线线角、线面角、二面角知识点及练习

合集下载

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。

专题:空间角3类型——线线角、线面角、二面角

专题:空间角3类型——线线角、线面角、二面角

空间角3类型——线线角、线面角、二面角


利用空间向量求线面角
[ 典例] (2016· 天津高考)如图, 正方形 ABCD
的中心为 O,四边形 OBEF 为矩形,平面 OBEF ⊥平面 ABCD,点 G 为 AB 的中点,AB=BE=2. (1)求证:EG∥平面 ADF; 2 (2)设 H 为线段 AF 上的点,且 AH= HF,求直线 BH 和 3 平面 CEF 所成角的正弦值.
空间角3类型——线线角、线面角、二面角


(2016· 浙江高考 )如图,在三棱台 ABCDEF 中,平面 BCFE⊥平面 ABC,∠ACB=90°,BE=EF=FC=1, BC=2,AC=3. (2)求二面角 BADF 的平面角的余弦值.
[解]
取 BC 的中点 O,连接 KO,
则 KO⊥BC. 又平面 BCFE⊥平面 ABC,所以 KO⊥平面 ABC. 以点 O 为原点,分别以射线 OB,OK 的方向为 x 轴,z 轴的正方向, 建立空间直角坐标系 Oxyz. 由题意得 B(1,0,0),C(-1,0,0),K(0,0, 3),
空间角3类型——线线角、线面角、二面角


(2016· 淄博一模)如图,直线 PA 与平行四边形 ABCD 所在的平面垂 直,PA=AB=AD=2,∠BAD=60°. (2)求直线 PA 与平面 PBC 所成角的正弦值.
解:设 AC∩BD=O,取 PC 的中点 Q,连接 OQ. 在△APC 中,AO=OC,CQ=QP,∴OQ∥PA, ∵PA⊥平面 ABCD,∴OQ⊥平面 ABCD, 如图,取 OA,OB,OQ 所在的直线分别为 x 轴, y 轴,z 轴,建立空间直角坐标系,则 A( 3,0,0),B(0,1,0),C(- 3, ―→ 0,0),P( 3,0,2),∴ AP =(0,0,2).设平面 PBC 的法向量为 n ―→ ―→ =(x,y,z),而 BC =(- 3,-1,0), PB =(- 3,1,-2),

几何法求线线角,线面角,二面角的10类题型(学生版)

几何法求线线角,线面角,二面角的10类题型(学生版)

几何法求线线角、线面角、二面角常考题型题型一平行四边形平移法求线线角 4题型二中位线平移法求线线角 5题型三补形平移法求线线角 5题型四作垂线法求线面角 6题型五等体积法求线面角 7题型六定义法求二面角 7题型七三垂线法求二面角 8题型八垂面法求二面角 9题型九补棱法求二面角 10题型十射影面积法求二面角 11知识梳理一、线线角的定义与求解线线角主要是求异面直线所成角。

1、线线角的定义:①定义:设a,b是两条异面直线,经过空间任一点O作直线a ⎳a,b ⎳b,把a 与b 所成的锐角或直角叫做异面直线a,b所成的角(或夹角)②范围:0,π22、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.3、可通过多种方法平移产生,主要有三种方法:①平行四边形平移法;②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).二、线面角的定义与求解1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角,取值范围:[0°,90°]2、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B为斜足;找线在面外的一点A,过点A向平面α做垂线,确定垂足O;(2)连结斜足与垂足为斜线AB在面α上的投影;投影BO与斜线AB之间的夹角为线面角;(3)把投影BO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

3、公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

公式为:sinθ=h,其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长。

2022-2023学年上海高二数学上学期同步知识点讲练重难点01线线角、线面角、二面角问题带讲解

2022-2023学年上海高二数学上学期同步知识点讲练重难点01线线角、线面角、二面角问题带讲解

重难点01线线角、线面角、二面角问题(重难点突破解题技巧与方法)1.求异面直线所成的角的三步曲2.求直线和平面所成角的关键作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值。

3.找二面角的平面角的常用方法 (1)由定义做出二面角的平面角 (2)用三垂线定理找二面角的平面角 (3)找公垂面(4)划归为分别垂直于二面角的两个面的两条直线所成的角求异面直线所成的角一、填空题1.(2021·上海·复旦附中高二期中)已知四棱柱1111ABCD A B C D -中,异面直线11A C 与DB 所成角为3π,且11111,AC D B O ACDB O ==,1OA OB ==,则AB 的长为_________.【答案】1或3【分析】根据题意得出AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,从而在AOB 中,应用余弦定理即可求出答案.【详解】因为11//AC AC ,所以AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,即3AOB π∠=或23π, 当3AOB π∠=时,因为1OA OB ==,所以AOB 为等边三角形,所以1AB =;能力拓展技巧方法当23AOB π∠=时,因为1OA OB ==, 在AOB 中,由余弦定理,得22222cos33AB OA OB OA OB π,所以3AB =.故答案为:1或3.2.(2021·上海·格致中学高二期中)设E 是正方体1111ABCD A B C D -的棱1CC 的中点,在棱1AA 上任取一点P ,在线段1A E 上任取一点Q ,则异面直线PQ 与BD 所成角的大小为______.【答案】2π【分析】连接BD ,利用线面垂直的判定定理证得BD ⊥平面1A ECA ,再利用线面垂直的性质定理可知BD PQ ⊥,即可得解.【详解】连接BD ,由底面ABCD 为正方形,可知BD AC ⊥,由正方体的性质,可知1AA ⊥平面ABCD ,又BD ⊂平面ABCD ,则1AA ⊥BD 又1AA AC A =,则BD ⊥平面1A ECA ,由已知可知PQ ⊂平面1A ECA ,则BD PQ ⊥所以异面直线PQ 与BD 所成角的大小为2π 故答案为:2π3.(2021·上海中学高二期中)正方体1111ABCD A B C D -中,异面直线1AB 与BD所成角大小为______ 【答案】3π【分析】连接1AD 、11B D ,,证明11//B D BD ,可得11AB D ∠即为异面直线1AB 与BD 所成角,在11AB D 求11AB D ∠即可求解.【详解】如图,连接1AD 、11B D , 因为11//BB DD ,11BB DD =, 所以四边形11BB D D 是平行四边形, 所以11//B D BD ,所以11AB D ∠即为异面直线1AB 与BD 所成角, 设正方体1111ABCD A B C D -的棱长为a , 在11AB D 中,11112AD AB B D a ===, 所以11AB D 是等边三角形, 所以113AB D π∠=,即异面直线1AB 与BD 所成角为3π, 故答案为:3π二、解答题4.(2022·上海浦东新·高二期末)如图,在正方体1111ABCD A B C D -中.(1)求异面直线1A B 和1CC 所成的角的余弦值;(2)求证:直线1//A B 平面11DCC D . 【答案】(1)22(2)证明见解析 【分析】(1)根据已知11//CC BB ,可将异面直线1A B 和1CC 所成的角转化为直线1A B 和1BB 所成的角,再根据题目的边长关系,即可完成求解;(2)可通过连接1D C ,证明四边形11A BCD 为平行四边形,从而得到11//A B D C ,再利用线面平行的判定定理即可完成证明.(1)因为11//CC BB ,所以11A BB ∠就是异面直线1A B 和1CC 所成的角.又因为1111ABCD A B C D -为正方体,所以异面直线1A B 和1CC 所成的角为45o ,所以异面直线1A B 和1CC 所成的角的余弦值为22. (2)连接1D C ,因为11//A D BC 且11A D BC =,所以四边形11A BCD 为平行四边形,所以11//A B D C ;1A B ⊄平面11DCC D ,1D C ⊂平面11DCC D ;所以直线1//A B 平面11DCC D .即得证.线面角一、单选题1.(2022·上海市控江中学高二期末)如图,已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有两条直线l 与a 、b 都成75︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】A【分析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面的夹角相等,在平面内绕P 转动,可以得到二条直线与a 、b 的夹角都等于75. 【详解】如下图所示,在侧面正方形11A B BA 和11A D DA 再延伸一个正方形11B E EB 和11D F FD ,则平面1E C 和1C F 在同一个平面内,所以过点P ,有且只有一条直线l ,即1EF 与a 、b 相交,故①为真命题;取1A A 中点N ,连PN ,由于a 、b 为异面直线,a 、b 的夹角等于11A B 与b 的夹角.由于11A C ⊂ 平面11A C ,NP ⊄平面11A C ,11NP AC ,所以NP 平面11A C ,所以NP 与11A B 与b 的夹角都为45 .又因为1C C ⊥平面11A C ,所以1C C 与11A B 与b 的夹角都为90,而457590<<,所以过点P ,在平面1A C 内存在一条直线,使得与11A B与b 的夹角都为75,同理可得,过点P ,在平面1A C 内存在一条直线,使得与a 与AD 的夹角都为75;故②为真命题. 故选:A二、填空题2.(2021·上海市行知中学高二阶段练习)6,且对角线与底面所成角的余弦值为33,则该正四棱柱的全面积等于_________. 【答案】10【分析】结合已知条件分别求出正四棱柱的底面边长和高即可求解. 【详解】由题意,正四棱柱1111ABCD A B C D -如下图:不妨设正四棱柱1111ABCD A B C D -底面边长为a ,1||AA h =,由已知条件可得,2222221||2(6)6BD a a h a h =++=+==,又因为1DD ⊥底面ABCD ,所以对角线1BD 与底面ABCD 所成角为1DBD ∠,因为对角线与底面所成角的余弦值为33,||2BD a =, 所以11||23cos ||36BD a DBD BD ∠===,解得1a =,从而2h =, 故该正四棱柱的表面积12411210S =⨯⨯+⨯⨯=. 故答案为:10. 三、解答题3.(2021·上海市大同中学高二阶段练习)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA 垂直于底面ABCD ,22PA AD AB BC ====,M 、N 分别为PC 、PB 的中点.(1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成的角. 【答案】(1)证明见解析;(2)6π.【分析】(1)由题设易得BC AB ⊥,由已知及线面垂直的性质有BC ⊥面PAB ,根据线面垂直的判定可证BC PB ⊥、PA AB ⊥,再由线面垂直的判定及平行的推论可得PB ⊥面ADMN ,最后由线面垂直的性质证结论.(2)若BD 与平面ADMN 所成角为θ,由线面垂直易知sin BNBDθ=,即可求线面角的大小. 【详解】(1)由90BAD ∠=︒即AD AB ⊥,又//AD BC ,有BC AB ⊥, ∵PA ⊥面ABCD ,BC ⊂面ABCD ,∴PA BC ⊥,而PA AB A =,则有BC ⊥面PAB , 又PB ⊂面PAB ,则BC PB ⊥, 由AB面ABCD ,有PA AB ⊥,且PA AB =,N 为PB 的中点,则AN PB ⊥,又M 为PC 的中点,有//BC MN ,即MN PB ⊥,而AN MN N =,又//AD BC ,则//AD MN ,即,,,A N D M 共面,∴PB ⊥面ADMN ,而DM ⊂面ADMN ,故PB DM ⊥.(2)由(1)知:PB ⊥面ADMN ,若BD 与平面ADMN 所成角为[0,]2πθ∈,且1BC =,∴2,22BN BD == ,则1sin 2BN BD θ==,故6πθ=.二面角一、单选题1.(2020·上海·曹杨二中高二期末)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则 A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B. 方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得 333222cos sin sin α=α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 二、填空题2.(2021·上海·西外高二期中)在正方体1111ABCD A B C D -中,二面角1A BC A --的大小是___________. 【答案】4π 【分析】根据二面角的定义判断二面角1A BC A --的大小. 【详解】画出图象如下图所示, 由于1,BC A B BC AB ⊥⊥,所以1A BA ∠是二面角1A BC A --的平面角, 根据正方体的性质可知14A BA π∠=.故答案为:4π三、解答题3.(2022·上海·复旦附中高二期中)如图所示,某农户拟在院子的墙角处搭建一个谷仓,墙角可以看作如图所示的图形,其中OA 、OB 、1OO 两两垂直(OA 、OB 、1OO 均大于2米).该农户找了一块长、宽分别为2米和1米的矩形木板.将木板的一边紧贴地面,另外一组对边紧贴墙面,围出一个三棱柱(无盖)形的谷仓.(1)若木板较长的一边紧贴地面,3问:此时木板与两个墙面所成的锐二面角大小分别为多少?(2)应怎样摆放木板,才能使得围成的谷仓容积最大?并求出该最大值. 【答案】(1)6π和3π (2)体积最大值为1立方米,此时木板长边贴地,与两个墙面所成锐二面角均为45° 【分析】(1)利用设二面角为θ或三棱柱底面的一条直角边长为x 两种方法进行求解即可; (2)用(1)中的θ或x 表示谷仓容积,再利用三角函数和基本不等式,进行求最值即可得解. (1)法一:设其中一个锐二面角的大小为θ,则三棱柱底面的两条直角边长分别为2cos θ、2sin θ,高为1,体积132cos 2sin 1sin 22V Sh θθθ==⋅⋅⋅==6πθ=或3π,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π.法二:设三棱柱底面的一条直角边长为()02x x <<,则另一条直角边长为24-x ,高为1,体积2134122V Sh x x ==⋅⋅-⋅=,解得x =1或3,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π. (2)法一:同(1)中法一所设,若长边紧贴底面,体积12cos 2sin 1sin 212V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;若短边紧贴底面,体积111cos sin 2sin 2222V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;显然112>,所以体积最大值为1立方米,此时木板长边贴地, 与两个墙面所成锐二面角均为45°. 法二:同(1)中法二所设,若长边紧贴底面,体积2221441124x x V Sh x x +-==⋅⋅-⋅≤=, 等号当且仅当2x =时成立;若短边紧贴底面,体积22211112222x x V Sh x x +-==⋅⋅-⋅≤=,等号当且仅当22x =时成立; 显然112>,所以体积最大值为1立方米, 此时木板长边贴地,与两个墙面所成锐二面角均为45°(也可描述底面两条直角边长).4.(2021·上海·格致中学高二期中)在四棱锥P ABCD -中,底面为梯形,AB CD ∕∕,PAD △为正三角形,且2PA AB ==,90BAP CDP ∠=∠=︒,四棱锥P ABCD -的体积为23.(1)求证:AB ⊥平面PAD ;(2)求PC 与平面ABCD 所成角的正弦值;(3)设平面PAB ⋂平面PCD l =,求证:l AB ∕∕,并求二面角B l C --的大小.【答案】(1)证明见解析;(2)1510;(3)3π 【分析】(1)根据线面垂直的判定定理,结合题意,即可得证.(2)根据面面垂直的判定、性质定理,结合正三角形的性质,可证PQ ⊥平面ABCD ,则PCQ ∠即为PC 与平面ABCD 所成角,据四棱锥的体积,可求得CD 长,在Rt PCQ 中,求得各个边长,即可得答案. (3)根据线面平行的判定和性质定理,可证AB l ∕∕,结合题意,可得PA l ⊥,同理PD l ⊥,则APD ∠即为二面角B l C --所成的平面角,根据三角形性质,即可得答案.(1)证明:因为90CDP ∠=︒,所以CD DP ⊥,因为AB CD ∕∕,所以AB DP ⊥,又因为90BAP ∠=︒,即AB AP ⊥,且,AP DP ⊂平面PAD ,所以AB ⊥平面PAD ;(2)因为AB ⊥平面PAD ,AB平面ABCD ,所以平面PAD ⊥平面ABCD ,取AD 中点Q ,连接PQ ,CQ , 因为PAD △为正三角形,Q 为AD 中点,所以PQ AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD=AD , 所以PQ ⊥平面ABCD ,所以PCQ ∠即为PC 与平面ABCD 所成角,在Rt PDQ 中,223PQ PD DQ -设CD 长为x ,则四棱锥P ABCD -的体积()1112+2323332ABCD V S PQ x =⨯=⨯⨯⨯= 求得CD 长4x =,在Rt CDQ △中,2217CQ CD DQ +=在Rt PCQ 中,2225PC CQ PQ =+所以315sin 1025PQ PCQ PC ∠===, 所以PC 与平面ABCD 所成角的正弦值为1510 (3)证明:因为AB CD ∕∕,CD ⊂平面PCD ,AB ⊄平面PCD ,所以AB ∕∕平面PCD ,又AB 平面PAB ,且平PAB ⋂平面PCD l =,所以AB l ∕∕.因为PA AB ⊥,AB l ∕∕,所以PA l ⊥,同理PD l ⊥,所以APD ∠即为二面角B l C --所成的平面角,因为PAD △为正三角形,所以3APD π∠=,即二面角B l C --的大小为3π. 一、填空题1.(2021·上海奉贤区致远高级中学高二期中)若正方体1111ABCD A B C D -的棱长为1,则异面直线AB 与11D B 之间的距离为___________.【答案】1【分析】作出正方体图像,观察即可得到答案﹒【详解】如图:巩固练习∵1BB 与AB 、11B D 均垂直,∴1BB 即为两异面直线的距离,故答案为:1二、解答题2.(2021·上海中学高二阶段练习)如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD ∥平面P AC ;(2)求异面直线1BD 与AP 所成角的大小.【答案】(1)证明见解析;(2)30°. 【分析】(1)AC 和BD 交于点O ,由1PO BD ∥即能证明直线1BD ∥平面PAC .(2)由1PO BD ∥,得APO ∠即为异面直线1BD 与AP 所成的角.由此能求出异面直线1BD 与AP 所成角的大小.(1)设AC 和BD 交于点O ,则O 为BD 的中点,连结PO ,又∵P 是1DD 的中点,∴1PO BD ∥,又∵PO ⊂平面PAC ,1BD ⊂平面PAC ,∴直线1BD ∥平面PAC ; (2)由(1)知,1PO BD ∥,∴APO ∠即为异面直线1BD 与AP 所成的角, ∵2PA PC ==122AO AC =PO AO ⊥,∴212sin 22AO APO AP ∠===.又(0APO ∠∈︒,90]︒,∴30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30.3.(2021·上海市进才中学高二期中)已知正四棱锥P ABCD -中,1AB =,2PA =;(1)求侧棱与底面所成角的正弦值;(2)求正四棱锥P ABCD -的体积【答案】(1)144(2)146【分析】(1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO 分析可得PAO ∠即为侧棱与底面所成角,利用题干长度关系求解即可(2)由于PO ⊥平面ABCD ,故13P ABCD ABCD V PO S -=⨯⨯,计算即可 (1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO故PO ⊥平面ABCD ,PAO ∠即为侧棱与底面所成角由1AB =,2PA =,故2222AO AB ==又PO ⊥平面ABCD ,AO ⊂平面ABCD ,故PO AO ⊥22114422PO PA AO ∴=-=-= 故14sin 4PO PAO PA ∠== 即侧棱与底面所成角的正弦值为144 (2)由(1)PO ⊥平面ABCD ,且142PO = 故11141413326P ABCD ABCD V PO S -=⨯⨯=⨯⨯= 即正四棱锥P ABCD -的体积为1464.(2021·上海中学高二期中)如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度;(2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值.【答案】2π(2)12【分析】(1)取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,由此可求得点P 运动的轨迹长度.(2)由(1)得,连接AN ,并延长交BC 延长线于F ,过P 作PO EF ⊥,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤,sin 2PO PE αα==,322,3cos OF OG αα==-,可得2sin tan PO PGO OG α∠==2sin k α=,运用辅助角公式和正弦函数的性质可求得最大值.(1)解:取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,因为2AD =,4AB =,所以2AE =,所以点P 运动的轨迹长度为2π.(2)解:由(1)得,连接AN ,并延长交BC 延长线于F ,AN DM ⊥,折起后,有DM ⊥面PEN ,过P 作PO EF ⊥,则PO ⊥面DMBC ,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ, 设(),0PEO ααπ∠=≤≤, sin 2sin PO PE αα==,4222cos 322cos ,3cos OF AF AE OE OG ααα=--=--=-=-,2sin tan 3cos PO PGO OG αα∠==-, 令2sin 2sin cos 33cos k k k αααα=⇒+=-,所以22sin()3k k αβ++=,所以23112k k -≤≤+,解得1122k -≤≤. 所以tan θ的最大值为12.。

线线角,线面角,二面角的几何法

线线角,线面角,二面角的几何法

新高考一轮复习之立体几何线线角、线面角、面面角的几何解法一、异面直线所成角解题口诀:一平二构三边四余弦一平:异面直线通过平行线平移至相交二构:构造三角形三边:计算三角形的三边长(注意是否为特殊三角形)四余弦:利用余弦定理求角(注意异面直线的夹角范围为00(0,90],所以余弦值应该为正的)练习题:1、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A B C D 2、在正方体1111ABCD A B C D -中,O 为AC 的中点,则异面直线1AD 与1OC 所成角的余弦值为( )A 、12B C D 3、在四面体ABCD 中,若2AB CD ==,,,E F G 分别是,,BC BD AC 中点,若FF =AB CD 与所成角为( )A 、030B 、045C 、060D 、01204、在长方体1111ABCD A B C D -中,12AB BC AA ==,则异面直线1A B 与1B C 所成的角的余弦值为( )A B 、15C D5、已知直三棱柱111ABC A B C -中,0120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A 、32B 、155C 、105D 、336、如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M N 、分别为,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是答案:78二、线面角(线面角的难点在于找出垂线以及计算边长)题型一:能证明出垂线的解题步骤:①先找斜足②过斜线上一点作平面的垂线,交点为垂足(线面垂直,需要证明) ③连接斜足和垂足,称为斜线的射影,射影和斜线所成的角即为线面角 基础例题:1、正方体中,(1)求1BD 和底面ABCD 所成的角(2)求1BD 和面11AA D D 所成的角A BCD 1A 1B 1C 1D2、空间四边形ABCD 中,AC BC ⊥, PA ⊥平面ABC ,2AC BC ==,4PA =(1)求PB 与平面PAC 所成的角 (2)求PC 和平面PAB 所成的角练习题:1、(2018年全国1卷理科)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把∆DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.A B C P题型二:不能证明垂线时,考虑等体积法求点到线的距离(该种题型较难,往往选择空间向量法)1、如图,三棱锥P ABC -中,PA PC =,AB BC =,00120,90APC ABC ∠=∠= 3AC PB =(1)求证:AC PB ⊥(2)求直线AC PAB 与平面所成角的正弦值空间几何二面角的求法(方法有很多种,但常用两种定义法和三垂线法)(1)定义法从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

线线角和线面角

线线角和线面角

线线角和线面角[重点]:确定点、斜线在平面内的射影。

[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。

4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。

6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。

线线角_线面角_二面角的讲义

线线角_线面角_二面角的讲义

金牌教育二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A的大小。

例、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。

求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小A B CD A 1 B 1C 1D 1E O金牌教育例、如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小. 三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的例、如图,设M 为正方体ABCD-A 1B 1C 1D 1的棱CC 1的中点,求平面BMD 1与底面ABCD 所成的二面角的大小。

高一数学空间角求法题型(线线角、线面角、二面角)

高一数学空间角求法题型(线线角、线面角、二面角)

空间角求法(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++∴直线1EC 与1FD所成的角的余弦值为14解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

线面角二面角线线角的公式

线面角二面角线线角的公式

线面角二面角线线角的公式线面角、二面角和线线角是在几何学中常见的概念,它们有各自的计算公式。

下面将分别介绍这三个角的定义和计算方法。

1.线面角:线面角是由一条线与一个平面相交所形成的角。

设平面上有一条直线L,平面上有一点A和直线上的一点B,在平面上从点A引一条垂线,与直线L相交,就形成了一个线面角。

线面角的度量是直线L的角度与平面的夹角。

线面角的计算公式如下:线面角=直线L与平面的夹角2.二面角:二面角是由两个平面相交所形成的角。

设有一个平面P1和一个不与P1平行的平面P2,两个平面相交于一条直线L。

通过P1和P2的交线L 可以确定两个交点A和B。

二面角的计算公式如下:二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)值得注意的是,二面角没有固定的度量单位,它的度量取决于直线L 在两个平面上的角度度量单位。

3.线线角:线线角是由两条直线相交所形成的角。

设有两条直线L1和L2,它们相交于一点O。

通过O可以确定L1上的一点A和L2上的一点B。

线线角的计算公式如下:线线角=∠AOB其中,∠AOB表示点A、O和B所形成的角。

总结:线面角、二面角和线线角是几何学中常见的角度概念。

线面角由一条直线与一个平面相交所形成,计算公式为线面角=直线L与平面的夹角。

二面角由两个平面相交所形成,计算公式为二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)。

线线角由两条直线相交所形成,计算公式为线线角=∠AOB。

这些角度概念在几何学的应用中起着重要的作用。

线面角,二面角,线线角的范围

线面角,二面角,线线角的范围

线面角,二面角,线线角的范围线面角、二面角、线线角是数学中用来表示三维空间属性、特征及空间关系的几何概念。

线面角是三角形的两个边和另一条平面之间的夹角;二面角代表了两个平面之间的夹角;线线角是两条直线的夹角。

以上三个角,在数学计算以及生活应用当中都发挥着重要作用。

首先,线面角可以用来表示两个三角形之间的关系。

线面角可以应用在三角形交会、分析物体形状和寻找最大最小角等问题当中。

一般来说,如果两个三角形的三个面分别作直线链接,形成的角就是线面角。

线面角的计算可以采用向量的几何关系、勾股定理以及三角函数等方法。

而且,线面角也有助于解决实际问题,比如求解等腰三角形的外接圆的半径。

其次,二面角也可以用来表示三维空间中物体形状及其关系。

二面角由两个平面和它们之间的空间角度来定义。

常见的计算二面角的方法包括埃尔米特定理、直角坐标系和泰勒公式等。

此外,二面角也可以帮助我们计算三角形的表面积,例如求得两个平面的夹角就可以用二面角来解答。

最后,线线角是两条线段之间的夹角。

它是一种由两条非平行线之间的夹角来定义的几何形状。

线线角在求解三角形外接圆半径和求解正方形面积等几何问题上同样也有重要的作用。

并且,线线角也可以应用在具体工程当中,比如机械结构设计、火箭发射系统的控制与精确定位等技术。

线面角、二面角、线线角均是三维空间的重要几何概念,在平面几何和空间几何的计算以及实际技术应用中都发挥着重要作用。

像是线面角可以用来表示两个三角形之间的关系,计算等腰三角形的外接圆的半径等问题;二面角可以用来表示三维空间中物体形状及其关系,它也可以帮助我们计算三角形的表面积;线线角则是两条线段之间的夹角,可以用来求解三角形外接圆半径和求解正方形面积,也可以应用在具体工程当中,如机械结构设计、火箭发射系统的控制与精确定位等应用技术。

从上面的讨论可以看出,线面角、二面角、线线角三者在数学计算和实际应用中均发挥了重要作用。

这些概念涉及到数学计算中几何计算的技巧,也涉及到工程实践中实用技术的控制,这一举一动都极大地改变了我们对空间这一概念的认识,为我们解决了日常生活中的问题,也丰富了我们的数学认知。

线线角、线面角,二面角[高考立体几何法宝]

线线角、线面角,二面角[高考立体几何法宝]

1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量a 与b 平行的充要条件是 a ·b =±|a ||b |2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: ·=|||| cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==,A Bd =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π (向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中,即tan PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。

二面角练习题

二面角练习题

二面角练习题二面角是指平面内两条相交线所形成的两个相对的角,也可以理解为两个线之间的夹角。

它在几何学和图形学中有着重要的应用,不仅能帮助我们理解线的交叉情况,还能用于求解各种几何问题。

本文将介绍二面角的基本概念和性质,并提供一些练习题供读者练习。

一、二面角的定义和基本性质1. 二面角定义:平面内两条相交线所围成的两个角称为二面角。

2. 二面角分类:二面角可分为锐角、直角和钝角三种类型,具体分类取决于两条相交线的夹角大小。

3. 二面角的度量:二面角的度量单位通常采用度(°)或弧度(rad)。

一般情况下,我们使用度数度量二面角。

4. 二面角的性质:- 锐角的二面角度数在0°~90°之间;- 直角的二面角度数为90°;- 钝角的二面角度数在90°~180°之间;- 二面角的度数和为180°。

二、二面角的练习题下面是几道关于二面角的练习题,通过解答这些题目,读者可以更好地理解二面角的概念和性质。

题目一:在平面内,一条直线AB与另一条直线CD相交,所成的二面角为60°,求另一侧相对的二面角度数。

解析:根据二面角的性质,两个相对二面角的度数和为180°。

所以,另一侧相对的二面角度数为180° - 60° = 120°。

题目二:如图所示,平面内有两条相交的直线AB和CD,以及一条过点B并垂直于CD的直线BE。

若BE与CD的夹角为70°,求∠BAD的度数。

解析:由题目可知,∠ABE和∠BED为相对的二面角。

根据二面角的性质,∠ABE的度数为70°。

又∠ABE和∠BAD互为补角,所以∠BAD的度数为180° - 70° = 110°。

题目三:在平面内,一条直线AB与另一条直线CD相交,所成的二面角为120°,求另一侧相对的二面角度数。

解析:根据二面角的性质,两个相对二面角的度数和为180°。

立体几何不建系专题解析版

立体几何不建系专题解析版

专题 几何法求线线角,线面角与二面角一、求异面直线夹角常用方法:平移线段或构造中位线,范围0,π2注:异面直线和相交直线夹角的取值范围是0,π2,平行直线与重合直线的夹角为0°二、求线面角常用方法:直线上取一点往平面作垂线段,范围0,π2如图,作直线AB ∩α=B ,作AH ⊥α于H ,∠ABH 即为所求三、二面角与面面角(1)二面角与面面角的区别二面角的平面角建立在两个半平面的基础上,是一个张角概念,衡量打开程度;而平面与平面的夹角建立在两个整平面的基础上,类似于两条相交直线形成两组对顶角,人为选择不超过90°的角作为面面角二面角的平面角建立在两个半平面的基础上,是一个张角概念,衡量打开程度;而平面与平面的夹角建立在两个整平面的基础上,类似于两条相交直线形成两组对顶角,人为选择不超过90°的角作为面面角二面角:由一条直线引出的2个半平面所成夹角,范围0,π2 面面角:两个平面的夹角,范围0,π(2)常用方法介绍一、定义法:交线上取点½等腰三角形共底边时作二面角步骤第一步:在交线l 上取一点O第二步:在α平面内过O 点作l 的垂线OA 第三步:在β平面内过O 点作l 的垂线OB ∠AOB 即为二面角,余弦定理求角二、三垂线法(先作面的垂直)-后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B 作l 的垂线OB ∠AOB 即为二面角且△AOB 为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO ⊥l 第二步:作OB ⊥l连接AB ,∠AOB 即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO ⊥l第二步:作AB ⊥β(找不到垂足B 的位置用等体积求AB 长)连接AB ,∠AOB 即为二面角△AOB 为直角三角形,邻比斜五、转换成线线角-计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB ,且β平面存在垂线AC 则α平面与β平面的夹角等于直线AC 与AB 的夹角六、投影面积法--面积比(三垂线法进阶)将cos θ=边之比½面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC ,则平面α与平面ABC 的夹角余弦值cos θ=△A 1BC △ABC即cos θ=S 投影S 原补充:即使交线没有画出来也可以直接用一、异面直线平移法1如图所示,在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成的角是.解:连接GB1,B1F,EG,∵点E,F,G分别是DD1,AB,CC1的中点,∴EG⎳D1C1,EG=D1C1,D1C1⎳A1B1,D1C1=A1B1,∴A1B1⎳EG,A1B1=EG,∴四边形A1EGB1为平行四边形,则GB1⎳A1E,故∠B1GF或其补角即为A1E与GF所成的角,易得B1G=C1B21+C1G2=12+12=2,B1F=B1B2+BF2=22+12=5GF=CG2+CB2+BF2=3,所以B1G2+FG2=B1F2,所以∠B1GF=90°.1(浙江·高二温州中学校联考期中)已知长方体,,,则直线与直线所成角的余弦值为(B)A. B. C. D.解:连接,由长方体的性质可得,所以直线与直线所成角即为直线与直线所成角,即(或其补角),在中,,,所以.故选:B.2(2023湖北武汉高一联考期末)如图所示,在三棱柱中,侧面A1ACC1是边长为2的菱形,侧面C1CBB1为正方形,平面A1ACC1⊥平面ABC.点M为的中点,N为AB的中点,异面直线AC与BB1所成的角为.(1)证明:平面C1CBB1;(2)求四棱锥的体积.解:(1)取AC中点E,连ME,NE,∵M为中点,∴ME⎳A1A,又A1A⎳C1C,∴ME⎳C1C,又CC1⊂平面C1CBB1,平面C1CBB1,平面C1CBB1,同理平面C1CBB1,又ME∩NE=E,平面,平面MEN⎳平面C1CBB1,又平面,平面C1CBB1.(2),∴∠A1AC为异面直线AC与BB1所成角,即∠A1AC=60°,为菱形,∴△A1AC为等边三角形连,则A1E⊥AC,且A1E=3,而平面A1ACC1⊥平面,平面A1ACC1∩平面ABC=AC,A1E⊂面A1ACC1,∴A1E⊥平面,又面,∴A1E⊥BC,又∵BCC1B1为正方形,∴BC⊥CC1,∴BC⊥A1A,又,AA1,A1E⊂平面A1ACC1,平面ACC1A1,又平面ACC1A1,∴BC⊥AC,∴V M-BB1C1C=12V A1-BB1C1C=12V ABC-A1B1C1-V A1-ABC=12×12×2×2×3-13×12×2×2×3=233.2(2023江苏常州·高一常州市第一中学校考期末)如图,在三棱锥中,,且,,分别是棱,的中点,则和所成的角等于.解:如图所示,取BC 的中点G ,连接FG ,EG.,F 分别是CD ,AB 的中点,,,且,.为EF 与AC 所成的角(或其补角).又,.又,,,为直角三角形,,又为锐角,,即EF 与AC 所成的角为.1(浙江温州·高一统考期末)如图,在四面体中,,,、分别为、的中点,,则异面直线与所成的角是.解:取的中点,连接,,因为为的中点,为的中点,所以且,且,所以即为异面直线与所成的角或其补角,又,,,所以,,所以,所以,所以为等腰直角三角形,所以;2(天津高一耀华中学校考期末)如图,已知空间四边形的四条边以及对角线的长均为2,M 、N 分别是与的中点,则异面直线和所成角的余弦值为.解:如图:连接,设为的中点,连接,则且,所以为异面直线和所成的角(或补角),由题意可得,所以,,在中由余弦定理可得:,故答案为:3(2023下浙江·高一路桥中学校联考期中)在直三棱柱中,,,E是的中点,则异面直线与所成的角的余弦值是解:如图,取中点,中点,连接在直三棱柱中,,所以平面,有平面,所以,则因为分别为中点,所以又可得,则四边形为平行四边形所以,则为异面直线与所成的角或其补角由平面,平面,可得,所以, 在中,,,由余弦定理得,所以,所以在中,由余弦定理得所以异面直线与所成的角的余弦值.=3(2023下·湖南长沙·高一长郡中学校考期中)如图,在直三棱柱中,是等边三角形,AAAB,D,E,F分别是棱,BB,的中点,则异面直线与C1E所成角的余弦值是.1解:如图,在棱CC 1上取一点H,使得CC1=4CH,取CC1的中点,连接BG,,,由于,分别是棱CC1,BB1的中点,所以BE=C1G,BE∥C1G,故四边形BGC1E为平行四边形,进而C1E∥BG,又因为,H分别是,CG的中点,所以HF∥BG,所以HF∥CE,则或其补角是异面直线1与C1E所成的角.设,则,,.从而,,,,故,故异面直线与CE所成角的余弦值是510.1故答案为:510.四、线面角的求解方法4(2020·北京·统考高考真题)如图,在正方体中,E为BB1的中点.(1)求证:BC1⎳平面;(2)求直线与平面所成角的正弦值.解:(Ⅰ)如下图所示:在正方体中,AB⎳A1B1且AB=A1B1,且,∴AB⎳C1D1且AB=C1D1,所以,四边形ABC1D1为平行四边形,则,∵BC1⊄平面,AD1⊂平面,∴BC1⎳平面;(Ⅱ)[方法一]:几何法延长CC1到,使得C1F=BE,连接,交于,又∵C1F⎳BE,∴四边形BEFC1为平行四边形,∴BC1⎳EF,又∵,∴AD1⎳EF,所以平面即平面AD1FE,连接D1G,作,垂足为H,连接,∵FC1⊥平面A1B1C1D1,平面A1B1C1D1,∴,又∵,∴直线D1G⊥平面C1FH,又∵直线平面D1GF,∴平面D1GF⊥平面C1FH,∴在平面D1GF中的射影在直线上,∴直线为直线在平面D1GF中的射影,∠C1FH为直线与平面D1GF所成的角,根据直线FC1⎳直线,可知∠C1FH为直线与平面AD1G所成的角.设正方体的棱长为2,则,D1G=5,∴,∴,∴,即直线与平面所成角的正弦值为23.[方法三]:纯体积法设正方体的棱长为2,点A1到平面AED1的距离为h,在中,,,所以,易得.由,得13S△AD1A1⋅A1B1=13S△AED1⋅h,解得h=43,设直线与平面AED1所成的角为,所以.4(2023·宁夏高一吴忠中学校考期末)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AB ⊥BC ,PA =AD =4,BC =1,,CD =23.(1)证明:平面;(2)求与平面所成角的余弦值.解:(1)∵AB⊥BC,BC =1,,由勾股定理得:,∠ACB=π3△ACD 中,CD =23,∵,∴,又因为底面,底面,所以,又因为AC ∩PA =A 且平面,∴平面,(2)作,垂足为H ,连结,因为平面,平面,所以AH ⊥CD ,又因为CD ∩PC =C 且平面,所以平面,所以为与平面所成的角,△PAC 中,,,所以直线与平面所成角的余弦值为255. 5(2023哈尔滨·高一哈九中校考期末)如图,三棱柱中、四边形ABB 1A 1是菱形,且∠ABB 1=60°,AB =BC =2,CA =CB 1,CA ⊥CB 1,(1)证明:平面CAB 1⊥平面ABB 1A 1;(2)求直线BB 1和平面所成角的正弦值;解:(1)连接交AB 1于O ,连接,如图,四边形ABB 1A 1是菱形,所以AB 1⊥A 1B ,又CA =CB 1,CA ⊥CB 1,是AB 1的中点,所以CO ⊥AB 1且,由∠ABB 1=60°,可知为正三角形,所以AB 1=AB =2,BO =3,在中,,所以,又BO ∩AB 1=O ,BO ,AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1,又平面CAB 1,所以平面CAB 1⊥平面ABB 1A 1.(2)设到平面的距离为,因为中,AB =BC =2,,所以,又,,所以由,可得,即,设直线BB 1和平面所成角为,则.6(2023下·广西河池·高一统考期末)如图,在直三棱柱中,.(1)求证:AC1⊥B1C;(2)求B1C与平面AA1C1C所成的角的大小.解:(1)连接BC1与B1C相交于点D,如下图所示在直棱柱中,BB1⊥平面ABC,AB⊂平面,∴BB1⊥AB,又,BC,BB1⊂平面,所以,平面,又∵B1C⊂平面,∴AB⊥B1C∵BC=CC1,四边形BCC1B1为菱形,即B1C⊥BC1又∵AB∩BC1=D,且AB,BC1⊂平面,∴B1C⊥平面,又∵AC1⊂平面,.(2)取A1C1的中点,连接B1E,CE.如下图所示;,又∵CC1⊥平面平面,又,且平面AA1C1C,平面AA1C1C,是CB1在面AA1C1C内的射影,∠ECB1是CB1与平面AA1C1C所成角的平面角.在Rt△CEB1中,易知,,即CB1与平面AA1C1C所成的角的大小为30°.7如图,在三棱锥P-ABC中,PC⊥平面ABC,AB=BC=12PC=2,PA=26.(1)求证:AB⊥平面PBC;(2)若M是PA的中点,求CM与平面PAB所成角的余弦值.解:(1)因为PC⊥平面ABC,AC⊂平面ABC,所以PC⊥AC,又PC=4,PA=26,所以AC=22,在△ABC中,因为AB=BC=2,所以AB2+BC2=AC2,所以AB⊥BC,因为PC⊥平面ABC,AB⊂平面ABC,所以PC⊥AB,又因为PC∩BC=C,PC,BC⊂平面PBC,所以AB⊥平面PBC;(2)过点C作CN⊥PB,垂足为N,连接MN,因为AB⊥平面PBC,CN⊂平面PBC,所以AB⊥CN,又CN⊥PB,PB∩AB=B,PB,PB⊂平面PAB,所以CN⊥平面PAB,则∠CMN为CM与平面PAB所成角的平面角,在Rt△PAC中,CM=12PA=6,在Rt△PBC中,CN=PC×BCPB=4×225=455,∴在Rt△CMN中,MN=CM2-CN2=(6)2-4552=705,故cos∠CMN=MNCM=10515,即CM与平面PAB所成角的余弦值为10515.五、定义法求二面角5(山东高一统考期末)如图,在三棱锥V-ABC 中,AB=22,VA =VB ,,,且,AC⊥BC ,则二面角V -AB -C 的余弦值是解:取的中点,连接VO 、,如下图所示:,为的中点,则VO ⊥AB ,且,AB =22,∴VO =12AB =2,因为,为的中点,可得OC ⊥AB ,又因为AC⊥BC 所以OC =2,则二面角的平面角为,由余弦定理得,因此,二面角的余弦值为.故答案为:.8如图,四边形是正方形,平面,且PA =AB . 求二面角B -PA -C 的大小.解:∵平面,AB ,AC ⊂面,∴PA⊥AB ,,∴为二面角B -PA -C 的平面角,又∵四边形是正方形,∴∠BAC =45°,即二面角B -PA -C 的大小为45°;9(2023下·天津河东·高一统考期末)在三棱锥P -ABC 中(如图所示),PC =5,则二面角P -AB -C 的余弦值为.解:如图,取AB 的中点M ,连接PM ,CM ,在中,PA =PB =AB =2,所以PM ⊥AB ,,同理可得,CM ⊥AB ,CM =3,所以即为二面角P -AB -C 的平面角.因为PM =CM =3,PC =5,在中,由余弦定理得,,所以二面角P -AB -C 的余弦值为16.六、三垂线法求二面角6(2023下·湖南岳阳·高一统考期末)如图,在直角梯形ABCD 中,BC ∥AD ,,,,,边AD 上一点E 满足,现将沿BE 折起到△A 1BE 的位置,使平面A 1BE ⊥平面BCDE ,如图所示.(1)在棱上是否存在点F ,使直线平面A 1BE ,若存在,求出A 1FA 1C,若不存在,请说明理由;(2)求二面角A 1-BC -D 的平面角的正切值.解:(1)解:当F 是AC 的中点时,直线平面A 1BE .证明如下:设A 1B 的中点为N ,连接EN ,FN ,因为FN ⎳BC ,FN =12BC ,且ED ⎳BC ,ED =12BC ,所以FN ⎳ED 且FN =ED ,所以四边形DENF 是平行四边形,所以DF ⎳EN ,又因为平面A 1BE ,平面A 1BE ,所以平面A 1BE ,所以存在点F ,使平面A 1BE ,且.(2)解:在平面图形中,连接CE ,则∠ECD =30°,∠ECB =60°,所以,如图所示,取BE 中点O ,连接,则BE ⊥OA 1,因为A 1O ⊂平面A 1BE ,平面A 1BE ⊥平面,且平面A 1BE ∩平面BCDE =BE ,所以A 1O ⊥平面,又因为平面,所以A 1O ⊥BC作于M ,连接A 1M ,因为A 1O ∩OM =O ,且A 1O ,OM ⊂平面A 1OM ,所以平面A 1OM ,又因为平面A 1OM ,所以A 1M ⊥BC ,所以∠A 1MO 为二面角A 1-BC -D 的平面角,在直角△A 1MO 中,A 1O =3,OM =32,可得tan ∠A 1MO =2,故二面角A 1-BC -D 的平面角的正切值为.10(2023·全国·高一随堂练习)如图,在圆锥PO中,已知PO =2,的直径,点C 在上,且∠CAB =30°,点D为AC 的中点.(1)证明:平面(2)求二面角的正弦值.解:(1)证明:连接,则,因为点D 为AC 的中点,所以PD ⊥AC ,因为为的直径,所以∠ACB =90°,所以AC ⊥BC ,因为为的中点,D 为AC 的中点,所以‖,OD=12BC ,所以,因为PD ∩OD =D ,平面,所以平面,(2)由(1)知PD ⊥AC ,,所以∠PDO 为二面角的平面角,因为平面,平面,所以,因为∠ACB =90°,∠CAB =30°,,所以BC =12AB =1,所以OD =12BC =12,所以在Rt △POD 中,,所以二面角的正弦值为22311(2020下·湖南长沙·高一长沙一中校考阶段练习)如图,是圆的直径,点C 是圆上异于,的点,直线平面.(1)证明:平面平面;(2)设AB =PC =2,,求二面角B -PA -C 的余弦值.解:(1)证明:∵AB 是圆的直径,∴BC ⊥AC ,又平面,平面,∴PC ⊥BC ,∵PC ∩AC =C ,且,平面,平面,又平面,平面平面.(2)过C 作于,连结,平面,平面,∴PA ⊥BC ,∵BC ∩CM =C ,且,平面,∴PA ⊥平面,又平面,PA ⊥BM ,为二面角B -PA -C 的平面角,在Rt △BMC 中,,,,则,二面角B -PA -C 的余弦值为21919.12(2023下·安徽六安·高一六安二中校考期末)如图,在直角梯形中,AB ⎳DC ,∠ABC =90°,AB =2DC =2BC,为的中点,沿将折起,使得点到点的位置,且,为的中点,是上的中点.(1)证明:平面平面;(2)求二面角B -EN -M 的正切值.解:(1)为中点,∴AE =EB ,即,又为中点,;∵AB ⎳DC ,CD =BE =12AB ,∠ABC =90°,四边形为矩形,∴DE ⊥AB ,即,,∵PE ∩BE =E ,平面,平面,∵DE ⎳BC ,平面,又平面,∴EM ⊥BC ,∵PB ∩BC =B ,平面,平面,平面,平面平面.(2)由(1)知:平面,又平面,∴PE⊥BC ,∵PE ⊥EB ,EB ∩BC =B,EB,BC ⊂平面,∴PE ⊥平面;取中点,过作,垂足为,连接MF ,MG ,分别为中点,∴MF ⎳PE ,平面,平面,,又,MF∩FG =F ,平面,平面,平面,,∴∠MGF 即为二面角B -EN -M 的平面角,∵sin ∠NEB =BN EN =FG EF =12BC BC 2+14BC 2=55,,又MF =12PE =12BE ,,即二面角B -EN -M 的正切值为.13(2023下·湖北武汉期末联考)如图,在三棱柱中,面ABB 1A 1为正方形,面AA 1C 1C 为菱形,∠CAA 1=60°,侧面AA 1C 1C ⊥面ABB 1A 1.(1)求证:AC 1⊥面;(2)求二面角C -BB 1-A 的余弦值.解:(1)由菱形AA 1C 1C 可得,面AA 1C 1C ⊥面ABB 1A 1,面AA 1C 1C ∩面,又正方形ABB 1A 1中,A 1B 1⊥面AA 1C 1C ,又AC 1⊂平面AA 1C 1C ,,,平面,AC 1⊥面.(2)过C 作CH ⊥AA 1于H ,则面ABB 1A 1.过H 作HK ⊥BB 1于,连接,因BB 1⊂平面ABB 1A 1,则CH ⊥BB 1,又平面,CH ∩HK =H ,故BB 1⊥平面,又平面,所以BB 1⊥CK ,故为二面角C -BB 1-A 的平面角,在Rt △CHK 中,设,AA 1=AB =a ,∠CAA 1=60°,CH =3a 2,,,.即二面角C -BB 1-A 的余弦值为277.14(2023下·湖南永州·高一统考期末)如图,在三棱锥A -BCD 中,平面ABD ⊥平面,AB =AD ,点O 为BD的中点.(1)证明:AO ⊥BC ;(2)若是边长为4的等边三角形,点E 为AD中点,且二面角E -BC -D 的大小为,求三棱锥A-BOC的体积.解:(1)AB =AD ,点O 为BD中点,AO ⊥BD ,又平面ABD ⊥平面BCD ,平面ABD ∩平面BCD ,平面ABD ,AO ⊥平面BCD ,又平面BCD,AO ⊥BC;(2)过点E 作EF ∥AO 交BD 于点F,过点F 作FM⊥BC ,垂足为M,连接EM ,AO ⊥平面BCD ,EF ∥AO ,EF ⊥平面BCD ,又平面BCD ,EF ⊥BC ,FM⊥BC ,FM∩EF =F ,EF 、FM 在面EFM 内,BC ⊥平面EFM ,又平面EFM,BC ⊥EM,二面角E -BC -D 的平面角为,且∠EMF =30°,,为正三角形,△BCD 为直角三角形,∠BCD =90°,FM ∥CD ,点F 为BD 的靠近点D 四等分点,,,AO =2EF =23,平面BCD,∴VA -BOC =13S △BOC ×AO =13×12×4×4×32×23=8.15(2023下·广东佛山·高一统考期末)如图,在四棱锥P -ABCD 中,底面是正方形,侧棱底面,.(1)证明:平面平面;(2)点H 在棱上,当二面角H -DB -C 的余弦值为时,求. 解:(1)连结,∵侧棱底面,平面,∴PD ⊥AC .又∵底面是正方形,∴AC ⊥BD .而且PD ∩BD =D ,平面.∴平面.又平面,∴平面平面.(2)过H 作HE ⊥DC 交于,过作EF ⊥BD 于,连接.在平面PDC 中,PD ⊥DC ,HE ⊥DC ,∴EH ⎳PD ,因为底面,∴平面,又平面,∴,又∵EF ⊥BD ,EF ∩EH =E ,EF ,,EH ⊂平面,∴平面,又平面,∴BD ⊥HF ,∴为二面角H -DB -C 的平面角.故,则tan ∠EFH =22.设CH =λCP ,则HE =λPD ,CE =λCD ,ED =1-λ CD .在Rt △DFE 中,∠FDE =45°,∴.在Rt 中,,∴.所以,当二面角H -DB -C 的余弦值为时,.16(2023下·陕西咸阳·高一统考期末)如图,是直角梯形底边的中点,,AB ⊥BC ,AB =2DC =2BC ,将沿折起形成四棱锥A -BCDE .(1)求证:平面;(2)若二面角A -DE -B 为,求二面角的余弦值.解:(1)在直角梯形中,DC ⎳BE,且,AB⊥BC ,则四边形为正方形,即,DE⊥AE,在四棱锥A -BCDE 中,,DE ⊥AE ,平面,所以平面.(2)由(1)知∠AEB为二面角A -DE -B 的平面角,即∠AEB=60°,又,则△AEB 为等边三角形,设BE的中点为,的中点为,连接AF ,FG,AG ,如图,从而AF ⊥BE ,FG ⎳DE ,则AF ⊥CD ,又FG ⊥CD,AF ∩FG =F ,AF,FG ⊂平面,于是平面,又平面,则有,因此为所求二面角的平面角,而平面,从而FG ⊥平面,而平面,则FG ⊥AF ,设原直角梯形中,令,则折叠后的四棱锥中AF =32a ,FG =a ,从而,于是在Rt △AFG 中,,即二面角的余弦值为277.17(2023下·湖北武汉·高一湖北省水果湖高级中学校联考期末)如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ⎳BC ,∠ADC =90°,AB =AD =2BC =2,△PAD ≌△BAD .(1)为上一点,且,当平面时,求实数的值;(2)设平面与平面的交线为,证明面;(3)当平面与平面所成的锐二面角的大小为45°时,求与平面所成角的正弦值.解:(1)如图,连接交于点,连接,∵平面,平面,平面平面,∴PA ⎳MN ,在梯形中,∵,∴△ADN ∽△CBN ,∴,∵PA ⎳MN ,∴,∴.(2)∵,平面,平面,∴面,又面,面面,∴,又面,面,∴面.(3)取的中点,连接、, ∵为的中点,且,,∴OD ⎳BC 且OD =BC ,∴四边形为平行四边形,∴CD ⎳OB ,∵∠ADC =90°,∴∠BOD =90°,∴AD ⊥OB ,又AB =AD ,∴△ABD 为等边三角形,又△PAD ≌△BAD ,∴为等边三角形,∴AD ⊥OP ,∵OP ∩OB =O ,平面,平面,∴平面,∵平面,∴AD ⊥BP ,过点作,由AD ⎳BC ,则l ⎳BC ,∴平面,平面,即平面平面PBC =l ,∴,,∴∠BPO 为平面与平面所成的锐二面角,∴∠BPO =45°.又由,∴∠OBP =45°,∴∠BOP =90°,∵PO ⊥OB ,,∵AD ∩OB =O ,平面,平面,∴平面,∴∠PCO 为与平面所成的角,,∴,七、面积投影求二面角7(惠州高三调研)如图,在四棱锥P -ABCD 中,已知AB ⎳CD ,AD ⊥CD ,BC =BP ,CD =2AB =4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若PA =42,求平面PBC 与平面PAD 夹角的余弦值解:(1)证明:取PC 的中点F ,连接EF ,BF .因为AE 是等边△ADP 的中线,所以AE ⊥PD .因为E 是棱PD 的中点,F 为PC 的中点,所以EF ⎳CD ,且EF =12CD .因为AB ⎳CD ,AB =12CD ,所以EF ⎳AB ,且EF =AB ,所以四边形ABFE 是平行四边形,所以AE ⎳BF .因为BC =BP ,F 为PC 的中点,所以BF ⊥PC ,从而AE ⊥PC .又PC ∩PD =P ,PC ,PD ⊂平面PCD .(注:无本行三个条件扣1分)所以AE ⊥平面PCD .18(2023·全国·高一专题练习)如图与△BCD所在平面垂直,且AB=BC=BD,,则二面角A-BD-C的余弦值为.解:过 A作的延长线于E, 连结 DE,∵平面平面,平面平面BCD=BC,∴平面∴E点即为点A在平面内的射影,∴为△ABD在平面内的射影,设AB=a,则,∴AD=62a,由余弦定理可得cos∠ABD=14,∴,∴,又BE=12a,∴,设二面角A-BD-E为,∴.而二面角A-BD-C与A-BD-E互补,∴二面角 A-BD-C的余弦值为-55.故答案为:-55。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线线角、线面角、面面角专题
一、异面直线所成的角
1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤︒;
垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点
D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值
二、直线与平面所成的角
1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角
2.角的取值范围:︒

≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,
求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

B
M
H S C
A
_1
_A
一、 二面角:
1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半
平面叫做二面角的面。

2. 二面角的取值范围:︒

≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:
1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.
A 1
D 1
B 1
C 1 E
D
B
C
A
巩固练习
1.若直线a 不平行于平面α,则下列结论成立的是( )
A.α内所有的直线都与a 异面;
B.α内不存在与a 平行的直线;
C.α内所有的直线都与a 相交;
D.直线a 与平面α有公共点.
2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )
A.030
B.045
C.060
D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条
A.3
B.4
C.6
D.8
4.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为(

A.300
B.450
C.600
D.900
5.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.
求证:(1)直线EF ∥面ACD .
(2)平面EFC ⊥平面BCD .
6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.
(1)证明:PQ ∥平面ACD ;
(2)求AD 与平面ABE 所成角的正弦值.
A
B
C D A 1
B 1
C 1
D 1
7.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,
求点A到平面SBD的距离;。

相关文档
最新文档