关于一类新的解析函数的讨论

合集下载

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。

我将尝试运用新课标的理念指导本节课的教学。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。

第二步,学生归纳指数的图像和性质。

第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

解析函数的主要性质综述

解析函数的主要性质综述

解析函数的主要性质综述作者:安辉燕来源:《科学导报》2017年第75期一、导引解析函数是一类具有某种特性的可微函数,它将我们所熟悉的数学分析中的一些内容推广到复数域上并研究其性质。

本文通过搜集材料,系统总结了解析函数的几个主要性质:解析函数的唯一性、零点的孤立性、零点的分布问题、解析函数在无穷远点的性质、解析变换的特征及解析函数、共轭解析函数和复调和函数之间的关系,并通过举例进行了深入、详细的分析。

二、预备知识1.定义如果函数在区域D内是可微的,则称为区域D内的解析函数。

复变函数中解析函数的充要条件有多种形式,最常见的有以下几种。

2.定理函数在区域D内解析的充要条件:A(1)二元函数在区域D内可微;(2)在D内满足方程。

B(3)在D内连续;(4)在D内满足方程。

C 在D内任意一点的邻域内可以展成的幂级数,也就是泰勒级数。

D C为D内任意一条周线,则。

三、解析函数的主要性质1.解析函数的唯一性定理(解析函数的唯一性)如果函数在区域D内解析,是D内彼此不同的点,并且点列的极限点,若有,则在D内必有。

根据定理我们可得到以下结论:推论1 如果函数在区域D内解析,且在区域内某点的邻域内有,则在D内必有。

推论2 如果函数在区域D内解析,且在区域D内某一曲线上有,则在内必有。

2.解析函数零点的孤立性定理如果在内的解析函数不恒为零,是的一个零点,则必存在的一个邻域使得在其中无其他零点。

(即:不恒为零的解析函数的零点具有孤立性)此性质是解析函数的特殊性质,实函数不具有此性质。

3. 解析函数零点的分布问题解析函数的零点的分布问题是复变函数论中的一个重要问题,一下就复多项式的零点可以全部分布在一个指定的区域内这个问题进行讨论。

定理1若复平面上多项式在虚轴上无零点,则它的零点全分布在右半平面上的充要条件为。

定理2若复平面上多项式在实轴上无零点,则它的零点全分布在上半平面的充要条件为。

四、解析变换的特性解析函数的特性是从几何的角度对解析函数的性质和应用进行讨论。

关于函数yf(x)的理解与分析周勇

关于函数yf(x)的理解与分析周勇

关于函数y=f(x)的理解与分析作者:周勇(湖南省长沙市第七中学 邮编:410003)抽象函数y=f(x)是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。

一般以中学阶段所学的基本函数为背景,构思新颖,条件隐蔽,技巧性强。

解法灵活,因此它对发展同学们的 抽象思维,培养同学们的创新思想有着重要的作用。

一、关于定义域的理解与分析例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]原理:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

已知f(x)的定义域是A ,求()()x f ϕ的定义域问题,相当于解内函数()x ϕ的不等式问题。

又如:已知函数f(x)的定义域是[]2,1- ,求函数()⎪⎪⎭⎫ ⎝⎛-x f 3log 21 的定义域。

再如:定义在(]8,3上的函数f(x)的值域为[]2,2-,若它的反函数为f -1(x),则y=f -1(2-3x)的定义域为,值域为 。

(]8,3,34,0⎥⎦⎤⎢⎣⎡原理:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

初中数学_一次函数的图象和性质教学设计学情分析教材分析课后反思

初中数学_一次函数的图象和性质教学设计学情分析教材分析课后反思

《一次函数的图象和性质》教学设计一、回顾旧知,提出问题问题1:正比例函数的图象和性质是什么?学生回答:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升, y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降, y随x的增大而减小.问题2:画函数图象的步骤是什么?学生回答:列表、描点、连线。

二、合作交流,探究新知例1. 画出函数y=-6x与y=-6x+5的图象.解:列表小组讨论,填下面的空:问题2:请大家在同一个直角坐标系中再画出一次函数y=-6x-5的图象,然后小组讨论填空。

一次函数y=kx+b(k≠0)的图象可以看作由直线 y=kx 平移 |b| 个单位长度得到.(当b >0时,向 上 平移;当b <0时,向 下 平移)。

例2、用两点法画一次函数图像实践:用两点法在同一坐标系中画出函数y=2x -1 与y=-0.5x+1的图象.问题3:一次函数的图象是直线,故选择其上合适两点即可.一般选择( ,0),和(0,b ).问题4:探究:一次函数的性质当k>0时,直线y=kx+b (k,b 是常数,k ≠0)从左向右 上升 ,y 随x 的增大而 增大 ; 当k<0时,直线y=kx+b (k,b 是常数,k ≠0)从左向右 下降 ,y 随x 的增大而 减小 。

问题5:1. 在同一坐标系中作出下列函数的图象k b思考:k,b 的值跟图像有什么关系? 2.在同一坐标系中作出下列函数的图象归纳:通过作以上一次函数的图像我们发现y=kx+b 中,k,b 的取值跟图像的关系如下:x3111-11- x三、课堂练习 练习1.下列一次函数中,y 的值随x 的增大而减小的有 (2)(4) (1) y=10x+9 (2) y=-0.3x+2 (3) (4) 练习2.已知一次函数y=(1-2k)x+k 的函数值y 随x 的增大而增大,且图象经过一、二、三象限,则k 的取值范围是 0<x<1/2. .练习3. 如果一次函数y=kx -3k+6的图象经过原点,那么k 的值为___2______。

一类新的近于凸函数的子集

一类新的近于凸函数的子集

0 引 言
设 仁 {( : 一 +∑ z ) 内 析} 中E { I< } ( 和G ) 单 -) ( z 厂 厂) ’ 在E 解 , 一z 1设g ) ( 为 位圆 , ( 其 :I .
盘 E上的解析 函数 , 我们 说 g 从 属 于 G() () 当且仅 当存在 E内 的解析 函数 ( ) , ∈ 即满足 : ( ) , O 一0

个 数g )S , 当 仅 函 (f B 且 当 ]
E [, .数 ,, D一 - ) (一 ) 1o PAB 函 族CE BC ] {( :o lo 一 , ] A , 厂 )/ 一 (
厂 在 内析 _)E 解 , (
< ,≤<≤,≤<≤} 是 于 函 的 个 集 而 一 BA1 1 c1这 近 凸 数 一 子 , 这 1 -D , 从
些 函数是单 叶 的. 研究 这个 函数 族与相 邻 函数族 C A, C, 之 间的关 系 , E B, D] 同时解 决 了系数估计 和半 径问
题 , 出 了 一 个 有 效 的判 别 方 法 . 给 关键词 : 叶 ; 单 星形 ; 凸半 径 ; 于 凸 近
中 图分 类号 : 7 . 1 O1 4 5 文 献 标 志码 : A
< ,1BA 1下 我 给 两 新 函 族 一≤<≤) 面 们 出 个 的 数 . ,

{ _) 且 -)(∈ 厂: (厂
定 1如 厂) 且 在 (∈ ,, 笔  ̄二 里 1BA 1 1 义 果 (∈ 存 g)5A ] 得 jU, 一≤< ≤, ≤ 2 [B使 1z _ 这 - b 一
g {一 ∽
> 则 F ∈ s () ,3 B.
引理 112。 设 N() D() E内解 析 , D() l I 1 ..E 和 在 且 2 将 < 映为星形 域 , N()一 0一 D() 若 0 O 和 A ∈ PE B ,l z A, ]…l )∈ PE B]  ̄ N( .

一类特殊的解析函数

一类特殊的解析函数

= 。
= 。


从而
u

v V

目 口
应用
4 下转第1 1 页
i

是 常数
故 { _ (= ) l= 以i 厂
了 为 常数


维普资讯




上接 第弛 页
(3 ) 幅 相监 测 D S P 通 过对 波 束 形 成 器 中 的 R A M 缓 存 的读 取 对所 有 频率 下 的 3 0 行 阵


则 7丽 在 区 域

又 ,(z )在 区 域 D 内解 析

由 解析 函 数保 持

内不 解 析
除法


即而


D
=
内解 析
u
证 : 假设 而
在 区 域 D 内解 析 又 /(Z )

(4 ) ==> (5 ) 因 ,(z )

1

+ iv
在 区域

D
内解

在 区域
D
D
内解 析


由定 理
l
知 - (z )在 区 域 厂
曩鬻黼 黼黼
基金项 目

中觥
碉 溢二

维普资讯
。。
c H


。 嗽
≥ 纛 _茹

。叭

j 警。 ≯≤
合 肥 学 院 教 研 项 目 《 变 函 数 与 积 分 变 换 》 课 程 自主 探 究 式 教 学模 式 的 研 究 复

数学(本科)毕业论文题目汇总

数学(本科)毕业论文题目汇总

数学毕业(学位)论文题目汇总一、数学理论1。

试论导函数、原函数的一些性质。

ﻫ2。

有界闭区域中连续函数的性质讨论及一些推广。

ﻫ3。

数学中一些有用的不等式及推广.4。

函数的概念及推广.ﻫ5。

构造函数证明问题的妙想。

6.对指数函数的认识。

ﻫ7。

泰勒公式及其在解题中的应用。

8。

导数的作用。

9。

Hilbert空间的一些性质。

ﻫ10。

Banach空间的一些性质。

ﻫ11。

线性空间上的距离的讨论及推广。

12。

凸集与不动点定理.ﻫ13。

Hilbert空间的同构.ﻫ14。

最佳逼近问题。

ﻫ15。

线性函数的概念及推广.ﻫ16.一类椭圆型方程的解.18.线性赋范空间上的模等价。

17。

泛函分析中的不变子空间。

ﻫ19.范数的概念及性质.20。

正交与正交基的概念。

22。

隐函数存在定理的再证明。

ﻫ23.线性空间的等距同构。

21。

压缩映像原理及其应用.ﻫ24。

列紧集的概念及相关推广。

25。

Lebesgue控制收敛定理及应用。

26。

Lebesgue积分与Riemann积分的关系。

27。

重积分与累次积分的关系.28。

可积函数与连续函数的关系。

29。

有界变差函数的概念及其相关概念。

ﻫ30。

绝对连续函数的性质。

31.Lebesgue测度的相关概念。

33。

可测函数的定义及其性质。

ﻫ34.分部积分公式的32。

可测函数与连续函数的关系。

ﻫ推广。

35。

Fatou引理的重要作用。

36.不定积分的微分的计算。

ﻫ37。

绝对连续函数与微积分基本定理的关系。

ﻫ38。

Schwartz 不等式及推广。

39。

阶梯函数的概念及其作用.40。

Fourier级数及推广。

ﻫ41.完全正交系的概念及其作用。

ﻫ42。

Banach空间与Hilbe rt空间的关系。

44。

数学分析中的构造法证题术,43。

函数的各种收敛性及它们之间的关系。

ﻫ45。

用微积分理论证明不等式的方法46.数学分析中的化归法47。

微积分与辩证法49。

在上有界闭域的D中连续函数的性质48. 积分学中一类公式的证明ﻫ51。

常见的几个抽象函数问题及其求解策略

常见的几个抽象函数问题及其求解策略

常见的几个抽象函数问题及其求解策略杜红全(甘肃省康县教育局教研室㊀746500)摘㊀要:抽象函数问题是高中数学的一个重点问题ꎬ也是一个难点问题ꎬ对初学者来说有一定困难.本文举例说明抽象函数问题的求解策略:赋值法ꎬ转化法ꎬ迭代法ꎬ性质法ꎬ定义法ꎬ换元法等.关键词:常见ꎻ抽象函数ꎻ问题ꎻ求解策略中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)19-0002-03收稿日期:2020-04-05作者简介:杜红全(1969.9-)ꎬ男ꎬ甘肃省康县人ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀抽象函数是相对个体的函数而言的ꎬ是指没有给出具体的函数解析式或对应关系ꎬ只是给出函数所满足的一些条件或性质的一类函数.抽象函数问题一般是由所给的条件或性质ꎬ讨论函数的其他性质ꎬ下面举例说明.㊀㊀一㊁根据条件等式求解析式例1㊀已知3f(x)+2f(-x)=x+3ꎬ求f(x).分析㊀xꎬ-x同时使得f(x)有意义ꎬ用-x代替x建立关于f(x)ꎬf(-x)的两个方程即可求得f(x).解㊀因为3f(x)+2f(-x)=x+3ꎬ㊀①用-x代替xꎬ得3f(-x)+2f(x)=-x+3.㊀②联立①②解得f(x)=x+35.点评㊀求解本题的策略是利用方程消元法ꎬ所谓方程消元法就是指利用方程组通过消参㊁消元的途径达到求函数解析式的目的.㊀㊀二㊁求抽象函数的值例2㊀已知f(x)对于任意实数xɪR+ꎬ都有f(x1 x1)=f(x1)+f(x2)ꎬ且f(8)=3ꎬ求f(2)的值.分析㊀根据已知条件f(x1 x1)=f(x1)+f(x2)ꎬ寻找f(8)与f(2)之间的关系.解㊀因为f(8)=f(2ˑ4)=f(2)+f(2ˑ2)=3f(2)=3f(2ˑ2)=6f(2)ꎬ所以f(8)=6f(2)=3ꎬ所以f(2)=12.点评㊀本题求值策略是利用迭代法.求抽象函数的值还有赋值法㊁代换法等.㊀㊀三㊁求抽象函数的定义域例3㊀已知函数f(x+1)的定义域为[-2ꎬ3]ꎬ求函数f(2+1x)的定义域.分析㊀由f(x+1)的定义域求f(x)的定义域ꎬ然后由f(x)的定义域求出f(2+1x)的定义域ꎻ要注意函数f(x+1)ꎬf(x)ꎬf(2+1x)中的x并不是同一个量ꎬ当f(x)的定义域为[-1ꎬ4]时ꎬf(x+1)与f(2+1x)分别是中间变量(x+1)和(2+1x)的函数ꎬf(2+1x)的定义域由中间变量(2+1x)ɪ[-1ꎬ4]求得.解㊀由题意知-2ɤxɤ3ꎬ则-1ɤx+1ɤ4ꎬ所以f(x)的定义域为[-1ꎬ4].由-1ɤ2+1xɤ4得-3ɤ1xɤ2ꎬ则有0<1xɤ2ꎬ或-3ɤ1x<0ꎬ解得x的取值范围是xȡ12或xɤ-13.所以函数f(2+1x)的定义域为(-¥ꎬ-13]ɣ[12ꎬ+¥).点评㊀求抽象函数的定义域的策略是利用函数的概念ꎬ即由f(x)的定义域[aꎬb]ꎬ求f[g(x)]的定义域的方法:由aɤg(x)ɤbꎬ求出x的取值范围ꎬ即为函数y=f[g(x)]的定义域ꎻ由f[g(x)]的定义域[aꎬb]ꎬ求f(x)的定义域的方法:由aɤxɤbꎬ求出g(x)的取值范围即可ꎬ2即与由f(x)的定义域[aꎬb]ꎬ求y=f[g(x)]的定义域恰好相反.㊀㊀四㊁求抽象函数的值域例4㊀已知函数f(x)的值域是[38ꎬ49]ꎬ求函数y=f(x)+1-2f(x)的值域.分析㊀利用换元法求解.解㊀设t=1-2f(x)ꎬ则f(x)=1-t22ꎬ因为f(x)的值域是[38ꎬ49]ꎬ所以1-2f(x)ɪ[13ꎬ12]ꎬ即tɪ[13ꎬ12].又因为y=f(x)+1-2f(x)ꎬ所以y=1-t22+t=-12t2+t+12(13ɤtɤ12)ꎬ所以79ɤyɤ78.所以函数y=f(x)+1-2f(x)的值域为[79ꎬ78].点评㊀求解本题的策略是利用换元法ꎬ但必须把新元的取值范围弄清楚.㊀㊀五㊁求抽象函数单调区间例5㊀若函数f(x)在(-¥ꎬ+¥)上是减函数ꎬ求函数f(2x-x2)单调递增区间.分析㊀用复合函数的单调性来求.解㊀因为f(x)在(-¥ꎬ+¥)上是减函数ꎬ所以f(2x-x2)单调递增区间应是u=2x-x2单调递减区间ꎬ又u=2x-x2的单调递减区间是[1ꎬ+¥)ꎬ所以函数f(2x-x2)单调递增区间是[1ꎬ+¥).点评㊀求解本题的策略是利用复合函数单调性的求法.㊀㊀六㊁比较抽象函数值的大小例6㊀已知偶函数f(x)在[2ꎬ4]上单调递减ꎬ比较f(log8)与f(3log)的大小.分析㊀首先化简log8与3logꎬ然后再根据函数的奇偶性和单调性ꎬ将函数值的比较大小问题转化为自变量值的比较大小问题.解㊀log8=-3ꎬ3log=π24ꎬ因为f(x)是偶函数ꎬ所以f(-3)=f(3)ꎬ又3>π24ꎬf(x)在[2ꎬ4]上单调递减ꎬ所以f(3)<f(π24)ꎬ即f(log8)<f(3log).点评㊀求解本题的关键是把对应的两个变量的值转化到同一个单调区间内ꎬ求解策略是利用函数的单调性和转化思想.㊀㊀七㊁抽象函数图象问题例7㊀由函数y=f(x-1)的图象ꎬ通过怎样的图象变换可得函数y=f(-x+2)的图象.分析㊀解答此题须综合应用函数图象的变换的对称㊁平移变换.解㊀将函数y=f(x-1)的图象向左平移1个单位ꎬ得到函数y=f(x)的图象ꎬ将函数y=f(x)的图象沿y轴翻折ꎬ得到函数y=f(-x)的图象ꎬ将函数y=f(-x)的图象向右平移2个单位ꎬ就可以得到函数y=f(-x+2)的图象.点评㊀求解本题的策略是利用函数图象变换的规律.㊀㊀八㊁解抽象不等式例8㊀已知f(x)在(0ꎬ+¥)上单调递增ꎬ解不等式f(x)>f8(x-2)[].分析㊀求解本题的关键在于由f(x)>f8(x-2)[]去掉函数关系符号 f ꎬ使抽象的不等式问题转化为具体不等式问题ꎬ注意函数的定义域也是一个限制条件.解㊀由f(x)>f8(x-2)[]和f(x)在(0ꎬ+¥)上是增函数ꎬ得x>0ꎬ8(x-2)>0x>8(x-2)ꎬìîíïïïꎬ解不等式组ꎬ得2<x<167ꎬ所以原不等式的解集为{x|2<x<167}.点评㊀单调性定义要能够逆用ꎬf(x)是[aꎬb]上的增函数ꎬ则f(x1)<f(x2)⇒x1<x2ꎻ求解此类问题的策略是运用了单调性的定义和转化思想.㊀㊀九㊁证明等式例9㊀设函数f(x)是定义在R+上的增函数ꎬ且f(xy)=f(x)-f(y)ꎬ求证:f(1)=0ꎬf(xy)=f(x)+f(y).分析㊀对f(xy)=f(x)-f(y)中的xꎬy赋值即可求出f(1)=0ꎬ利用f(x)=f(x yy)即可证明f(xy)=f(x)+f(y).证明㊀因为f(xy)=f(x)-f(y)ꎬ令x=y=1ꎬ所以f(1)=f(1)-f(1)ꎬ即f(1)=0.因为f(xy)=f(x)-f(y)ꎬ所以f(x)=f(x yy)=f(xy)-f(y)ꎬ所以f(xy)=f(x)+f(y).点评㊀求解此类问题的策略是适当的赋值(代入特殊值).3㊀㊀十㊁抽象函数的综合问题例10㊀函数f(x)的定义域为Rꎬ且对任意xꎬyɪRꎬ有f(x+y)=f(x)+f(y)ꎬ又当x>0时ꎬf(x)<0ꎬf(1)=-2.(1)证明f(x)是奇函数ꎻ(2)证明f(x)在R上是减函数ꎻ(3)求f(x)在区间[-3ꎬ3]的最大值和最小值.分析㊀给出函数满足的条件关系式而未给出解析式ꎬ要证明函数的奇偶性与单调性ꎬ关键是紧扣条件f(x+y)=f(x)+f(y)ꎬ且当x>0时ꎬf(x)<0ꎬ对其中的xꎬy不断赋值ꎬ根据f(x)在R上是减函数求出最值.解㊀(1)令y=-xꎬ得f[x+(-x)]=f(x)+f(-x)ꎬ所以f(x)+f(-x)=f(0).又因为f(0+0)=f(0)+f(0)ꎬ所以f(0)=0ꎬ所以f(x)+f(-x)=0ꎬ即f(-x)=-f(x)ꎬ所以f(x)是奇函数.(2)任取x1ꎬx2ɪRꎬ且x1<x2ꎬ则f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1).因为x1<x2ꎬ所以x2-x1>0.又因为当x>0时ꎬf(x)<0ꎬ所以f(x2-x1)<0ꎬ所以-f(x2-x1)>0ꎬ即f(x1)>f(x2)ꎬ所以f(x)在R上是减函数.(3)因为f(x)在R上是减函数ꎬ所以f(x)在区间[-3ꎬ3]上的最大值是f(-3)ꎬ最小值是f(3).f(3)=f(1)+f(2)=3f(1)=3ˑ(-2)=-6ꎬ所以f(-3)=-f(3)=6.从而f(x)在区间[-3ꎬ3]上的最大值是6ꎬ最小值是-6.点评㊀求解此类问题的策略是利用赋值法ꎬ即对抽象函数的奇偶性与单调性的证明ꎬ围绕证明奇偶性与单调性所需要的关系式ꎬ对所给的函数关系式赋值.㊀㊀参考文献:[1]杜红全ꎬ黄海虹.例谈抽象函数定义域的求法[J].数理天地(高中版)ꎬ2019(10):13-14.[责任编辑:李㊀璟]等差乘等比型数列求和的另类解法构造数列法赵圣涛㊀武金仙(山东省淄博中学㊀255000)摘㊀要:等差乘等比型数列的求和一般使用错位相减法ꎬ但在求解过程中ꎬ学生出错率一直很高ꎬ基于此ꎬ笔者从构造数列的角度探索出两种求和方法ꎬ进一步拓宽了该类问题的研究思路.关键词:数列ꎻ解题ꎻ构造数列法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)19-0004-02收稿日期:2020-04-05作者简介:赵圣涛(1984.10-)ꎬ男ꎬ山东省淄博人ꎬ硕士ꎬ中学一级教师ꎬ从事高中数学教学研究.武金仙(1984.4-)ꎬ女ꎬ河北省张家口人ꎬ硕士ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:本文系淄博市 十二五 重点课题«基于学情的国家课程校本化研究»的研究成果ꎬ课题编号:2015ZJZ024.㊀㊀已知数列an{}满足an=bncnꎬ其中bn{}是等差数列ꎬcn{}是公比不为1的等比数列.数列an{}通常称为等差乘等比型数列.该类数列求和的常规方法是错位相减法ꎬ除此之外ꎬ文献[1]中笔者从构造常数列的角度另辟蹊径ꎬ为该类问题的求解提供了一个新思路ꎬ本文分别从构造常数列和等比数列的角度ꎬ又探索出了两种求和方法ꎬ现将其介绍如下:㊀㊀一㊁方法介绍不失一般性ꎬ设等差乘等比型数列an{}的通项公式为an=(kn+b)qnꎬ(其中kꎬbꎬq均为常数ꎬ且qʂ1)ꎬ其前n项和记为Sn.方法1:构造常数列{Sn+(xn+y)qn}.对数列an{}ꎬ由an=(kn+b)qn(qʂ1)得an+1=[k(n4。

函数的12种解法

函数的12种解法
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。点评:
对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:
求函数y=(x2-1)/(x-1)(x≠1)的值域。(
答案:
y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:
先求出原函数的反函数,根据自变量的取值范围,构造不等式。
通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:
设t=√2x+1(t≥0),则。
于是≥
所以,原函数的值域为{y|y≥-}。
点评:
将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:
已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(
答案:
{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:
将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:
y=(3x+2)/(x+1)=3-1/(x+1)。
点拨:
根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:
∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤

函数部分教材分析

函数部分教材分析

高一数学模块1《函数》教材分析北师大实验中学黎栋材一、《函数》部分的教学地位和目标1.地位(1) 函数是高中数学的入门知识,是初中数学与高中数学的一个重要转折点。

函数是中学数学的主体内容,它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、幂函数、三角函数是函数内容的主体,以这些基本的初等函数为载体,让学生体验利用函数知识处理实际问题的过程,从而获得数学很有用,数学无处不在的感受。

(2) 函数教学在高中数学教学中起主导作用,其所涉及的一些数学思想方法贯穿整个高中数学的始终,其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。

函数的教学内容蕴涵着极其丰富的辩证思想,特别是利用集合和对应的观点定义函数的过程,充满思辨,值得学生体会。

(3) 函数还是学习高等数学的必备知识。

函数是数学的重要的基础概念之一,进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的。

2.目标在新课程中,函数是作为描述客观世界变化规律的重要数学模型出现的,让学生体验建立函数模型来研究实际问题的过程,这与以往函数的教学目标有着很大的不同。

其真正的目的就是要让学生对变量数学的认识更加深刻,发展学生对事物间关系的认识,体会函数思想在解决实际问题中的作用。

更加直接的说,学习函数的目的是使学生能用函数的思想理解函数问题,能用函数的眼光看待实际问题及数学问题,初步掌握研究函数的方法,体会函数的应用。

二、教学内容分析本大节内容主要包括函数的概念、函数的三种表示方法以及函数的单调性和奇偶性。

此外,还介绍了区间的定义、映射的概念,并通过例题介绍了一些简单函数的定义域、值域的求法和分段函数的定义及其应用。

并结合所学内容还介绍了换元法(求函数的解析式)、数形结合(函数的单调性和奇偶性)等两种重要的数学方法。

一类单叶解析函数的系数不等式

一类单叶解析函数的系数不等式
2 2 1 1 d2 1 3 2 1 4 1 1 2 d1
1 1 d2 1 3 2 1 4 1 1 2 d1
论文的主要工作和主要内容
利用得到的不等式分三种情况讨论证明系数不等式
2 1 2 2 1 2 2 1 , 1 1 2 1 2 1 2 1 1 , 1 2 1 2 2 1 2 2 1 1 2 2 1 , 1 2 2 1 2 1 2 1
致谢

本文是在指导老师鲍春梅老师的悉心指导下完成的,鲍春 梅老师不仅在学业上言传身教,而且以其高尚的品格给我 以情操上的熏陶。本文的写作更是直接得益于她的悉心指 点,从论文的选题到体系的安排,从观点推敲到字句斟酌, 无不凝聚着她的心血。她严肃的科学态度,渊博的专业的 知识,严谨的治学精神,精益求精的工作作风,严以律己、 朴实无华、宽以待人的崇高风范、平易近人的人格魅力对 我影响深远,在此谨向我的指导老师鲍春梅老师致以诚挚的 谢意和崇高的敬意。在此,我再一次真诚地向帮助过我的 老师表示感谢! 最后,我还要向在百忙之中抽时间对本文进行审阅、评议 和参加本人论文答辩的各位老师表示衷心感谢!
研究意义

在单位圆盘内单叶解析的函数族具有许多重要 的性质这些解析函数族,这些特殊解析函数类, 除了本身具有研究价值以外,还可以作为对其 它复杂的函数族情况的验证
研究目标

本文利用相关的定理和定义讨论一类单叶解析 函数的系数不等式
论文的主要工作和主要内容
根据定义和引理得到不等式: 2 1 2 1 a3 a22

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

函数的定义域课后反思

函数的定义域课后反思

高考第一轮复习——函数的定义域课后反思重庆七中 李秀芳高考对于数学学科来说,它是在考查学生基础知识的同时,突出能力(思维能力、运算能力、空间想象能力、实践创新能力)的考查。

第一轮复习是高考复习的基础,应以夯实基础,提高能力为指导思想,使学生在有限的复习时间内立足基础,在能力的提高上有所突破,以达到应试的要求和水平。

一、加强高考研究,把握高考方向研究高考要研究大纲和考纲,要研究新旧考题的变化,要进行考纲、考题与教材的对比研究。

通过对高考的研究,把握复习的尺度,避免挖的过深,拔的过高、范围过大,造成浪费;避免复习落点过低、复习范围窄小,形成缺漏。

所以在每一节复习课之前要让学生了解考纲,知道高考方向。

本节课考纲要求了解构成函数的要素,会求一些简单函数的定义域和值域。

定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查。

二、降低起点,夯实基础《考试说明》中强调,数学学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性、现实性。

函数这部分内容是很多学生,尤其是那些基础差的学生很头疼的部分,对于函数的应用同学们更是一头雾水,一遇到函数题就会慌,所以在复习本节函数定义域我先以几个基本初等函数的定义域开始,让学生克服恐惧,也能增强学生的自信心。

课前练习:求下列函数的定义域:)1(log )(.74)(.6)3()(.52)(.42)(.311)(.2132)(.121032+==+=+=-=-=-+-=+x x f x f x x f x x f x x f x x f x x x f x让每一个学生都能低起点,达到对定义域的基本要求,让每个学生跳起来都能摘到果子。

三、问题引动,加强双基加强双基,夯实基础是第一轮复习的教学目标之一。

对于基础知识的复习,由于学生已经有了第一次的学习经历,再加上课前的复习,总认为自己知道,传统的提问回答势必使学生感到乏味,因此,我在教学中,围绕教学内容,设计问题,引导学生在解决问题中,使学生主动地复习相关知识。

求函数最值的方法总结

求函数最值的方法总结

求函数最值的方法总结一般的,函数最值分为函数最小值与函数最大值。

简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。

下面就是小编整理的求函数最值的方法总结,一起来看一下吧。

函数的最值问题既是历年高考重点考查的内容之一,也是中学数学的主要内容。

函数最值问题的概念性、综合性和灵活性较强,考题的知识涉及面较广,对于学生的分析和逻辑推理能力要求较高。

通过对函数最值问题的相关研究,结合自身的感触和学习的心得,总结归纳出了求解函数最值的几种常用的方法,并讨论了学习函数最值求解中应该注意的问题,这将有利于提高学生的数学建模能力和解题能力。

文章主要通过举例说明的方式来阐述求解函数最值的几种常用解法,希望对培养学生数学学习能力,提高学生的解题能力有所帮助。

函数f(x)在区间I上的最大值和最小值问题,本质上是一个最优化的问题。

求解函数最大值与最小值的实际问题,包括三方面的工作:一是根据实际问题建立目标函数,通常总是选取待求的最优量为因变量:二是按上述的求解方法求出目标函数在相应区间上的最大值或最小值;三是对所求得的解进行相应实际背景的几何意义的解释。

同时一方面要深刻理解题意,提高阅读能力,要加强对常见的数学模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面要不断拓宽知识面,提高间接的生活阅历,如了解一些诸如物价、行程、产值、利润、环保等实际问题,也涉及角度、面积、体积、造价等最优化问题,培养实际问题数学化的意识和能力。

最值问题综合性强,几乎涉及高中数学各个分支,要学好各个数学分支知识,透彻地理解题意,能综合运用各种数学技能,熟练地掌握常用的解题方法,才能收到较好的效果。

(1)代数法。

代数法包括判别式法(主要是应用方程的思想来解决函数最值问题)配方法(解决二次函数可转化为求二次函数的最值问题)不等式法(基本不等式是求最值问题的重要工具,灵活运用不等式,能有效地解决一些给定约束条件的函数最值问题)④换元法(利用题设条件,用换元的方法消去函数中的一部分变量,将问题化归为一元函数的最值,以促成问题顺利解决,常用的换元法有代数换元法和三角换元法)。

八年级数学下册第19章一次函数学科素养思想方法(含解析)新人教版(2021-2022学年)

八年级数学下册第19章一次函数学科素养思想方法(含解析)新人教版(2021-2022学年)

一次函数学科素养·思想方法一、数形结合思想【思想解读】化数为形,以形思数,是解决数学问题的关键.数形结合思想不仅为分析问题、解决问题提供了有利条件,而且是培养创新意识、开发智力的重要途径。

【应用链接】直角坐标系的建立实现了数与形紧密结合,使抽象的数形象化、直观化。

在一次函数中体现尤为明显.【典例1】(2017·宝丰一模)某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与走步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供的信息,解答下列问题.(1)求图中的a值.(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1。

75小时.①求AB所在直线的函数解析式;②请你直接回答,此人走完全程所用的时间。

【思路点拨】(1)根据路程=速度×时间即可求出a值.(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=8-返回时的速度×时间即可得出AB所在直线的函数解析式;②令①中的函数解析式中s=0,求出t值即可.【自主解答】(1)a=4×2=8。

(2)①此人返回的速度为(8—5)÷=3(千米/小时),AB所在直线的函数解析式为s=8—3(t—2)=—3t+14。

②当s=-3t+14=0时,t=。

答:此人走完全程所用的时间为小时.【变式训练】甲、乙两车从A地出发,沿同一条高速公路行驶至距A地400千米的B地,l1, l2分别表示甲、乙两车行驶路程y(千米)与时间x(小时)之间的关系(如图所示).根据图象提供的信息,解答下列问题:(1)求l2的函数解析式(不要求写出x的取值范围)。

(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?【解析】(1)设l2的函数解析式是y=k2x+b,由图象知l2经过两点,,则解之得k2=100,b=-75。

分类讨论证明或求函数的单调区间(含参)(教师版)--2024新高考数学导数微专题训练

分类讨论证明或求函数的单调区间(含参)(教师版)--2024新高考数学导数微专题训练

专题14分类讨论证明或求函数的单调区间(含参)1.设函数21()sin cos 2f x x x x ax =+-.(1)当12a =时,讨论()f x 在(,)ππ-内的单调性;(2)当13a >时,证明:()f x 有且仅有两个零点.【答案】(1)在,03π⎛-⎫ ⎪⎝⎭或,3ππ⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫-- ⎪⎝⎭或0,3π⎛⎫ ⎪⎝⎭上单调递增;(2)证明见解析.【分析】(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;(2)先判断出函数为偶函数,则问题转化为()f x 在(0,)+∞有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出.【详解】(1)当12a =时,21()sin cos 4f x x x x x =+-,11()sin cos sin (cos 22f x x x x x x x x ∴'=+--=-,令()0f x '=,解得0x =或3x π=,3x π=-,当()0f x '<时,解得03x π-<<或3x ππ<<,当()0f x '>时,解得3x ππ-<<-或03x π<<,()f x ∴在(3π-,0)或(3π,)π上单调递减,在(,)3ππ--或(0,)3π上单调递增;(2)()f x 的定义域为(,)-∞+∞,2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=+-= ,()f x ∴为偶函数,(0)10f => ,()f x ∴有且仅有两个零点等价于()f x 在(0,)+∞有且只有一个零点,()(cos )f x x x a '=- ,当1a 时,cos 0x a -,()0f x '恒成立,()f x ∴在(0,)+∞上单调递减,2211()sin cos 1022f a a ππππππ=+-=--< ,(0)·()0f f π∴<,()f x ∴在(0,)+∞上有且只有一个零点,当113a <<时,令()(cos )0f x x x a '=-=,即cos x a =,可知存在唯一(0,)2πθ∈,使得cos a θ=,当(0,)x θ∈或(22,22)x k k ππθππθ∈+-++时,k ∈N ,()0f x '>,函数()f x 单调递增,当(2,22)x k k πθππθ∈++-时,k ∈N ,()0f x '<,函数()f x 单调递减,由tan θ=113a <<,可得0tan θ<<,当k ∈N ,22tan 2(k ππθθπ++->,2221113(22tan )10(22)[(22tan )1][(22tan )1]022626k f k a k k a ππθθππθππθθππθθ++--∴++=-++--+<-++--+=-<,()f x ∴在(0,)+∞上有且只有一个零点,综上所述,当13a >时,()f x 有且仅有两个零点.【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.2.已知函数2()2ln 2(1)f x mx x m x =-+-.(1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x-+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明.【详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅,当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-,当1m =-时,2(1)()2·0x f x x-'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<,当1(0,x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>,∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,m.综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1),当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2)证明:要证2286ln 3521x x x x x x---<-,即证3226(1ln )23501x x x x x -+--<-,令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--,由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''(1)0=,()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x -+--<-,即22863521x xlnx x x x---<-.【点睛】含有参数的函数单调性讨论常见的形式:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.3.已知函数()()1ln f x ax x a R =--∈.(1)若1a =,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为0,无极大值;(2)答案见解析.【分析】(1)当1a =时,求得()1x f x x-=,利用导数分析函数()f x 的单调性,由此可求得函数()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)求得()()10ax f x x x-'=>,分0a ≤和0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间.【详解】(1)当1a =时,()1ln f x x x =--,所以,()()1110x f x x x x-¢=-=>,列表;x1,1e ⎡⎫⎪⎢⎣⎭1(]1,e ()f x '-+()f x 单调递减极小单调递增所以,()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的有极小值()10f =,无极大值;(2) 函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=.当0a ≤时,10ax -<,从而()0f x '<,故函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax -<,从而()0f x '<;若1x a>,则10ax ->,从而()0f x '>.故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,函数()f x 的单调递减区间为()0,∞+,无单调递增区间;当0a >时,函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭.【点睛】方法点睛:讨论含参数函数的单调性,通常以下几个方面:(1)求导后看函数的最高次项系数是否为0,需分类讨论;(2)若最高次项系数不为0,且最高次项为一次,一般为一次函数,求出导数方程的根;(3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性.4.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤.【答案】(1)答案不唯一见解析;(2)证明见解析.【分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证;【详解】解析:(1)因为(1)(1)()xx mx m f x e --'+=-,①当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;②当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<,当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减;③当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增.(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max 1()(1)f x f e==;当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤.【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.5.已知函数()e x f x ax =,a 为非零常数.(1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.【答案】(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a =的图象的交点的个数,利用导数可求得结果.【详解】(1)()(1)e x x x f x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-;②若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()exx g x x +=,所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a =的图象的交点的个数,因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=,由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增;当()()1,00,x ∈-+∞ 时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞;当()1,0x ∈-时,()(),0g x ∈-∞;当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法:(1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解6.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ .【答案】(1)答案见解析;(2)存在,2a e =;(3)证明见解析.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;(3)先构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,证明其小于零,即得1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,再将1nx n =+代入求和即证结论.【详解】解:(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=,0x >.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去当1a e >时10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e =故2a e =时,使函数()g x 的最小值为2.(3)构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,则119()3033x h x x x -'=-=>,故1()ln 313h x x x =-+在1,12x ⎡⎫∈⎪⎢⎣⎭上递减,111111()ln 3120232232h x h ⎛⎫≤=-⨯+=--< ⎪⎝⎭,故1ln 3103x x -+<,即1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,而11,1112n n N x n n *⎡⎫∈==-⎪⎢++⎣⎭,故13ln 1311n n n n >++⋅+,即[]ln(13ln 131)1n n n n ->++⋅+,将n *∈N 依次代入并相加得[]()1ln1ln 12313ln 2ln 3...ln(1)ln 1231ln 4323n n n n n n n ⎛⎫++++>-+-++-+-+ ⎭+⎪+⎝= ,即1233ln 2341n n n ⎛⎫++++>- ⎪+⎝⎭ .【点睛】本题解题关键在于观察证明式1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ ,构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,以证明13ln 13x x >+,将1n x n =+代入求和即突破难点.用导数解决与正整数n 有关的不等式证明问题,属于难点,突破点就在于观察构造合适的函数,通过导数证明不等式,再将关于n 的式子代入即可.7.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;【答案】(1)答案见解析;(2)存在,2a e =.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;【详解】(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫ ⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭,所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2.【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,讨论不等式何时()0f x '>和()0f x '<③对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.8.已知函数()()()ln 1f x x ax a =+-∈R .(1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求得()f x 的定义域和导函数()'fx ,对a 分成0a ≤和0a >两种情况进行分类讨论,由此求得()f x 的单调区间.(2)求得()g x 的表达式,求得()'g x ,利用根与系数关系得到12,x x 的关系式以及1x 的取值范围,将()()12g x g x -表示为只含1x 的形式,利用构造函数法求得()()12g x g x -的最小值,从而证得不等式成立.【详解】(1)由题意得,函数()f x 的定义域为(1,)-+∞,()11f x a x '=-+.当0a ≤时,()101f x a x '=->+,∴函数()f x 在(1,)-+∞上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在(1,)-+∞上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+Q ,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,()240321a a ∆=+⇒-≥>121x x a ∴+=+,121=x x ,211x x ∴=.32a ≥Q ,512a +≥,12x x <111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x⎛⎫=-- ⎪⎝⎭.设()221112ln 022x h x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210x h x x x x x-'=--=-<,∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭.32a ∴≥时,()()12152ln 28x g x g -≥-成立.【点睛】求解含有参数的函数的单调性题,求导后要根据导函数的形式进行分类讨论.9.已知函数()2xf x e ae x =-.(1)讨论()f x 的单调区间;(2)当0a <时,证明:()2ln f x e x >.【答案】(1)当0a ≤时,()f x 的增区间为(),-∞+∞,无减区间;当0a >时,()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞,(2)证明见解析【分析】(1)先求出函数的定义域,再求导数,分0a ≤和0a >,分别由导数大于零和小于零,可求得函数的单调区间;(2)要证明22ln x ae x e x e ->,只要证2ln 0x e e x ->,构造函数()2ln xg x e e x =-,然后利用导数求出此函数的最小值即可,或要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->,构造函数()()20x g x ae x x e =->,然后用导数求其最小值,构造函数()()2ln 0x h x e x x=>,然后利用导数求其最大值,或要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->,构造函数()()()222222ln ln x x g x e e x e x e x e e e e x =-=-++--,令()()220x h x e e x e x =-+>,()222ln m x e x e e x =--,再利用导数求其最小值即可【详解】(1)解:()f x 的定义域为(),-∞+∞,()2x f x e ae '=-.当0a ≤时,()0f x ¢>,则()f x 的增区间为(),-∞+∞,无减区间.当0a >时,由()0f x ¢=,得2ln x a =+.当(),2ln x a ∈-∞+时,()0f x ¢<;当()2ln ,x a ∈++∞时,()0f x ¢>,所以()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞.(2)证明:法一:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()2ln xg x e e x =-,则()2xg x e e x '=-,()220xg x e xe ''=+>,所以()g x '在()0,+¥上是增函数.又()210g e e '=-<,()2222022e g ee '=-=>,所以存在()01,2x ∈,使得()02000x g e x e x '=-=,即020x e e x =,00ln 2x x =-.所以当()00,x x ∈时,()0g x ¢<;当()0,x x ∈+∞时,()0g x ¢>,因此()g x 在()00,x 上是减函数,在()0,x +∞上是增函数,所以()g x 有极小值,且极小值为()()022222222000000ln 22220x g x e e x e x e x e e e x e x e =-=--=+->-=.因此()0gx >,即2ln 0x e x -->.综上,当0a <时,()2ln f x e x >.法二:要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->.设()()20x g x ae x x e =->,则()()21x x e g x x-'=.当01x <<时,()0g x ¢<;当1x >时,()0g x ¢>,所以()g x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()g x 的极小值点,也是最小值点,且()()2min 1g x g e ae ==-.令()()2ln 0xh x e x x =>,则()()221ln x h x xe -'=.当0x e <<时,()0h x '>;当e x >时,()0h x '<,所以()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以x e =是()h x 的极大值点,也是最大值点,且()()max h x h e e ==,所以当0a <时,()()2g x e ae e h x ≥->≥,即22ln x e x xe x ae ->.综上,当0a <时,()2ln f x e x >.法三:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()()()222222ln ln xxg x e e x e x ex ee e e x =-=-++--,令()()220xh x e e x ex =-+>,则()2x h x e e '=-,当02x <<时,()0h x '<;当2x >时,()0h x '>,所以()h x 在()0,2上是减函数,在()2,+¥上是增函数,所以2x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 20h x h ==.设()222ln m x e x e e x =--,则()()2221x e m x e x xe-'=-=.当01x <<时,()0m x '<;当2x >时,()0m x '>,所以()m x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()m x 的极小值点,也是()m x 的最小值点,即()()min 10m x m ==.综上,()0h x ≥(当且仅当2x =时取等号),()0m x ≥(当且仅当1x =时取等号),所以()()()0g x h x m x =+>,故当0a <时,()2ln f x e x >.【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,解题的关键是将不等式等价转化,然后构造函数,利用导数求函数的最值,考查数学转化思想,属于较难题10.已知函数2()ln f x x ax x =-+.(1)试讨论函数()f x 的单调性;(2)对任意0a <,满足2()ln f x x ax x =-+的图象与直线y kx =恒有且仅有一个公共点,求k 的取值范围.【答案】(1)当0a ≤时,在(0,)+∞单调递增;当0a >时,在10,4a ⎛-+ ⎝⎭单调递增,在14a ⎛⎫-+∞ ⎪ ⎪⎝⎭单调递减;(2)1k ≤或3221k e -+≥.【分析】(1)首先求函数的导数2121'()21(0)ax x f x ax x x x-++=-+=>,分0a ≤和0a >两千情况讨论导数的正负,确定函数的单调性;(2)由方程()f x kx =,转化为2ln x ax xk x -+=,构造函数()2ln x ax x h x x-+=,利用二阶导数判断函数的单调性,并分情况讨论()h x '最小值的正负,并结合零点存在性定理,确定函数的性质,根据2ln x ax xk x-+=有唯一解,确定k 的取值范围.【详解】(1)2121'()21(0)ax x f x ax x x x-++=-+=>当0a ≤时,恒有'()0f x >,所以()f x 在(0,)+∞单调递增;当0a >时,令2210ax x -++=,则180a ∆=+>,则10x =,211804x a-=<(舍去),当1(0,)4x a -+∈时,'()0f x >,()f x 在1(0,)4a-+单调递增;当)x ∈+∞时,'()0f x <,()f x在)+∞单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在118(0,)4a -单调递增,()f x 在118()4a-+∞单调递减.(2)原命题等价于对任意0a <,2ln x ax x kx -+=有且仅有一解,即2ln x ax xk x-+=;令ln ()1x h x ax x =-+则21ln '()x h x a x -=-,332(ln )2''()x h x x -=,令''()0h x =得32x e =所以)'(h x 在32(0,)e 上递减,在32(,)e +∞上递增,3232min 331ln 1'()'()2e h x h e a ae e -==-=--当312a e ≤-时,'()0h x ≥,所以()h x 在R 上单调递增,又当0x →时,ln ,0xax x→-∞-→,所以()h x →-∞;当x →+∞时,ln ,xax x→+∞-→+∞,所以()h x →+∞.所以()h x 在R 上必存在唯一零点,此时k ∈R ;当3102a e-<<时,32min '()'()0h x h e =<,同时又当0x →时,21ln ,x a x-→+∞-→+∞,所以'()h x →+∞;当x →+∞时,21ln 0,x a x-→-→+∞,所以'()h x →+∞.所以方程'()0h x =存在两根12,x x ,即2211221ln 1ln 0x ax x ax --=--=且332212(0,),(,)x e x e ∈∈+∞,所以()h x 在1(0,)x 上单调递增,12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以()h x 的极大值为1()h x ,极小值为2()h x 要使有方程2ln x ax xk x-+=唯一解,必有1()k h x >或2()k h x <,又2222222222ln ln 1ln 2ln 1()111x x x x h x ax x x x x --=-+=-+=+,又322(,)x e ∈+∞,则2ln 1()1x x x ϕ-=+,232ln '()0x x xϕ-=<,所以()ϕx 在32(,)e +∞递减,且x →+∞时,2ln 1()11x x xϕ-=+→,所以1k ≤;同理1112ln 1()1x h x x -=+,321(0,)x e ∈,2ln 1()1x x x ϕ-=+在32(0,)e 递增,3322322()()121x e eeϕϕ-<=+=+,所以3221k e -+≥.综上可得,1k ≤或3221k e -+≥.【点睛】思路点睛:本题是一道利用导数研究函数性质,零点的综合应用题型,属于难题,一般利用导数研究函数零点或方程的实数根时,需根据题意构造函数()f x ,利用导数研究函数在该区间上的单调性,极值,端点值等性质,以及零点存在性定理等研究函数的零点.11.设函数223223()3,()33,22a a f x x x ax g x ax x a ⎛⎫=-+=-++-∈ ⎪⎝⎭R .(1)求函数()f x 的单调区间;(2)若函数[]()23()()()0,222a x f x g x x x ϕ=--∈在0x =处取得最大值,求a 的取值范围.【答案】(1)当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭;(2)6,5⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对()f x 求导,对导函数分3a ≥和3a <两种情况讨论即可.(2)因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,利用分离参数法转化为不等式恒成立问题,求函数的最值即可.【详解】解:(1)()22()36313f x x x a x a '=-+=-+-,当3a ≥时,()0f x '≥,所以()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,令()0f x '>,得13x <-或13x >+,所以()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭令()0f x '<,得1133x -<<+,所以()f x 的单调递减区间为9393133⎛-+ ⎝⎭.综上,当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为,1⎛-∞- ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为9393133⎛⎫-+ ⎪ ⎪⎝⎭.(2)由题意得[]322133()(1)3,0,2222x ax a x x a x ϕ=+--+∈.因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,即[]3213(1)30,0,222ax a x x x +--∈,当0x =时,显然成立.当(]0,2x ∈时,得()21313022ax a x +--≤,即()()()()()22323232322221+2x x ax xx x x x ++==++-+-+--.令(]22,4t x =+∈,则2()1,(2,4]th t t t =--∈,()2210h t t '=+>恒成立,所以2()1,(2,4]t h t t t =--∈是增函数,5()0,2h t ⎛⎤∈ ⎥⎝⎦,所以3625(2)12x x +--+,即65a ,所以a 的取值范围为6,5⎛⎤-∞ ⎥⎝⎦.【点睛】思路点睛:对含参数的函数求单调区间,根据导函数分类讨论是解决这类题的一般方法;已知函数的最大值求参数的取值范围,往往转化为不等式恒成立问题,如果能分离参数的话,分离参数是解决这类题的常用方法,然后再求函数的最值即可.12.已知函数()()()21ln 1f x x a x x =-+-+(0a >).(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围.【答案】(1)答案不唯一,见解析;(2)02a <≤.【分析】(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可;(2原不等式化为:ln 2x a x x ≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,求出函数的导数,再令()221ln g x x x =-+,根据函数的单调性求出a 的范围即可.【详解】(1)()()()1121121x f x x a x a x x -⎛⎫⎛⎫'=-+-=-+⎪ ⎪⎝⎭⎝⎭()()()()12121a x x a x x xx---=--=,()0,x ∈+∞,令()0f x '=,则2ax =或1x =,当02a <<时,函数()f x 在区间0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在区间,12a ⎛⎫⎪⎝⎭上单调递减,当2a =时,函数()f x 在()0+∞,上单调递增,当2a >时,函数()f x 在区间()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫⎪⎝⎭上单调递减;(2)原不等式化为:ln 2xa x x≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,()2221ln 21ln 2x x x h x x x--+'=-=,令()221ln g x x x =-+,则()140g x x x '=+>,所以()g x 在()1+∞,上单调递增,()()110g x g >=>,所以()0h x '>,则函数()h x 在()1+∞,上单调递增,且()12h =,02a ∴<≤.【点睛】方法点睛:本题考查利用导数研究单调性(含参),考查利用导数研究恒成立问题,解决第(2)问的关键是将原不等式转化为ln 2xa x x≤-在()1+∞,上恒成立,进而利用导数研究函数的单调性,从而得解,考查逻辑思维能力和运算求解能力,考查转化和划归思想,属于常考题.13.已知函数()ln 2ag x x x x=++.(1)讨论()g x 的单调性;(2)当10a e <<时,函数()()222a f x xg x x x ⎛⎫=-+- ⎪⎝⎭在其定义域内有两个不同的极值点,记作1x 、2x ,且11x x <,若m 1≥,证明:112m mx x e +⋅>.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数()g x 的定义域,求得()222x x a g x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()g x 的单调递增区间和递减区间;(2)利用分析法得出所证不等式等价于()()()121212121ln0m x x x x x x x mx +-<>>+,令()120,1x t x =∈,构造函数()()()11ln m t h t t t m+-=-+,其中()0,1t ∈,利用导数证明出()0h t <对任意的()0,1t ∈恒成立,由此可证得原不等式成立.【详解】(1)函数()ln 2ag x x x x=++的定义域为()0,∞+,()()222122a x x ag x a R x x x+-'=+-=∈,方程220x x a +-=的判别式18a ∆=+.①当18a ≤-时,0∆≤,()0g x '≥,()g x 在()0,∞+为增函数;②当18a >-时,0∆>,方程220x x a +-=的两根为114x -'=,214x -'=,(i )当108a -<≤时,120x x ''<≤,对任意的0x >,()0g x '>,()g x 在()0,∞+为增函数;(ii )当0a >时,120x x ''<<,令()0g x '<,可得20x x '<<,令()0g x '>,可得2x x '>.所以,()g x在1,4⎛⎫+∞⎝⎪⎪⎭为增函数,在10,4⎛⎤- ⎥ ⎝⎦为减函数.综上所述:当0a ≤时,()g x 的增区间为()0,∞+,无减区间;当0a >时,()g x的增区间为1,4⎛⎫+∞- ⎝⎪⎪⎭,减区间10,4⎛⎤- ⎥ ⎝⎦;(2)证明:()()2ln 2a f x x x x x a a R =--+∈ ,所以()ln f x x ax '=-,因为()f x 有两极值点1x 、2x ,所以11ln x ax =,22ln x ax =,欲证112mm x x e +⋅>等价于要证:()112ln ln m m x x e +⋅>,即121ln ln m x m x +<+,所以()1212121ln ln m x m x ax max a x mx +<+=+=+,因为m 1≥,120x x <<,所以原不等式等价于要证明121ma x mx +>+.又11ln x ax =,22ln x ax =,作差得()1122lnx a x x x =-,1212ln x x a x x ∴=-,所以原不等式等价于要证明()()112211212212ln11ln x m x x x x m x x x mx x x mx +-+>⇔<-++,令12x t x =,()0,1t ∈,上式等价于要证()()11ln m t t t m+-<+,()0,1t ∈,令()()()11ln m t h t t t m+-=-+,所以()()()()221t t m h t t t m --'=+,当m 1≥时,20t m -<,则()0h t '>,所以()h t 在()0,1上单调递增,因此()()10h t h <=,()()11ln m t t t m+-∴<+在()0,1t ∈上恒成立,所以原不等式成立.【点睛】利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.14.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.【答案】(1)答案见解析;(2)6ln 4,05⎛⎫- ⎪⎝⎭.【分析】(1)对函数求导,按照110a ≥、1010a<<分类,求得()0f x '<、()0f x '>的解集即可得解;(2)由极值点的性质可得1a =,由导数的几何意义可得1b 、2b 及()12122x x x x =+,转化条件为1211212221ln 1x x x b b x x x ⎛⎫- ⎪⎝⎭-=++,构造新函数结合导数即可得解.【详解】(1)由题意,()()()()222212010ax ax a f x a x x x x+-'=-++=<<,0a > ,010x <<,∴20ax +>,①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)∵1x =是()f x 的极值点,∴()10f '=,即()()210a a +-=,解得1a =或2a =-(舍),此时()2ln f x x x x =++,()2211f x x x'=-++,1l ∴方程为()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭,令0x =,得1114ln 1b x x =+-,同理可得2224ln 1b x x =+-,12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-,又12010x x <<<,则1112102x x x <<-,解得1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++,令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭,设()()211ln ,,114t g t t t t -⎛⎫=+∈ ⎪+⎝⎭,则()()()()222141011t g t t t t t -'=-+=>++,()g t ∴在1,14⎛⎫⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=-⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭.【点睛】关键点点点睛:解决本题的关键是利用导数的几何意义转化条件,再构造新函数,结合导数即可得解.15.已知函数32()23(1)6()f x x m x mx x R =+++∈.(1)讨论函数()f x 的单调性;(2)若(1)5f =,函数2()()(ln 1)0f x g x a x x=+-≤在(1,)+∞上恒成立,求证:2a e <.【答案】(1)答案不唯一,见解析(2)证明见解析【分析】(1)求导后分解因式,分类讨论即可得到函数的单调性;(2)由题意求出0m =,转化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,利用导数求出23()(1)ln 1x h x x x +=>+的最小值,即可求解.【详解】(1)()()()'22661661fx x m x m x m x m ⎡⎤=+++=+++⎣⎦6(1)()x x m =++若1m =时,()0f x '≥,()f x 在R 上单调递增;若1m >时,1m -<-,当x m <-或1x >-时,()0f x '>,()f x 为增函数,当1m x -<<-时,()0f x '<,()f x 为减函数,若1m <时,1m ->-,当1x <-或x m >-时,()0f x '>,()f x 为增函数,当1x m -<<-时,()0f x '<,()f x 为减函数.综上,1m =时,()f x 在R 上单调递增;当1m >时,()f x 在(,)-∞-m 和(1,)-+∞上单调递增,在(,1)m --上单调递减;当1m <时,()f x 在(,1)-∞-和(,)m -+∞上单调递增,在(1,)m --上单调递减.(2)由(1)23(1)65f m m =+++=,解得0m =,所以32()23f x x x =+,由(1,)x ∈+∞时,ln 10x +>,可知()(ln 1)230g x a x x =+--≤在(1,)+∞上恒成立可化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,设23()(1)ln 1x h x x x +=>+,则22132(ln 1)(23)2ln ()(ln 1)(ln 1)x x x x x h x x x +-+⨯-'==++,设3()2ln (1)x x x x ϕ=->,则223()0x x xϕ'=+>,所以()ϕx 在(1,)+∞上单调递增,又3ln163(2)2ln 2022ϕ-=-=<,3()20e eϕ=->所以方程()0h x '=有且只有一个实根0x ,且00032,2ln .x e x x <<=所以在0(1,)x 上,()0h x '<,()h x 单调递减,在0(,)x +∞上,()0,()h x h x '>单调递增,所以函数()h x 的最小值为0000002323()223ln 112x x h x x e x x ++===<++,从而022.a x e ≤<【点睛】关键点点睛:解答本题的难点在于得到232ln ()(ln 1)x x h x x -'=+后,不能求出()h x '的零点,需要根据()h x '的单调性及零点存在定理得到0x 的大致范围,再利用0x 的范围及0032ln x x =证明不等式.16.设()1,,54m h x x x x ⎡⎤=+∈⎢⎥⎣⎦,其中m 是不等于零的常数,(1)写出()4h x 的定义域;(2)求()h x 的单调递增区间;【答案】(1)15,164⎡⎤⎢⎥⎣⎦;(2)答案见解析.【分析】(1)由已知得出1454x ⎡⎤∈⎢⎥⎣⎦,,解出x 可得()4h x 的定义域;(2)对函数()h x 求导,按0m <,1016m <≤,12516m <<和25m ≥四种情况,分别求出函数的单调递增区间即可.【详解】(1)∵1454x ⎡⎤∈⎢⎥⎣⎦,,∴15164x ⎡⎤∈⎢⎥⎣⎦,∴()4h x 的定义域为15164⎡⎤⎢⎥⎣⎦,(2)()21m h x x '=-0m <时,()0h x '>恒成立,()h x 在154⎡⎤⎢⎥⎣⎦,递增;0m >时,令()0h x '>,解得x >或x <,即函数的单调增区间为(,-∞,)+∞14≤即1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增当154<<即12516m <<时,()h x 在⎤⎦递增5≥即25m ≥时,()h x 在154⎡⎤⎢⎥⎣⎦,无递增区间综上可得:0m <时,()h x 在154⎡⎤⎢⎥⎣⎦,递增;1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦递增;12516m <<时,()h x 在⎤⎦递增【点睛】关键点点睛:本题考查函数的定义域,考查导数研究函数的单调性,解决本题的关键是令()0h x '>求出函数的单调增区间,讨论定义域的区间端点和单调区间的关系,考查了学生分类讨论思想和计算能力,属于中档题.17.已知1,12k ⎛⎤∈⎥⎝⎦,函数2()(1)x f x x e kx =--.( 2.71828e = 为自然对数的底数).(1)求函数()f x 的单调区间;(2)求函数()f x 在[0,]k 上的最大值.【答案】(1)单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k ;(2)3(1)k k e k --.【分析】(1)由题得()(2)x f x x e k '=-,再利用导数求函数的单调区间得解;(2)证明0(2)ln k k <<,列出表格得出单调区间,比较区间端点与极值即可得到最大值.【详解】(1)由题得()(1)2(2)x x x f x e x e kx x e k '=+--=-,令0()0,20x x f x e k >⎧'>∴⎨->⎩或020x x e k <⎧⎨-<⎩,因为1,12k ⎛⎤∈⎥⎝⎦,所以122k <≤,所以不等式组的解为ln 2x k >或0x <,所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,;令0()0,20x x f x e k >⎧'<∴⎨-<⎩或020x x e k <⎧⎨->⎩,解之得0ln 2x k <<,所以函数()f x 的单调减区间为(0,ln 2)k ;所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k .(2)令()(2)k k ln k ϕ=-,1(2k ∈,1],11()10k k k k ϕ-'=-=所以()k ϕ在1(2,1]上是减函数,ϕ∴(1)1()()2k ϕϕ<,112()2ln k k ϕ∴-<<.即0(2)ln k k<<所以()'f x ,()f x 随x 的变化情况如下表:x(0,(2))ln k (2)ln k ((2)ln k ,)k ()'f x -0+()f x极小值(0)1f =-,()(0)f k f -3(1)(0)k k e k f =---3(1)1k k e k =--+3(1)(1)k k e k =---2(1)(1)(1)k k e k k k =---++2(1)[(1)]k k e k k =--++。

3次函数曲线-概念解析以及定义

3次函数曲线-概念解析以及定义

3次函数曲线-概述说明以及解释1.引言1.1 概述概述在数学中,三次函数是一种常见的多项式函数,其最高次项的指数为3。

三次函数的一般形式可以表示为y = ax^3 + bx^2 + cx + d,其中a、b、c和d都是实数,并且a不等于0。

三次函数曲线通常呈现出一种典型的"弓形"形状,有时可能具有一个局部极值点或者一个拐点。

它们在图像上的走势和特点在多个领域中都有重要的应用,例如物理学、经济学和计算机图形学等。

理解和掌握三次函数曲线的特点对于解决实际问题和进行进一步的数学研究都是非常重要的。

本文将围绕三次函数曲线展开讨论,首先介绍三次函数的基本定义和性质,然后探讨三次函数曲线的图像特点以及如何进行函数图像的变换和分析。

接下来,我们将进一步研究三次函数曲线的局部极值点和拐点的性质,并举例说明在实际问题中的应用。

最后,我们将总结所讨论的内容,并展望一些可能的研究方向。

通过研究和理解三次函数曲线的性质和特点,我们可以更好地应用它们解决实际问题,并且有助于我们对数学的深入理解和进一步研究。

接下来,我们将详细介绍本文的组织结构和目的。

1.2 文章结构2. 正文在本文中,我们将着重研究3次函数曲线。

通过对这种特殊类型的函数曲线进行深入的分析和研究,我们可以更好地理解它们的数学性质和应用。

本文的正文部分将分为三个要点来探讨3次函数曲线所涉及的关键概念和性质。

2.1 第一要点在第一要点中,我们将首先介绍3次函数曲线的基本定义和表达形式。

我们将学习如何根据给定的系数,利用函数表达式来绘制3次函数曲线的图像。

此外,我们还将讨论3次函数曲线的对称性和奇偶性,并探索其在数学和科学领域中的实际应用。

2.2 第二要点在第二要点中,我们将进一步研究3次函数曲线的性质和特征。

我们将通过对曲线的导数和导数变化率的分析,探讨曲线的增减性和凸凹性。

此外,我们还将介绍曲线的转折点和拐点,并讨论这些特殊点对曲线整体形状的影响。

高中数学函数题的解题技巧

高中数学函数题的解题技巧

高中数学函数题的解题技能高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技能是什么?下面是作者为大家整理的关于高中数学函数题的解题技能,期望对您有所帮助!高中数学函数解题思路方法一视察法1.视察函数中的特别函数;2.利用这些特别函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.视察函数类型,型如;2.对函数变形成情势;3.求出函数在定义域范畴内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步视察函数解析式的情势,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技能1.函数值域常见求法和解题技能函数的值域与最值是两个不同的概念,一样说来,求出了一个函数的最值,未必能肯定该函数的值域,反之,一个函数的值域被肯定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:视察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在挑选方法时,要注意所给函数表达式的结构,不同的结构挑选不同的解法。

2.函数奇偶性的判定方法及解题策略肯定函数的奇偶性,一样先考核函数的定义域是否关于原点对称,然后判定与的关系,常用方法有:①利用奇偶性定义判定;②利用图象进行判定,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以免对自变量的繁琐的分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档