关的营养
配置方案,既能使儿童在最低费用下满足必须的营养需求,也能够结合儿童的实际
情况,合理选择饮食。
1. 2研究的意义
本次调查的研究和问题的解决,可帮助该儿童合理的选择日常饮食,在花费最小费用的情况下满足最低的营养成份需求。
最终在该儿童合理饮食后身体健康成功
例子下,引导更多的儿童注重日常饮食中容易忽略的营养成份的补充,为自身的健
康合理的选择饮食。
1. 3研究的方法与主要思路
在日常生活中,我们会遇到这样的问题:一类是在现有的各类有限资源(如人、财、物等)的条件下,如何合理的计划、安排,可使得某一目标达到最大,如产量、利润目标等;另一类是在任务确定后,如何计划、安排,能以最低限度使用各类资
源,去实现该任务,如使生产成本最低、费用最小等。
对待这些问题我们采用的整
数规划的方法,就是根据实际事物的特性,抽象出不同的数学模型,最后借助计算
机软件进行求解,得到解决这些问题得的最优方法。
第二章、问题的提出
根据查阅资料得知儿童必需的营养成份和每周最低需求量如表1:
表1 营养成份最低需求表
而含有以上五种营养成份的蔬菜及单位蔬菜中各营养成份的含量和单位蔬菜
的价格如表2:
表2 蔬菜营养含量及单位价格表
问:在满足儿童每周所需的蔬菜营养成分最低需求,以及每周蔬菜的份数总和14份和儿童对口味的需求的条件下,如何购买蔬菜使得费用最小。
第三章、模型的建立及求解
3.1 变量的设定
根据线性规划的基本原理可知,变量应该是直接影响最终目标的几个参变量。
通过上面可知儿童营养的直接影响因素是每种蔬菜的数量,假设各种蔬菜在烹煮过程中营养的丢失以及一些限制性因素对问题的影响甚微,可以忽略不记。
通过以上分析和假设,我们就可以确定变量。
设青豆、莴笋、花菜、卷心菜、甜菜、土豆6种蔬菜所用份量分别用x1, x2, x3, x4, x5, x6 表示,再通过变量的限定条件的选择,运用Lindo软件进行求解。
3.2 目标函数的建立
本次调查研究的目的是在满足儿童日常营养最低需求的前提下,购买蔬菜所用的
费用最小,目标函数的确定就是使蔬菜购买费用最小化,即: min z=1.50x1+1.50x2+2.40x3+0.60x4+1.80x4+1.00x5
3.3 约束条件的确定
(1)表1为儿童每周必须满足的营养成份的最低量,即儿童在一周内所吃的各种蔬
菜中各种营养成份的总和,再结合表2各蔬菜中各营养成份的含量由此得到以下约束条件:
0.45x1+0.45x2+1.05x3+0.4x4+0.5x5+0.5x6≥6.0
10x1+28x2+50x3+25x4+22x5+75x6≥325 425x1+9065x2+2550x3+75x4+15x5+235x6≥17500 8x1+3x2+53x3+27x4+22x5+8x6≥245
0.3x1+0.35x2+0.6x3+0.15x4+0.25x5+0.8x6≥5.0
3. 4 模型的建立
综合以上各种条件的选择、变量的设定、目标函数的确定以及约束条件可得到线性规划的求解模型为:
min z=1.50x1+1.50x2+2.40x3+0.60x4+1.80x4+1.00x5
s .t.⎪⎪⎪
⎪⎪⎩
⎪⎪
⎪⎪
⎪⎨⎧≤≤≤≤≥≥≥≥≥2 x40 6) 5, 3, 2, 1,=i ( 4 x 0 14=x6+x5+x4+x3+x2+ x1 5.0 0.8x6+0.25x5+0.15x4+0.6x3+0.35x2+0.3x1245 8x6+22x5+27x4+53x3+3x2+8x117500 235x6+15x5+75x4+2550x3+9065x2+425x1325 75x6+22x5+25x4+50x3+28x2+10x1 6.0 0.5x6+0.5x5+0.4x4+1.05x3+0.45x2+0.45x1i
3. 5 模型的求解
建立起模型后,然后运用求解线性规划问题专用的Lindo 软件对模型进行求
解,在软件中的输入为:
min 1.50x1+1.50x2+2.40x3+0.60x4+1.80x5+1.00x6
st
0.45x1+0.45x2+1.05x3+0.4x4+0.5x5+0.5x6>6.0
10x1+28x2+50x3+25x4+22x5+75x6>325
415x1+9065x2+2550x3+75x4+15x5+235x6>17500
8x1+3x2+53x3+27x4+22x5+8x6>245
0.3x1+0.35x2+0.6x3+0.15x4+0.25x5+0.8x6>5.0
总结
以上是运用excel软件进行求解得到的结果,从该结果中可以得到儿童一周所用各种蔬菜的种类和数量。
规划的结果是符合儿童的实际情况,也是儿童在满足一周最低营养的前提下购买蔬菜费用最小的最优配置方案。
由本次调查的数据计算可知,各种蔬菜的份量分别为青豆4.000000份,莴笋1.084602份,花菜1.922821份,卷心菜2.000000份,甜菜0.992577份,土豆4.000000份,目标函数的最优值为19.22831。
从这些数据中可看出儿童蔬菜营养的最优配置是比较合理的,既能够满足营养需求,蔬菜种类又比较多,且分配的恰当,是符合儿童实际情况的,所以不需要进行调整花费的费用也达到了最小化。
致谢
通过本次课程设计,让我对运筹学的建模的过程有了更深的理解,在此次课程设计之中,我得到最大的收获就是如何运用科学方法和工具来求解一个实际问题,学会了如何运用Lindo软件求解方程。
在这里我要感谢孙老师的悉心指导,在选题及研究过程中孙老师多次询问研究过程,并为我指点迷津,帮助我开拓研究思路,精心点拔,孙老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神,不仅授我以知识,而且教我做人,虽然时间不长,却给以我终生受益无穷之道,再此我衷心的感谢孙老师。
同时也感谢在本次设计中对我帮助和鼓励的同学。
参考文献
[1].胡运权.运筹学基础及应用(第五版)高等教育出版社,2008
[2].韩大卫.管理运筹学. 大连理工大学出版社,2004
[3].程理民,吴江,张玉林.运筹学模型与方法教程.清华大学出版社,2007。