滑块—木板模型专题附详细答案
《牛顿运动定律》专题--滑块-木板模型
《牛顿运动定律》专题--滑块-木板模型一、单选题1.如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现施水平力F 拉B (如图甲),A 、B 刚好不发生相对滑动,一起沿水平面运动.若改用水平力F ′拉A (如图乙),使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过 ( )A . F B. 2FC. 3F D . F 2 2.如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的左端放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若物体之间的滑动摩擦力(f )的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图中可以定性地描述长木板B 运动的v -t 图象的是 ( ) A. B. C.D.3.如图所示,绷紧的长为6m 的水平传送带,沿顺时针方向以恒定速率v 1=2m/s 运行。
一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v 2=5m/s 。
若小物块与传送带间动摩擦因数μ=0.2,重力加速度g =10m/s 。
下列说法中正确的是( )A. 小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动B. 若传送带的速度为1m/s ,小物块将从传送带左端滑出C. 若传送带的速度为5m/s ,小物块将以5m/s 的速度从传送带右端滑出D. 若小物块的速度为4m/s ,小物块将以4m/s 的速度从传送带右端滑出4.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板(足够长)乙,静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28N B. F >38NC. F ≥38ND. F >42N5.如图所示,在光滑的水平面上,叠放着两个质量分别为m 、M 的物体(m <M ),用一水平恒力作用在m 物体上,两物体相对静止地向右运动,现把此水平力作用在M 物体上,则以下说法正确的是( )A. 两物体间的摩擦力大小不变B. m 受到的合外力与第一次相同C. M 受到的摩擦力增大D. 两物体间可能有相对运动6.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板乙(足够长),静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28NB. F >38NC. F ≥38ND. F >42N二、多选题 7.如图所示,水平传送带左右两端相距L =3.5m ,物体A 以水平速度v =4m /s 滑上传送带左端,物体与传送带之间的动摩擦因数μ=0.1。
高考物理《滑块—木板模型》真题练习含答案
高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。
(完整版)高中物理滑块-板块模型(解析版)
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
3.1滑块-木块模型(解析)
滑块—木块模型应用参考答案与试题解析一.多选题(共39小题)1.如图甲所示,质量为M的足够长的木板置于粗糙的水平面上,其上放置一质量为m的小物块,当木板受到水平拉力F的作用时,用传感器测出木板的加速度a与水平拉力F的关系如图乙所示,重力加速度g=10m/s2,下列说法中正确的是()A.小物块的质量m=0.5kgB.小物块与长木板间的动摩擦因数为0.2C.当水平拉力F=7N时,长木板的加速度大小为6m/s2D.当水平拉力F逐渐增大时,小物块的加速度一定逐渐增大【分析】当拉力较小时,m和M保持相对静止一起做匀加速直线运动,当拉力达到一定值时,m和M发生相对滑动,结合牛顿第二定律,运用整体和隔离法分析.【解答】解:对整体分析,由牛顿第二定律有:F﹣F0=(M+m)a,代入数据解得:M+m=1.5kg当F大于5N时,根据牛顿第二定律得:a=,知图线的斜率k==2,解得:M=0.5kg,滑块的质量为:m=1kg。
故A错误。
B、根据F大于5N的图线知,F=4时,a=0,即:0=2(F﹣F0)﹣,代入数据解得:μ=0.2,所以a=2(F﹣F0)﹣4,当F=7N时,长木板的加速度为:a=6m/s2。
根据μmg=ma′得:a′=μg=1m/s2,故BC正确。
D、由图象可知,当F>5N时,两物体发生相对滑动,此后小物体的加速度恒定,故D错误;故选:BC。
【点评】本题考查牛顿第二定律与图象的综合,知道滑块和木板在不同拉力作用下的运动规律是解决本题的关键,掌握处理图象问题的一般方法,通常通过图线的斜率和截距入手分析.2.如图所示,滑块放置在厚度不计的木板上,二者处于静止状态。
现对木板施加一水平向右的恒力F,已知各个接触面均粗糙,且最大静摩擦力等于滑动摩擦力。
下列关于滑块和木板运动的v﹣t图象中可能正确的是(实线、虚线分别代表木板和滑块的v﹣t图象)()A.B.C.D.【分析】根据牛顿第二定律求出滑块不发生相对滑动的最大加速度,对整体分析,根据牛顿第二定律可得出F在一定的范围内二者一起做加速运动。
滑块木板模型(解析版)-高考物理5种类碰撞问题
滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
高中物理滑块-板块模型(解析版)
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
滑块和木板问题(带答案)
ehtn mitaean dAl l t h i ng si nt he i rb ei nga re go od 【例4】如图所示,在光滑的桌面上叠放着一质量为m A =2.0kg 的薄木板A 和质量为m B =3 kg 的金属块B .A 的长度L =2.0m .B 上有轻线绕过定滑轮与质量为mC =1.0 kg 的物块C 相连.B 与A 之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间t 后 B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g =10m/s 2).例1解析(1)m 与M 刚要发生相对滑动的临界条件:①要滑动:m 与M 间的静摩擦力达到最大静摩擦力;②未滑动:此时m 与M 加速度仍相同。
受力分析如图,先隔离m ,由牛顿第二定律可得:a=μmg/m=μg再对整体,由牛顿第二定律可得:F 0=(M+m)a 解得:F 0=μ(M+m) g所以,F 的大小范围为:F>μ(M+m)g(2)受力分析如图,先隔离M ,由牛顿第二定律可得:a=μmg/M 再对整体,由牛顿第二定律可得:F 0=(M+m)a 解得:F 0=μ(M+m) mg/M所以,F 的大小范围为:F>μ(M+m)mg/M例2[解析](1)小滑块与木板间的滑动摩擦力f=μFN=μmg=4N…………①滑动摩擦力f 是使滑块产生加速度的最大合外力,其最大加速度 a 1=f/m=μg=4m/s 2 …②当木板的加速度a 2> a 1时,滑块将相对于木板向左滑动,直至脱离木板F-f=m a 2>m a 1 F> f +m a 1=20N …………③即当F>20N ,且保持作用一般时间后,小滑块将从木板上滑落下来。
(2)当恒力F=22.8N 时,木板的加速度a 2',由牛顿第二定律得F-f=Ma 2' 解得:a 2'=4.7m/s 2………④设二者相对滑动时间为t ,在分离之前小滑块:x 1=½ a1t 2 …………⑤ 木板:x 1=½ a2't 2 …………⑥又有x 2-x 1=L …………⑦ 解得:t=2s …………⑧tnisgnih解得:F2=6N…………………………1分要使小滑块脱离薄木板但不离开桌面,拉力F6N。
高考物理专题23“滑块_木板”模型的动力学问题练习含解析
专题23 “滑块—木板”模型的动力学问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fmm.假设两物体同时由静止运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.(2020·山东济南历城二中一轮复习验收)如图1所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块的加速度大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )图1答案 A解析 当F 比较小时,两个物体相对静止,加速度相同,根据牛顿第二定律可得a =Fm 1+m 2=kt m 1+m 2,a ∝t ;当F 比较大时,木块相对于木板运动,根据牛顿第二定律可得,a 1=μm 2gm 1,μ、m 1、m 2一定,则a 1一定,a 2=F -μm 2g m 2=k m 2t -μg ,a 2是t 的线性函数,t 增大,a 2增大.由于km 1+m 2<km 2,则木块相对于木板运动后,a 2-t 图线的斜率大于两者相对静止时图线的斜率.综上所述,A 正确.2.(2020·安徽六安市质量检测)如图2所示,静止在水平地面上的木板(厚度不计)质量为m 1=1 kg ,与地面的动摩擦因数μ1=0.2,质量为m 2=2 kg 可看作质点的小物块与木板、地面间的动摩擦因数均为μ2=0.4,以v 0=4 m/s 的水平速度从左端滑上木板,经过t =0.6 s 滑离木板,g 取10 m/s 2,以下说法正确的是( )图2A .木板的长度为1.68 mB .小物块离开木板时,木板的速度为1.6 m/sC .小物块离开木板后,木板的加速度为2 m/s 2,方向水平向右 D .小物块离开木板后,木板与小物块将发生碰撞 答案 D解析 由于μ2m 2g >μ1(m 1+m 2)g ,得物块在木板上以a 1=μ2g =4 m/s 2减速滑行时木板以a 2=μ2m 2g -μ1m 1+m 2g m 1=2 m/s 2向右加速运动,在0.6 s 时,物块的速度v 1=v 0-a 1t =1.6m/s ,木板的速度v 2=a 2t =1.2 m/s ,B 错误.0.6 s 内物块位移为x 1=v 0+v 12t =1.68 m ,木板位移x 2=0+v 22t =0.36 m ,相对位移为Δx =x 1-x 2=1.32 m ,即木板长度为1.32 m ,A 错.物块离开木板后,木板做减速运动,加速度大小为a 4=μ2g =2 m/s 2,方向向左,C 错.在地面上物块会滑行x 4=v 122a 4=v 122μ2g =0.32 m ,木板会滑行x 3=v 222a 3=v 222μ1g=0.36 m ,所以两者会相碰,D 正确.3.(多选)(2020·江苏南京师大苏州实验学校一模)如图3所示,质量为m 1的木块和质量为m 2的长木板叠放在水平地面上.现对木块施加一水平向右的拉力F ,木块在长木板上滑行,长木板始终静止.已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,且最大静摩擦力与滑动摩擦力相等.重力加速度为g ,则( )图3A .μ1一定小于μ2B .μ1可能大于μ2C .改变F 的大小,F >μ2(m 1+m 2)g 时,长木板将开始运动D .改F 作用于长木板,F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动 答案 BD解析 对木块,根据牛顿运动定律有:F -μ1m 1g =m 1a ;对长木板,由于保持静止,有:μ1m 1g -F f =0,F f <μ2(m 1+m 2)g ,m 1、m 2的大小关系不确定,所以μ1、μ2的大小关系无法确定,故A 错误,B 正确.改变F 的大小,只要木块在木板上滑动,木块对木板的滑动摩擦力不变,长木板仍然保持静止,故C 错误.若将F 作用于长木板,当木块与木板恰好开始相对滑动时,对木块,μ1m 1g =m 1a ,解得a =μ1g ,对整体分析,有F -μ2(m 1+m 2)g =(m 1+m 2)a ,解得F =(μ1+μ2)(m 1+m 2)g ,所以当F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动,故D 正确.4.(多选)(2019·全国卷Ⅲ·20)如图4(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )图4A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 答案 AB解析 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2 m/s 2=0.2 m/s 2,对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4 m/s 2=0.2 m/s 2,F f =ma 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =0.2 N ,解得m =1 kg 、F =0.4 N ,选项A 、B 正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.5.(多选)(2020·山东邹城一中测试)如图5甲所示,质量为m =1 kg 可视为质点的物块A放置在长木板B 上,A 、B 静止在水平地面上,已知长木板B 的质量M =4 kg ,A 与B 及B 与地面间的动摩擦因数均为μ=0.1,用水平外力F 作用在长木板B 上,外力F 随时间变化关系如图乙所示,设最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2,则下列说法正确的是( )图5A .t =0时刻,A 的加速度为零B .t =5 s 时刻,B 的加速度为3.5 m/s 2C .在整个运动过程中,物块A 的加速度始终不变D .如果长木板B 足够长,最终A 、B 将共速 答案 BC解析 由滑动摩擦力公式可知,A 、B 间的滑动摩擦力:F f A =μmg =1 N ,B 与地面间的滑动摩擦力:F f B =μ(M +m )g =5 N ,A 、B 间发生相对滑动后,A 的加速度将保持不变,其大小为:a A =F f Am=1 m/s 2.若A 、B 间刚好发生相对滑动时的外力为F 1,由牛顿第二定律得F 1-μ(M +m )g =(M +m )a A ,得F 1=10 N ,所以t =0时刻A 的加速度a A =1 m/s 2,故A 项错误,C 项正确;在t =5 s 时,F =20 N ,对长木板B 由牛顿第二定律有:F -F f A -F f B =Ma B ,得a B =3.5 m/s 2,故B 项正确;只要F 始终作用在长木板B 上,B 的加速度始终大于A 的加速度,无论长木板B 多长,A 、B 都不会共速,故D 项错误.6.(多选)如图6甲所示,质量为2m 的足够长的木板B 放在粗糙水平面上,质量为m 的物块A 放在木板B 的右端且A 与B 、B 与水平面间的动摩擦因数均为μ,现对木板B 施加一水平变力F ,F 随t 变化的关系如图乙所示,最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图6A .前3 s 内,A 受到的摩擦力方向水平向右B .t =4 s 时,A 的加速度大小为13μgC .t =5 s 时,A 受到的摩擦力大小为0.5μmgD .第6 s 以后,A 受到的摩擦力大小为μmg 答案 BD解析 A 相对B 刚要滑动时,A 的加速度为a A =μg ,B 的加速度a B =F -4μmg2m,且a A =a B ,解得F =6μmg ,由图乙可知,第6 s 以后,F >6μmg ,A 相对B 滑动,A 受到的摩擦力大小为μmg ,故D 正确;A 和B 一起滑动时,a AB =F -3μmg 3m ≥0,解得F ≥3μmg ,所以在前3 s 内,A 、B 静止不动,A 受到的摩擦力为0,故A 错误;当t =4 s 时,A 和B 一起滑动,A 的加速度大小为a AB =F -3μmg 3m =4μmg -3μmg 3m =13μg ,故B 正确;当t =5 s 时,A 和B 一起滑动,A 受到的摩擦力大小F f =ma AB =m ·5μmg -3μmg 3m =23μmg ,故C 错误.7.(多选)如图7所示,质量相等的物块A 和木板B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先水平敲击A ,A 立即获得水平向右的初速度v A ,在B 上滑动距离L 后停下.接着水平敲击B ,B 立即获得水平向右的初速度v B ,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,相对静止前B 的加速度大小为a 1,相对静止后B 的加速度大小为a 2,此后两者一起运动至停下.已知最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )图7A .a 1=3a 2B .v A =2μgLC .v B =22μgLD .从左边缘再次对齐到A 、B 停止运动的过程中,A 和B 之间没有摩擦力 答案 ABC解析 分析可知,敲击A 时,B 始终静止,由牛顿第二定律知,A 加速度的大小a A =μg ,由匀变速直线运动规律有2a A L =v A 2,解得v A =2μgL ,选项B 正确;设A 、B 的质量均为m ,敲击B 时,在A 、B 相对滑动的过程中,B 所受合外力大小为3μmg ,由牛顿第二定律有3μmg =ma 1,解得a 1=3μg ,当A 、B 相对静止后,对A 、B 整体由牛顿第二定律有2μmg =2ma 2,解得a 2=μg ,故a 1=3a 2,选项A 正确;经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a 2,则v =a 2t ,v =v B -a 1t ,x A =12a 2t 2,x B =v B t -12a 1t 2且x B -x A =L ,解得v B =22μgL ,选项C 正确;对齐后,A 、B 整体以加速度大小a 2=μg 一起做匀减速运动,对A 分析有F f =ma 2=μmg ,故A 、B 之间有摩擦力且达到最大静摩擦力,选项D 错误. 8.(多选)(2020·云南大理、丽江等校第二次统考)如图8(a),质量m 1=0.2 kg 的足够长平板小车静置在光滑水平地面上,质量m 2=0.1 kg 的小物块静止于小车上,t =0时刻小物块以速度v 0=11 m/s 向右滑动,同时对小物块施加一水平向左、大小恒定的外力F ,图(b)显示物块与小车第1 s 内运动的v -t 图象.设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.则下列说法正确的是( )图8A .小物块与平板小车间的动摩擦因数μ=0.4B .恒力F =0.5 NC .小物块与小车间的相对位移x 相对=6.5 mD .小物块向右滑动的最大位移是x max =7.7 m 答案 ABD解析 由题图(b)知,小车和小物块的加速度分别为a 1=Δv 1Δt =2-01 m/s 2=2 m/s 2a 2=Δv 2Δt =2-111m/s 2=-9 m/s 2对小车:μm 2g =m 1a 1,对小物块:-(F +μm 2g )=m 2a 2, 解得μ=0.4,F =0.5 N ,故A 、B 正确;根据题图(b)可知,在t =1 s 时小车和小物块的速度相同,两者不再发生相对运动,相对位移等于图中三角形的面积,x 相对=112 m =5.5 m ,C 错误;在0~1 s 内小物块向右滑动的位移x 1=2+112m =6.5 m当小车与小物块的速度相等后,在外力的作用下一起向右匀减速运动,其加速度大小为a 3=Fm 1+m 2=53m/s 2, 当速度减小到0时,整体向右发生的位移为x 2=222×53m =1.2 m所以小物块向右滑动的最大位移是x max =x 1+x 2=7.7 m ,故D 正确.9.(多选)(2020·山东济南市期末)如图9所示,倾角为37°的足够长斜面,上面有一质量为2 kg 、长8 m 的长木板Q ,木板上下表面与斜面平行.木板Q 最上端放置一质量为1 kg 的小滑块P .P 、Q 间光滑,Q 与斜面间的动摩擦因数为13.若P 、Q 同时从静止释放,以下关于P 、Q两个物体运动情况的描述正确的是(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)( )图9A .P 、Q 两个物体加速度分别为6 m/s 2、4 m/s 2B .P 、Q 两个物体加速度分别为6 m/s 2、2 m/s 2C .P 滑块在Q 上运动时间为1 sD .P 滑块在Q 上运动时间为2 s 答案 BD解析 对P 受力分析,受重力和Q 对P 的支持力作用,根据牛顿第二定律有:m P g sin 37°=m P a P解得:a P =g sin 37°=6 m/s 2对Q 受力分析,受重力、斜面对Q 的支持力、摩擦力和P 对Q 的压力作用,根据牛顿第二定律有:m Q g sin 37°-μ(m P +m Q )g cos 37°=m Q a Q ,解得:a Q =2 m/s 2,故A 错误,B 正确;设P 在Q 上面滑动的时间为t ,因a P =6 m/s 2>a Q =2 m/s 2,故P 比Q 运动更快,根据位移关系有:L =12(a P -a Q )t 2,代入数据解得t =2 s ,故C 错误,D正确.10.(2020·广东广州市一模)如图10所示,质量M =8 kg 的小车放在水平光滑的平面上,在小车右端加一F =8 N 的水平拉力,当小车向右运动的速度达到v 0=1.5 m/s 时,在小车前端轻轻地放上一个大小不计、质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小车足够长,g 取10 m/s 2.求:图10(1)放小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;(3)从小物块放上小车开始,经过t =1.5 s 小物块通过的位移大小为多少? 答案 (1)2 m/s 20.5 m/s 2 (2)1 s (3)2.1 m解析 (1)对小车和物块受力分析,由牛顿第二定律可得,物块的加速度:a m =μg =2 m/s 2小车的加速度:a M =F -μmg M=0.5 m/s 2(2)由:a m t =v 0+a M t 得:t =1 s ,所以速度相同时用的时间为1 s. (3)在开始1 s 内小物块的位移:x 1=12a m t 2=1 m最大速度:v =a m t =2 m/s在接下来的0.5 s 物块与小车相对静止,一起做加速运动,加速度:a =FM +m=0.8 m/s 2这0.5 s 内的位移:x 2=vt ′+12at ′2=1.1 m所以通过的总位移x =x 1+x 2=2.1 m.11.如图11所示,两个完全相同的长木板放置于水平地面上,木板间紧密接触,每个木板质量M =0.6 kg ,长度l =0.5 m .现有一质量m =0.4 kg 的小木块,以初速度v 0=2 m/s 从木板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1,重力加速度g 取10 m/s 2.求:图11(1)小木块滑上第二个木板的瞬间的速度大小; (2)小木块最终滑动的位移(保留3 位有效数字). 答案 (1)1 m/s (2)0.670 m解析 (1)木板受到木块的摩擦力为F f1=μ1mg 木板受到地面的摩擦力为F f2=μ2(2M +m )g 因为F f2>F f1,所以木块运动时,木板静止不动设木块在左边第一个木板上的加速度大小为a 1,μ1mg =ma 1 小木块滑上第二个木板的瞬间的速度为v ,则v 2-v 02=-2a 1l代入数据解得:v =1 m/s(2)木块滑上第二个木板后,设木板的加速度大小为a 2,则μ1mg -μ2(M +m )g =Ma 2设木块与木板达到相同速度v 1时,用时为t ,则有: 对木块:v 1=v -a 1t 对木板有:v 1=a 2t解得:v 1=0.1 m/s ,t =0.3 s此时木块运动的位移x 1=v +v 12t =0.165 m木板的位移x 1′=v 122a 2=0.015 m木块在木板上滑动的长度为x 1-x 1′<l达到共速后,木块和木板一起继续运动,设木块、木板一起运动的加速度大小为a 3,位移为x 2,μ2(M +m )g =(M +m )a 3 v 12=2a 3x 2解得x 2=0.005 m小木块滑动的总位移x =l +x 1+x 2=0.670 m.。
微专题16 牛顿运动定律应用之“滑块—木板模型”问题
微专题16 牛顿运动定律应用之“滑块—木板模型”问题【核心要点提示】1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【核心方法点拨】此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【微专题训练】类型一:滑块-木板间有摩擦,木板与地面间无摩擦【例题1】(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A =6 kg,m B=2 kg.A、B间动摩擦因数μ=0.2.A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【解析】假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得:μm A g=m B a,解得a=6 m/s2以整体为研究对象,由牛顿第二定律得:F m=(m A+m B)a=48 N即当绳子拉力达到48 N时两物体才开始相对滑动,所以A、B错,D正确.当拉力F=16 N时,由F=(m A+m B)a解得a=2 m/s2,再由F f=m B a得F f=4 N,故C正确.【答案】CD【变式1-1】如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2 m/s2,a M=1 m/s2B.a m=1 m/s2,a M=2 m/s2C.a m=2 m/s2,a M=4 m/s2D.a m=3 m/s2,a M=5 m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2 m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2 m/s2,选项C正确,选项A、B、D错误.【答案】C【变式1-2】如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F =kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v-t图象是()【解析】A、B相对滑动之前加速度相同,由整体法可得:F=2ma,当A、B间刚好发生相对滑动时,对木板有F f=ma,故此时F=2F f=kt,t=2F fk,之后木板做匀加速直线运动,故只有B项正确.【答案】B【例题2】如图所示,在光滑的水平面上有一长为0.64 m、质量为4 kg的木板A,在木板的左端有一质量为2 kg的小物体B,A、B之间的动摩擦因数为μ=0.2。
高中物理滑块木板模型(经典)
高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。
高考物理计算题训练——滑块与木板模型(答案版)
1、木板 M 静止在圆滑水平面上,木板上放着一个小滑m,与木板之的摩擦因数μ,了使得m 能从 M 上滑落下来,求以下各样状况下力 F 的大小范。
( 1)m 与 M 要生相滑的界条件:①要滑:m 与 M的静摩擦力达到最大静摩擦力;②未滑:此m 与 M 加快度仍同样。
受力分析如,先隔绝 m,由牛第二定律可得:a=μ mg/m= μ g再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) g因此, F 的大小范:F>μ (M+m)g( 2)受力剖析如,先隔绝M ,由牛第二定律可得:a=μ mg/M再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) mg/M因此, F 的大小范:F>μ (M+m)mg/M2、如所示,有一木板静止在圆滑水平面上,木板量M=4kg , L=1.4m. 木板右端放着一个小滑,小滑量m=1kg ,其尺寸小于 L ,它与木板之的摩擦因数μ =0.4, g=10m/s 2,( 1)用水平向右的恒力 F 作用在木板 M 上,了使得 m 能从 M 上滑落下来,求 F 的大小范 .( 2)若其余条件不,恒力F=22.8N ,且始作用在M 上,求 m 在 M 上滑的 .( 1)小滑与木板的滑摩擦力f= μFN= μ mg=4N⋯⋯⋯⋯①滑摩擦力 f 是使滑生加快度的最大合外力,其最大加快度a1=f/m= μ g=4m/s 2⋯②当木板的加快度a2 > a1,滑将相于木板向左滑,直至离开木板F-f=m a 2>m a1F> f +m a 1=20N⋯⋯⋯⋯③即当 F>20N ,且保持作用一般后,小滑将从木板上滑落下来。
( 2)当恒力 F=22.8N ,木板的加快度a2',由牛第二定律得F-f= M a2'解得: a2'= 4.7m/s2⋯⋯⋯④两者相滑t,在分别以前小滑: x 1=? a1t 2⋯⋯⋯⋯⑤木板: x 1=? a2 ' t2⋯⋯⋯⋯⑥又有 x2- x1=L ⋯⋯⋯⋯⑦根源于网解得: t=2s ⋯⋯⋯⋯⑧3、量 mA=3.0kg 、度L=0.70m 、量 q=+4.0 × 10-5C 的体板 A 在足大的水平面上,量 mB=1.0kg 可点的物 B 在体板 A 的左端,开始A、B 保持相静止一同向右滑,当它的速度减小到 v0=3.0m/s,立刻施加一个方向水平向左、大小板的距离S =2m ,今后 A 、 B 始在匀中,如所示E=1.0 × 105N/C 的匀 ,此 A 的右端到直.假设 A 与板碰撞极短且无机械能失, A 与B 之(摩擦因数 1 =0.25)及 A 与地面之(摩擦因数 2 =0.10)的最大静摩擦力均可等于其滑摩擦力,g 取 10m/s2(不空气的阻力)求:(1) 施加匀,物 B 的加快度的大小?(2) 体板 A 走开板, A 的速度大小?(3)B 可否走开A, 若能,求 B 走开 A , B 的速度求 B 与 A 的左端的最大距离?大小;若不可以,解:( 1) B 遇到的最大静摩擦力f1m,f1m1m B g 2.5N . ①(1分)A 遇到地面的滑摩擦力的 f 2, f2 2 ( mA mB ) g 4.0N . ②(1 分)施加后, A .B 以同样的加快度向右做匀减速运,加快度大小a,由牛第二定律qE f2(m A m B )a ③( 2分)解得:a 2.0m / s2(2 分)B 遇到的摩擦力f1,由牛第二定律得f1m B a ,④解得: f1 2.0N . 因 f1f1m,因此作用后, A .B 仍保持相静止以同样加快度 a 向右做匀减速运,因此加上匀, B 的加快度大小a 2.0m / s2(2 分)( 2) A 与板碰前瞬, A . B 向右的共同速度v1,v12v022as( 2 分)解得v11m / s(1 分)A 与板碰撞无机械能失,故 A 走开板速度大小v11m / s(1 分)( 3) A 与板碰后,以 A . B 系研究象,qE f2⑥故 A 、B 系量守恒,A 、B 向左共同速度,定向左正方向,得:m A v1m B v1 (m A m B )v⑦(3 分)程中, B 相于 A 向右的位移s1,由系功能关系得:1mBgs11(m A m B )v121(m A m B ) v2⑧( 4 分)解得s10.60 m (2分)22因 s1L ,因此B不可以走开A ,B 与 A 的左端的最大距离s10.60m(1 分)4、如所示,圆滑水平面MN 的左端 M 有一射装置P(P 左端固定,于状且定的簧,当 A 与 P 碰撞 P 立刻排除定),右端 N 与水平送恰平且很凑近,送沿逆方向以恒定速率υ =5m/s匀速,水平部分度L = 4m。
专题 滑块—木板模型(板块模型)(附精品解析)
专题 滑块—木板模型(板块模型) 专题训练一、单选题1.(2021·湖南·长郡中学高一期中)木板B 静止在水平面上,其左端放有物体A 。
现对A 施加水平恒力F 的作用,使两物体均从静止开始向右做匀加速直线运动,直至A 、B 分离,已知各接触面均粗糙,则( )A .A 和地面对B 的摩擦力是一对相互作用力B .A 和地面对B 的摩擦力是一对平衡力C .A 对B 的摩擦力水平向右D .B 对A 的摩擦力水平向右2.(2021·黑龙江·农垦佳木斯学校高三月考)如图所示,质量为M 的木板放在水平桌面上,一个质量为m 的物块置于木板上。
木板与物块间、木板与桌面间的动摩擦因数均为μ。
现用一水平恒力F 向右拉木板,使木板和物块共同向右做匀加速直线运动,物块与木板保持相对静止。
已知重力加速度为g 。
下列说法正确的是( )A .木板与物块间的摩擦力大小等于0B .木板对物块的摩擦力水平向左C .木板与桌面间的摩擦力大小等于μMgD .当拉力2()F M m g μ>+时,m 与M 发生相对滑动 3.(2021·山东师范大学附中高三月考)如图所示,质量为3kg 的长木板B 静置于光滑水平面上,其上放置质量为1kg 的物块A ,A 与B 之间的动摩擦因数为0.5设最大静摩擦力等于滑动摩擦力,且当地的重力加速度为210m/s 。
当木板A 和B 刚好要发生相对滑动时,拉力F 的大小为( )A .20NB .15NC .5ND .25N4.(2021·安徽·定远县民族中学高三月考)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。
木板B 受到随时间t 变化的水平拉力F 作用时,木板B 的加速度a 与拉力F 的关系图象如图乙所示,则小滑块A 的质量为( )A .4kgB .3kgC .2kgD .1kg二、多选题5.(2021·四川·眉山市彭山区第一中学高三月考)物体A 和物体B 叠放在光滑水平面上静止,如图所示。
滑块—木板模型专题附详细答案
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.用10 N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()A.当拉力F<12 N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间? 牛顿定律——滑块和木板模型专题答案例1、3.3 N 5 N例2、48 N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m解析 (1)以小物块为研究对象,由牛顿第二定律,得μmg =ma 1解得a 1=μg =2 m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2解得a 2=F -μmg M=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t解得:t =v 0a 1-a 2=1 s则物块运动的位移x 1=12a 1t 2=1 m小车运动的位移x 2=v 0t +12a 2t 2=1.75 mL =x 2-x 1=0.75 m针对练习2、解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N木板的加速度a =F -F f M =2.5 m/s 2.(2分) (2)设拉力F 作用时间t 后撤去F 撤去后,木板的加速度为a ′=-F f M =-2.5 m/s 2(2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故at 2=L解得t =1 s ,即F 作用的最短时间为1 s .(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 (2分)木板能从木块的下方抽出的条件为a 木板>a 木块解得F 1>25 N .(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2 (1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M =4.25 m/s 2(1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即12a 木板′t 2-12a 木块′t 2=L(2分)代入数据解得t=2 s.(2分) 答案(1)2.5 m/s2(2)1 s(3)大于25 N(4)2 s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
专题05 滑块木板模型--2024届新课标高中物理模型与方法(解析版)
2024版新课标高中物理模型与方法专题05滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (2)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (3)问题1.板块模型中的运动学单过程问题 (3)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (4)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (5)【模型演练】 (13))g-μ抽桌布问题图(a)图(b)μ1及小物块与木板间的动摩擦因数μ2;木板右端离墙壁的最终距离。
第二步:分解过程模型。
(1)认为地面各点的粗糙程度相同,小物块和木板一起向右做匀变速运动,到速度大小为(2)木板与墙壁碰撞过程:小物块受到滑动摩擦力(设置的初始条件块速度不变,木板的速度方向突变(设置的初始条件),如图丙所示。
(3)然后小物块向右减速,木板向左减速,经1s小物块速度减小为零小,故小物块速度为零时,木板仍有速度。
然后小物块向左加速,图戊所示)。
(4)分析临界条件,包括时间关系和空间关系,如图戊所示。
(5)在小物块和木板具有共同速度后,两者向左做匀变速直线运动直至停止【答案】(1)0.10.4(2)6m(3)6.5m【解析】(1)根据图象可以判定碰撞前小物块与木板共同速度为-0【例2】(2023·全国·高三专题练习)如图,两个滑块A 和B 的质量分别为A 1kg m =和B 5kg m =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4kg m =,与地面间的动摩擦因数为20.1μ=。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为0=3m/s v 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小2=10m /s g 。
滑块—木板模型专题(附详细答案)
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.用10 N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如下图,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,假设使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()A.当拉力F<12 N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动例3、如下图,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度到达1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者到达相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L是多少?针对练习2、如下图,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上外表光滑,下外表与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:〔1〕木板的加速度;〔2〕要使木块能滑离木板,水平恒力F 作用的最短时间;〔3〕如果其他条件不变,假设木板的上外表也粗糙,其上外表与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.〔4〕假设木板的长度、木块的质量、木板的上外表与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3 N 5 N例2、48 N针对练习1、答案 D解析 当A 、B 间的静摩擦力到达最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m解析 (1)以小物块为研究对象,由牛顿第二定律,得μmg =ma 1解得a 1=μg =2 m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2解得a 2=F -μmg M=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t解得:t =v 0a 1-a 2=1 s 则物块运动的位移x 1=12a 1t 2=1 m 小车运动的位移x 2=v 0t +12a 2t 2=1.75 m L =x 2-x 1=0.75 m针对练习2、解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N木板的加速度a =F -F f M =2.5 m/s 2.(2分) (2)设拉力F 作用时间t 后撤去F 撤去后,木板的加速度为a ′=-F f M =-2.5 m/s 2(2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故at 2=L解得t =1 s ,即F 作用的最短时间为1 s .(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 (2分)木板能从木块的下方抽出的条件为a 木板>a 木块解得F 1>25 N .(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2 (1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M =4.25 m/s 2(1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即12a 木板′t 2-12a 木块′t 2=L(2分) 代入数据解得t =2 s . (2分)答案 (1)2.5 m/s 2 (2)1 s (3)大于25 N (4)2 s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
滑块和木板问题(带答案)
专题滑块与木板一应用力和运动的观点处理(即应用牛顿运动定律)典型思维方法:整体法与隔离法注意运动的相对性【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m 能从M上滑落下来,求下列各种情况下力F的大小范围。
【例2】如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围.(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间.【例3】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平力F0拉小滑块,使小滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块从木板右端滑出,力F应为多大?(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出时,滑块和木板滑行的距离各为多少?(设m与M之间的最大静摩擦力与它们之间的滑动摩擦力大小相等)。
(取g=10m/s2).x2x1LF【例4】如图所示,在光滑的桌面上叠放着一质量为m A=2.0kg的薄木板A和质量为m B=3 kg的金属块B.A 的长度L=2.0m.B上有轻线绕过定滑轮与质量为m C=1.0 kg的物块C相连.B与A之间的滑动摩擦因数µ=0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间t后B从A的右端脱离(设 A的右端距滑轮足够远)(取g=10m/s2).例1解析(1)m与M刚要发生相对滑动的临界条件:①要滑动:m与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与M加速度仍相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿定律——滑块和木板模型专题
令狐采学
一.“滑块—木板模型”问题的阐发思路
1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下产生相对滑动.
2.建模指导
解此类题的基本思路:
(1)阐发滑块和木板的受力情况,根据牛顿第二定
律辨别求出滑块和木板的加速度
(2)对滑块和木板进行运动情况阐发,找出滑块和
木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对空中的位移.
例1、mA=1kg,mB=2kg,A、B间动摩擦因数是0.5,水平面光滑.
用10N水平力F拉B时,A、B间的摩擦力是
用20N水平力F拉B时,A、B间的摩擦力是
例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量辨别为mA=6kg,mB=2kg,A、B 之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,
若使AB不产生相对运动,则F的最年夜值为
针对练习1、如图5所示,物体A叠放在物体B上,B 置于光滑水平面上,A、B质量辨别为mA=6kg,mB=2kg,A、B之间的动摩擦因数μ=0.2,
开始时F=10N,此后逐渐增加,在增
年夜到45N的过程中,则 ( )
A.当拉力F<12N时,物体均坚持静止状态
B.两物体开始没有相对运动,当拉力超出12N时,开始相对运动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
例3、如图所示,质量M=8kg的小车放在光滑的水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个年夜小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当两者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:
(1)小物块放上后,小物块及小车的加速度各为多年夜?
(2)小车的长度L是几多?
针对练习2、如图所示,木板静止于水平空中上,在
其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上概略光滑,下概略与空中之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s2,求:
(1)木板的加速度;
(2)要使木块能滑离木板,水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上概略也粗糙,其上概略与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.
(4)若木板的长度、木块的质量、木板的上概略与木块之间的动摩擦因数、木板与空中间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?
牛顿定律——滑块和木板模型专题谜底
例1、3.3 N 5N
例2、48N
针对练习1、谜底D
解析当A 、B 间的静摩擦力达到最年夜静摩擦力,即滑动摩擦力时,A 、B 才会产生相对运动.此时对B 有:
Ffmax =μmAg=12N ,而Ffmax =mBa ,a =6m/s2,即两者开始相对运动时的加速度为6 m/s2,此时对A 、B 整体:F =(mA +mB)a =48N ,即F>48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 毛病,D 正确. 例3、谜底 (1)2m/s20.5 m/s2 (2)0.75m
解析 (1)以小物块为研究对象,由牛顿第二定律,得
μmg=ma1
解得a1=μg=2m/s2
以小车为研究对象,由牛顿第二定律,得F -μmg =Ma2
解得a2=F -μmg M
=0.5m/s2 (2)由题意及运动学公式:a1t =v0+a2t
解得:t =v0a1-a2
=1s 则物块运动的位移x1=12
a1t2=1m 小车运动的位移x2=v0t +12
a2t2=1.75m L =x2-x1=0.75m
针对练习2、
解析 (1)木板受到的摩擦力Ff =μ(M+m)g =10N
木板的加速度a =F -Ff M =2.5m/s2.(2分) (2)设拉力F 作用时间t 后撤去
F 撤去后,木板的加速度为a′=-Ff M
=-2.5m/s2(2分)
木板先做匀加速运动,后做匀减速运动,且a =-a′,故
at2=L
解得t =1s ,即F 作用的最短时间为1s .(2分)
(3)设木块的最年夜加速度为a 木块,木板的最年夜加速度为a 木板,则μ1mg=ma 木块(2分) 得a 木块=μ1g=3m/s2
对木板:F1-μ1mg-μ(M+m)g =Ma 木板(2分) 木板能从木块的下方抽出的条件为a 木板>a 木块 解得F1>25N .(2分)
(4)木块的加速度a 木块′=μ1g=3m/s2(1分)
木板的加速度a 木板′=F2-μ1mg-μM +m g
M
=4.25m/s2(1分)
木块滑离木板时,两者的位移关系为x 木板-x 木块
=L ,即
12a 木板′t2-12
a 木块′t2=L(2分) 代入数据解得t =2s .(2分)
谜底 (1)2.5m/s2 (2)1s (3)年夜于25N (4)2s
阐发滑块—木板模型问题时应掌握的技巧
1.阐发题中滑块、木板的受力情况,求
出各自的加速度.
2.画好运动草图,找出位移、速度、时间等物理量间的关系.
3.知道每一过程的末速度是下一过程的初速度.
4.两者产生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)两者加速度不相等.。