第五章__钢的热处理
金相知识-钢的热处理基础
钢的热传递基本方式
热传递 方式
定义
传导传热
热量由零件(包括于其接 触的零件)的一处传到另 一处,物体的质点没有移动。 Nhomakorabea对流传热
流体中不同部分的质点发 生了相对位移、或混合, 或流体质点与固体表面
辐射传热
由物体表面直接向外界 发射可见的和不可见的 射线,在空间传递热量
高温回火 ( 》500℃) 称调质,获得回火索氏体组织,强 韧性恰当配合,广泛用于各种结构零件。
Fe Fe3C
零件淬火后产生的应力分类 热应力 零件在加热和冷却中不同部位温度有差异,
热胀冷缩不一致导致的应力;通常表面为压应力; 心部为拉应力。只占总应力的5-10%。 组织应力 零件冷却时不同部位组织转变不一样, 引起的内应力。一般表面为拉应力,心部为压应力。
第五节 钢的热处理基础
5.1 钢的热传递 1. 基本方式 传导 对流 辐射 2. 传热一般规则 a. 先决条件存在温差. b. 通常三种传热方式同时存在 工件通过辐射和对流从加热炉中获得热量,又
以传导方式传给心部。
c. 工件的传热方式取决于加热温度和加热设备 >600 ºc时,辐射传热过程最强烈,试验以辐
铁碳相图中,共有五种不同形态的渗碳体,请根据
形成温度的高低依次写出。
在Fe-Fe3C相图,五种形态渗碳体以温度从高到低
为:
Fe3C I
(A+Fe3C)共晶
Fe3C II
(F +Fe3C)共
5.2 钢在加热时的转变 奥氏体形核+长大过程;取决于加热温度、原始
组织和化学成分。 用晶粒度评定加热质量。
5.3 钢在冷却时的转变
过冷奥氏体的等温转变曲线 称为C-曲线,或 TTT图。
(完整版)碳钢的热处理
前言
一、热处理的概念
通过对材料进行加热、保温、冷却的操作 方法使钢的组织结构发生变化,以获得所需性 能的一种工艺。
二、ห้องสมุดไป่ตู้处理的分类
普通热处理:退火、正火、淬火、回火
热处理
表面热处理
表面淬火:火焰加热、
感应加热、电接触加热、 激光加热、等离子体加热
对于亚共析钢(过共析钢),当缓慢 加热到A1以上时,除珠光体全部转化为奥 氏体外,还有少量先共析铁素体转变为奥 氏体 ( 过共析钢二次渗碳体溶解 ),随着 温度升高,先共析铁素体不断向奥氏体转 变,当温度高于A3时,组织为单相奥氏体。
二、奥氏体形成的热力学条件
钢加热时组织转变的动力是奥氏体与旧相之 间的体积自由能之差ΔFv,而相变进行的条件是 系统总的自由能降低。根据相变理论,奥氏体形 成晶核时,系统总自由能变化ΔF为:
铁碳合金缓慢加热时奥氏体的形成可以 从Fe-Fe3C相图中反映出来,珠光体向奥氏体 的转变属于扩散型相变。以共析钢为例,珠 光体组织在A1(727℃)以下,组织保持不变 (α相中碳的溶解度及Fe3C的形状稍有变化); 当加热到A1点以上时,珠光体全部转 变为奥 氏体。
奥氏体的形成过程可以分为四个步骤: ①奥氏体晶核的形成 ②奥氏体晶粒长大 ③残余渗碳体溶解 ④奥氏体成分均匀化
称为过冷奥氏体。
不同的过冷度,奥氏体发生转变的过程不同:
①转变开始与转变终了的时间不同 ②转变后产物的组织与性能不同
一、珠光体型转变——高温转变(A1~550℃)
1、转变过程及特点
过冷奥氏体在A1~550℃温度范围内,将 分解为珠光体类组织。
当奥氏体被过冷至A1以下温度时,在奥氏体晶界 处(含碳量高)优先产生渗碳体的核心,然后依靠奥 氏体不断供应碳原子(随着冷却,奥氏体溶解碳的能 力下降,碳从奥氏体内向晶界扩散),渗碳体沿一定 方向逐渐长大,而随着渗碳体的长大,又使其周围的 奥氏体碳浓度下降,这就促使贫碳的奥氏体局部区域 转变成铁素体(即渗碳体两侧出现铁素体晶核),在 渗碳体长大的同时,铁素体也不断长大,而随着铁素 体的长大,必然将多余的碳排挤出去,这就有利于形 成新的渗碳体晶核。最终形成了相互交替的层片状渗 碳体和铁素体——珠光体。
钢的热处理
3.残余渗碳体溶解
在奥氏体形成过程中 , 铁素体比渗碳体先消 失,因此奥氏体形成之 后,还残存未溶渗碳体。 这部分未溶的残余渗 碳体将随着时间的延 长,继续不断地溶入奥 氏体,直至全部消失。
• 4.奥氏体均匀化 • 渗碳体完全溶解后,奥
氏体中碳的浓度分布并 不均匀 ,原先是渗碳体 地方碳浓度高,原先铁 素体的地方碳浓度低。 必须继续保温,通过碳 的扩散,使奥氏体成分 均匀化。
共析钢奥氏体化过程
二、奥氏体晶粒大小及其控制
• 奥氏体的晶粒大小对钢随后的冷却转变及转变产 物的组织和性能都有重要影响。
• 粗大的奥氏体晶粒往往导致热处理后钢的强度与 韧性降低,并容易导致工件的变形和开裂,工程 上往往希望得到细小而成分均匀的奥氏体晶粒, 因此应在热处理加热时控制奥氏体的晶粒大小。
• 5.热处理分类 • 根据加热、冷却方式及钢组织性能变
化特点不同,将热处理工艺分类如下:
退火
普通热处理
正火 淬火
回火
表面淬火—感应加热、火焰加热、
热处理
表面热处理
电接触加热等 化学热处理—渗碳、氮化、碳氮
共渗、渗其他元素等
控制气氛热处理
其他热处理
真空热处理 形变热处理
激光热处理
热处理的三要素: 加热温度 保温时间 冷却方式
式中: n表示放大100倍时,1平方英寸(6.45cm2) 上的晶粒数。n越大,晶粒越细,晶粒度等级越 高。
2.实际晶粒度和本质晶粒度
✓ 某一具体热处理或热加工条件下的奥氏体 的晶粒度叫实际晶粒度,它决定钢的性 能。
• 钢在加热时奥氏体晶粒长大的倾向用本质 晶粒度来表示。
• 钢加热到930℃±10℃、保温8小时、冷却 后测得的晶粒度叫本质晶粒度。如果测得 的晶粒细小,则该钢称为本质细晶粒钢, 反之叫本质粗晶粒钢。
机械制造基础第五章碳素钢与钢的热处理习题解答
第五章碳素钢与钢的热处理习题解答5-1 在平衡条件下,45钢、T8钢、T12钢的硬度、强度、塑性、韧性哪个大、哪个小? 变化规律是什么? 原因何在?答:平衡条件下,硬度大小为:45钢<T8钢<T12钢,强度大小为:45钢<T12钢<T8钢,塑性及韧性大小为:45钢>T8钢>T12钢。
变化规律为:随着碳含量的增加钢的硬度提高,塑性和韧性则下降,因为随着含量的增加组织中硬而脆的渗碳体的量也在增加;随碳含量增加,强度也会增加,但当碳含量到了0.9%后,强度则会随碳含量的增加而下降,因为碳含量超过0.9%后,钢的平衡组织中出现了脆而硬的网状二次渗碳体,导致了强度的下降。
5-2 为什么说碳钢中的锰和硅是有益元素? 硫和磷是有害元素?答:锰的脱氧能力较好,能清除钢中的FeO,降低钢的脆性;锰还能与硫形成MnS,以减轻硫的有害作用。
硅的脱氧能力比锰强,在室温下硅能溶人铁素体,提高钢的强度和硬度。
硫在钢中与铁形成化合物FeS,FeS与铁则形成低熔点(985℃) 的共晶体分布在奥氏体晶界上。
当钢材加热到1100~1200℃进行锻压加工时,晶界上的共晶体己熔化,造成钢材在锻压加工过程中开裂,这种现象称为“热脆”。
磷可全部溶于铁素体,产生强烈的固溶强化,使钢的强度、硬度增加,但塑性、韧性显著降低。
这种脆化现象在低温时更为严重,故称为“冷脆”。
磷在结晶时还容易偏析,从而在局部发生冷脆。
5-3 说明Q235A、10、45、65Mn、T8、T12A各属什么钢? 分析其碳含量及性能特点,并分别举一个应用实例。
答:Q235A属于碳素结构钢中的低碳钢;10钢属于优质碳素结构钢中的低碳钢;45钢属于优质碳素结构钢中的中碳钢;65Mn属于优质碳素结构钢中的高碳钢且含锰量较高;T8属于优质碳素工具钢;T12A属于高级优质碳素工具钢。
Q235A的w C =0.14% ~ 0.22%,其强度、塑性等性能在碳素结构钢中居中,工艺性能良好,故应用较为广泛,如用于制造机器中受力不大的螺栓。
第5章 模具钢料的热处理-模具表面处理技术
第二节模具表面处理工艺概述模具是现代工业之母。
随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。
如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。
这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。
这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。
从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。
在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。
◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。
减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。
◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。
在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。
模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。
下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。
第五章 钢的热处理7.8节
二、钢的渗碳 是指向钢的表面渗入碳原子的过程。 是指向钢的表面渗入碳原子的过程。 1、渗碳目的 、 提高工件表面硬度、 提高工件表面硬度、 耐磨性及疲劳强度, 耐磨性及疲劳强度, 同时保持心部良好 的韧性。 的韧性。 2、渗碳用钢 、 为含0.1-0.25%C的低碳钢。碳高则心部韧性降低。 的低碳钢。碳高则心部韧性降低。 为含 的低碳钢
与表面淬火相比, 与表面淬火相比,化学热处理不仅改变钢的表层组 织,还改变其化学成分。 还改变其化学成分。 化学热处理也是获得表硬里韧性能的方法之一。 化学热处理也是获得表硬里韧性能的方法之一。 根据渗入的元素不同,化学热处理可分为渗碳、氮 根据渗入的元素不同,化学热处理可分为渗碳、 渗碳 化、多元共渗、渗其他元素等。 多元共渗、渗其他元素等
火 感 应 器 传 动 轴 连 续 淬
感应加热表面淬火齿轮的截面图
② 中频感应加热 频 率 为 25008000Hz, 淬硬层 , 深度2-10mm。 。 深度
各种感应器 中频感应加热表面淬火的机车凸轮轴
③ 工频感应加热 频率为50Hz,淬硬 淬硬 频率为 层深度10-15 mm 层深度
感应穿透加热
气体渗碳 法示意图
⑵ 固体渗碳法
将工件埋入渗剂中, 将工件埋入渗剂中,装箱密封后在高温下加热渗碳 渗剂为木炭。 渗剂为木炭。 优点:操作简单; 优点:操作简单; 缺点:渗速慢,劳动条件差。 缺点:渗速慢,劳动条件差。
⑶ 真空渗碳法
将工件放入真空渗碳炉中, 将工件放入真空渗碳炉中,抽真空后 通入渗碳气体加热渗碳。 通入渗碳气体加热渗碳。 优点: 表面质量好, 渗碳速度快。 优点 表面质量好 渗碳速度快。
轴 的 感 应 加 热 表 面 淬 火
机床导轨
钢的热处理(含答案)
第五章钢的热处理〔含答案〕一、填空题〔在空白处填上正确的内容〕1、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上50℃、空气3 cm2、钢的热处理是通过钢在固态下、和的操作来转变其内部,从而获得所需性能的一种工艺。
答案:加热、保温、冷却、组织3、钢淬火时获得淬硬层深度的力量叫,钢淬火时获得淬硬层硬度的力量叫。
答案:淬透性、淬硬性4、将后的钢加热到以下某一温度,保温肯定时间,然后冷却到室温,这种热处理方法叫回火。
答案:淬火、Ac15、钢在肯定条件下淬火时形成的力量称为钢的淬透性。
淬透层深度通常以工件到的距离来表示。
淬透层越深,表示钢的越好。
答案:马氏体〔M〕、外表、半马氏体区、淬透性6、热处理之所以能使钢的性能发生变化,其根本缘由是由于铁具有转变,从而使钢在加热和冷却过程中,其内部发生变化的结果。
答案:同素异构、组织7、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上30℃~50℃、空气3 cm8、钢的渗碳是将零件置于介质中加热和保温,使活性渗入钢的外表,以提高钢的外表的化学热处理工艺。
答案:渗碳、碳原子、碳含量9、共析钢加热到Ac 以上时,珠光体开头向转变,通常产生于铁素体和1渗碳体的。
答案:奥氏体〔A〕、奥氏体晶核、相界面处10、将工件放在肯定的活性介质中,使某些元素渗入工件外表,以转变化学成分和,从而改善外表性能的热处理工艺叫化学热处理。
答案:加热和保温、组织11、退火是将组织偏离平衡状态的钢加热到适当温度,保温肯定时间,然后冷却,以获得接近组织的热处理工艺。
答案:缓慢〔随炉〕、平衡状态12、将钢加热到温度,保温肯定时间,然后冷却到室温,这一热处理工艺叫退火。
答案:适当、缓慢〔随炉〕13、V 是获得的最小冷却速度,影响临界冷却速度的主要因素是。
临答案:全部马氏体〔全部M〕、钢的化学成分14、钢的热处理是将钢在肯定介质中、和,使它的整体或外表发生变化,从而获得所需性能的一种工艺。
第五章 钢的热处理-3.4.5.6节
淬硬性是指钢淬火
后所能达到的最高
硬度,即硬化能力.
M量和硬度随 深度的变化
四、淬透性的测定及其表示方法
1、淬透性的测定常用末端淬火法
不同冷却条件下的转变产物
细A 温 度
均匀A
A1
退火 正火 (空冷)
等温退火 (炉冷)
? 淬火 (油冷)淬火? 分级淬火等温淬火
MS
P Mf
(水冷)
P P
?
⑴调整硬度,便于切削加工。适合加工的硬度为
170-250HB。
⑵ 消除内应力,防止加工中变形。
⑶ 为最终热处理作组织准备。
2、退火工艺
退火的种类很多,常用的有完全退火、等温退火、 球化退火、扩散退火、去应力退火、再结晶退火。 ⑴ 完全退火 将工件加热到 Ac3+30~50℃保 温后缓冷的退 火工艺,主要 用于亚共析钢 .
却到略低于 Ar1 的温
度下保温,使珠光体
中的渗碳体球化后出
炉空冷。主要用于共
析、过共析钢。
球化退火的组织为铁素体基 体上分布着颗粒状渗碳体的 组织,称球状珠光体, 用P球 表示。
球状珠光体
对于有网状二次渗碳体的
过共析钢,球化退火前应
先进行正火,以消除网状.
二、正火
正火是将亚共析钢加热到Ac3+30~ 50℃,共析钢加热 到Ac1+30~50℃,过共析钢 加热到Accm+30~ 50℃保温 后空冷的工艺。 正火比退火冷却速度大。 1、正火后的组织: ● <0.6%C时,组织为F+S; ● 0.6%C时,组织为S 。
生马氏体转变的方法。
如水淬油冷,油淬空冷.
第五章 钢的热处理
一、名词解释1.过冷:结晶只有在理论结晶温度以下才能发生,这种现象称为过冷。
2.枝晶偏析:在一个枝晶范围内或一个晶粒范围内不均匀的现象叫做枝晶偏析。
3.二次相:由已有固相析出的新固相称为二次相或次生相。
4.铁素体:碳在α—Fe中的固溶体称为铁素体。
5.奥氏体:碳在γ—Fe中的固溶体称为奥氏体。
6.莱氏体:转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体。
7.珠光体:转变产物为铁素体和渗碳体的机械混合物,称为珠光体。
8.变质处理:又称为孕育处理,是一种有意向液态金属中加入非自发形核物质从而细化晶粒的方法。
9.共晶转变:在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程。
10.包晶转变:在一定温度下,由一定成分的液相包着一定成分的固相,发生反应后生成另一一定成分新固相的反应。
二、填空题1、金属的结晶过程由晶核形成和晶核长大两个基本过程组成。
2、金属结晶过程中,细化结晶晶粒的主要方法有控制过冷度、变质处理和振动、搅拌3、当固溶体合金结晶后出现枝晶偏析时,先结晶出来的枝晶轴含有较多的高熔点组元。
4、在实际生产中,若要进行热锻或热轧时,必须把钢加热到奥氏体相区。
5、在缓慢冷却条件下,含碳0.8%的钢比含碳1.2%的钢硬度低强度低。
三、选择题1.铸造条件下,冷却速度越大,则(A.过冷度越大,晶粒越小)2.金属在结晶时,冷却速度越快,其实际结晶温度(B.越低)3.如果其他条件相同,下列各组铸造条件下,哪种铸锭晶粒细?(A.金属模铸造 B.低温铸造A.铸成薄片A.浇注时振动)4.同素异构体转变伴随着体积的变化,其主要原因是(致密度发生变化)5.实际金属结晶时,可通过控制形核N和长大速度G的比值来控制晶粒大小,要获得细晶粒,应采用(A.增大N/G值)6.二元合金在发生共晶转变时,各相组成是(D.三相共存)7.二元合金在发生共析转变时,各相的(B.质量固定,成分发生变化)10.产生枝晶偏析的原因是由于(D.液、固相线间距大,冷却速度也大)11.二元合金中,铸造性能最好的是(B.共晶合金)14.在下列方法中,可使晶粒细化的方法是(D.变质处理)四、判断题1。
第五章 钢的热处理r
G 温 度
Ac3 A3 Ar3
E
A
Accm Acm Arcm
A+F FP
A+Fe3CII
AC1 Ar1
S F+P P
A1
K
P+Fe3CII
Fe
含碳量
下面以共析钢为例说明奥氏体的形成过程。
第三节 钢的退火和正火 退火和正火: 将钢加热、保温后在炉内缓冷 (退火)或空冷(正火)的操作。 主要目的: 1、调整钢件硬度(HB160-230)以便进行机械加 工。 2、消除残余应力以防钢件的变形和开裂。
3、细化晶粒,改善组织以提高钢的机械性能。作 为最终热处理或为最终热处理作好组织上的准备 。
贫碳A Fe3C 富碳A F Fe3C A晶界 P团
组织特点:层片状 的铁素体与渗碳体 的机械混合物。
根据片间距的大小珠光体类型组织分三类:
1.珠光体(P),形成温度A1-650℃,最粗(150-450nm). 2.索氏体(S),形成温度650℃-600℃,较细(80-150nm). 3.屈氏体(T),形成温度600℃-550℃,最细(<80nm).
产生的条件:<0.3%C,板条马氏体, >1.0%C片 状马氏体,中间,混合型。 获得马氏体是强化钢材的主要方法之一。 随含碳量的增加,马氏体硬度增加。
3、贝氏体类型组织
转变温度:550℃-Ms温度范围内(C曲线鼻尖下部) 贝氏体(B)特点: 半扩散型转变, 碳原子扩散,铁 原子不扩散。过 饱和的铁素体和 渗碳体组成。
(一)基本过程 第一步:奥氏体晶核的形成。 形核部位在铁素体和渗碳体的相界面处。 第二步:奥氏体的长大。 通过碳原子的扩散,使铁素体向奥氏体转变, 和渗碳体溶解来完成。 第三步:残余渗碳体溶解 第四步:奥氏体均匀化
钢的热 处理
发生马氏体型转变. 形成马氏体组织. 如图5 -6 所示. 发生马氏体 转变时. 过冷度极大. 转变温度低.
上一页 下一页 返回
第二节 钢在冷却时的组织转变
• 只有γ - Fe向α - Fe 晶格改组. 碳原子来不及进行扩散而被保留 在α - Fe晶格中. 所以马氏体是碳在α - Fe中的过饱和固溶体. 用符号M 表示. 它具有高的强度、硬度与耐磨性. 是钢热处理强化的 主要应用手段.
上一页 下一页 返回
第三节 钢的热处理工艺
• 去应力退火工艺: 将钢件随炉缓慢加热(100 ~ 150℃ / h) 至5 00℃ ~ 650℃. 保温一段时间后. 随炉缓慢冷却(50 ~100℃ / h) 至200℃ ~300℃以下出炉. 从以上工艺可以看出.由于加热 温度低于Ac1 . 所以在去应力退火中钢的组织并无变化.
上一页 下一页 返回
项目七 钢的化学热处理
• 7.1 渗碳 • 7.2 渗氮 • 7.3 碳氮共渗 • 本篇小结
7.1 渗碳
• 将钢放入渗碳的介质中加热并保温,使活性碳原子渗入钢的表 层的工艺称为渗碳。其目的是通过渗碳及随后的淬火和低温回 火,使工件表面具有高的硬度、耐磨性和良好的抗疲劳性能, 而心部具有较高的强度和良好的韧性。渗碳广泛用于在磨损情 况下工作并承受冲击载荷、交变载荷的工件,如汽车、拖拉机 的传动齿轮,内燃机的活塞销等。
第五章 钢的热处理
• 第一节 钢在加热时的组织转变 • 第二节 钢在冷却时的组织转变 • 第三节 钢的热处理工艺 • 第四节 钢的表面热处理 • 第五节 其他热处理工艺简介 • 第六节 热处理零件的结构工艺性
钢的热处理
上一页
下一页
回主页
返 回
(四) 渗碳体的聚集长大和铁素体再结晶
细粒状渗碳体
>450℃ 聚集长大
粒状渗碳体
500~600℃ 再结晶
回火索氏体 多边形铁素体
板条状或片状铁素体
性能:具有良好的综合机械性能。
上一页
下一页
回主页
返 回
三、回火种类及应用 低温回火
中温回火
高温回火
上一页 下一页 回主页 返 回
频率范围 高频感应加热 200~300kHz 中频感应加热 工频感应加热 1~10kHz 50Hz 淬硬层深度
应 用
举 例
0.5~2mm 2~8mm
在摩擦条件下工作的零件, 如小齿轮、小轴 承受扭矩、压力载荷的零件 , 如曲轴、大齿轮、等
10~15mm 承受扭矩、压力载荷的大 型零件 ,如冷轧辊等
上一页
(三)高温回火(500~650 ℃)
组织: 回火索氏体。 性能:具有强度、硬度、塑性和韧性都较好的综合力 学性能。回火后硬度一般为200~330HBS。 应用:用于汽车、拖拉机、机床等承受较大载荷的结构 零件,如连杆、齿轮、轴类、高强度螺栓等。
上一页
下一页
回主页
返 回
650℃回火2小时 组织:回火索氏体 硬度:187HBS
特点:钢内外温度基本一致,过冷奥氏体在缓冷
条件下转变成马氏体,从而减小变形。 应用:形状中等复杂的高碳钢和尺寸较大的合金 钢工件。
上一页
下一页
回主页
返 回
4. 贝氏体等温淬火 性能:贝氏体的硬度略低于马氏体,但综合力学 性能较好。
应用:一般弹簧、螺栓、小齿轮、轴、丝锥等的
热处理。
上一页
Chap5 钢的热处理
㈠ 过冷奥氏体的等温转变图
过冷奥氏体的等温转 变图是表示奥氏体急 速冷却到临界点A1 以 下在各不同温度下的 保温过程中转变量与 转变时间的关系曲线. 又称C 曲线、S 曲线 或TTT曲线。
(Time-Temperature-Transformation diagram)
1、C曲线的建立 以共析钢为例:
3、影响C 曲线的因素 ⑴ 成分的影响
① 含碳量的影响:共析钢的过冷奥氏体最稳定,C曲 线最靠右。Ms 与Mf 点随含碳量增加而下降。
与共析钢相比,亚共析钢和过共析钢C曲线的上部各 多一条先共析相的析出线。
② 合金元素的影响 除Co 外, 凡溶入奥
氏体的合金元素都 使C 曲线右移。 CrMoWVTi 右移
W18Cr4V钢热处理工艺曲线
温度/℃
预备热处理
最终热处理
时间
6、临界温度与实际转变 温度
铁碳相图中PSK、GS、ES
线分别用A1、A3、Acm表示.
实际加热或冷却时存在着
过热或过冷现象,因此将 钢加热时的实际转变温度分别用Ac1、Ac3、Accm表示; 冷却时的实际转变温度分别用Ar1、Ar3、Arcm表示。 由于加热冷却速度直接影响转变温度,加热冷却速度 越快,滞后越严重。因此一般手册中的数据是以3050℃/h 的速度加热或冷却时测得的.
过冷奥氏体在 A1到 550℃间将转 变为珠光体类型组织,它是铁素
体与渗碳体片层相间的机械混合
物,根据片
层厚薄不同,
又细分为珠
光体、索氏
体和托氏体.
托氏体
珠光体 索氏体
⑴ 珠光体: 形成温度为A1-650℃,
片层较厚,500倍光镜 下可辨,用符号P表示.
热处理
Al、Ti、Zr、V、W、Mo、Cr、Si、Ni、Cu 强 弱
③ ④
原始组织 新工艺
2.影响奥氏体晶粒大小的因素
(1)加热温度和保温时间 加热温度增加,加热时间延长,奥氏体晶粒会自发地长大。
(2)钢的成分 奥氏体中碳含量的增加,晶粒的长大倾向也增加; 锰和磷促进奥氏体晶粒长大 碳以未溶碳化物的形式存在时,则有阻碍晶粒长大的作用。 钢中能形成稳定碳化物、氧化物或氮化物的元素,有利于获得 细晶粒
两种奥氏体晶粒长大倾向的示意图
钢在加热时的转变
三、奥氏体晶粒的长大及控制
奥氏体晶粒度的概念
①
起始晶粒度
实际晶粒度 本质晶粒度
本质粗晶粒钢
本质细晶粒钢
②
③
1~4
5~8
钢在加热时的转变
影响奥氏体晶粒度的因素
(控制奥氏体晶粒大小的措施)
① ②
TA、tA 成分
C:两方面的影响 Me:除Mn、P,均阻碍A长大
1.珠光体型转变
温度:A1-550℃ 转变过程:
钢在冷却时的转变
一、过冷奥氏体等温转变(共析钢)
珠光体转变(高温转变)
温度范围:A1 ~550(Ar1 ~550℃) 转变特征:扩散型转变 转变过程: (A
珠光体转变
P)
贫碳区
富碳区
钢在冷却时的转变
珠光体转变(高温转变)
转变产物:P(片层状 F 和 Fe3C 的机械混合物)
1 概述
定义:钢的热处理(heat
treatment)是指将钢在固 态下采用适当的方式进行 加热(heating)、保温和冷 却(cooling),通过改变钢 的内部组织结构而获得所 需性能的工艺方法。 三个阶段:钢的热处理工 艺都包括加热、保温和冷 却。 热处理工艺曲线: 温度— —时间曲线
第五章钢的热处理
第五章钢的热处理一、名词解释1.过冷:结晶只有在理论结晶温度以下才能发生,这种现象称为过冷。
2.枝晶偏析:在一个枝晶范围内或一个晶粒范围内不均匀的现象叫做枝晶偏析。
3.二次相:由已有固相析出的新固相称为二次相或次生相。
4.铁素体:碳在α—Fe中的固溶体称为铁素体。
5.奥氏体:碳在γ—Fe中的固溶体称为奥氏体。
6.莱氏体:转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体。
7.珠光体:转变产物为铁素体和渗碳体的机械混合物,称为珠光体。
8.变质处理:又称为孕育处理,是一种有意向液态金属中加入非自发形核物质从而细化晶粒的方法。
9.共晶转变:在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程。
10.包晶转变:在一定温度下,由一定成分的液相包着一定成分的固相,发生反应后生成另一一定成分新固相的反应。
二、填空题1、金属的结晶过程由晶核形成和晶核长大两个基本过程组成。
2、金属结晶过程中,细化结晶晶粒的主要方法有控制过冷度、变质处理和振动、搅拌3、当固溶体合金结晶后出现枝晶偏析时,先结晶出来的枝晶轴含有较多的高熔点组元。
4、在实际生产中,若要进行热锻或热轧时,必须把钢加热到奥氏体相区。
5、在缓慢冷却条件下,含碳0.8%的钢比含碳1.2%的钢硬度低强度低。
三、选择题1.铸造条件下,冷却速度越大,则(A.过冷度越大,晶粒越小)2.金属在结晶时,冷却速度越快,其实际结晶温度(B.越低)3.如果其他条件相同,下列各组铸造条件下,哪种铸锭晶粒细?(A.金属模铸造B.低温铸造A.铸成薄片A.浇注时振动)4.同素异构体转变伴随着体积的变化,其主要原因是(致密度发生变化)5.实际金属结晶时,可通过控制形核N和长大速度G的比值来控制晶粒大小,要获得细晶粒,应采用(A.增大N/G值)6.二元合金在发生共晶转变时,各相组成是(D.三相共存)7.二元合金在发生共析转变时,各相的(B.质量固定,成分发生变化)10.产生枝晶偏析的原因是由于(D.液、固相线间距大,冷却速度也大)11.二元合金中,铸造性能最好的是(B.共晶合金)14.在下列方法中,可使晶粒细化的方法是(D.变质处理)四、判断题1。
钢的热处理
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗拉强度σb ( Mpa )
(四) 影响 C曲线的因素
1、奥氏体中含碳量的影响:
温度 (℃ ) 800 700 600 500 400 300 Ms 200 100 0 Mf -100 0 1
亚共析钢的C曲线
F
A A3 A1 P+F S+F T B
M + A残
10
102
103
104
时间(s)
温度 (℃ ) 800 700 600 500 400 300 Ms 200 100 0 Mf -100 0
F
Fe3C
A
A形核
2. 奥氏体晶核的长大
奥氏体形核后逐渐长大,晶核的长大是依靠与其相邻的F向A的 转变和Fe3C的不断溶解来完成的。A向F和Fe3C两个方向长大。 未溶Fe3C
A
F向A转变和Fe3C溶解
3. 残余渗碳体溶解
在奥氏体形成过程中,铁素体比渗碳体先消失,因此奥氏体形成 之后,还残存未溶渗碳体。这部分未溶的残余渗碳体将随着时间 的延长,继续不断地溶入奥氏体,直至全部消失。
稳定的奥氏体区
温度 ( ℃) 800 700 600 500 稳定的奥氏体区 A1
A1~550℃;高温转变区; 过 A 冷 产 扩散型转变; P 转变区。 A向产物 + 奥 物 转变终止线 产 氏 区 550~230℃;中温转变 体 物 区; 半扩散型转变; 400 区 A向产 区 贝氏体( B ) 转变区; 300 Ms 物转变开始线 200 230~ - 50℃; 低温转 100 变区; 非扩散型转变; 马氏体 ( M ) 转变区。 0 Mf
2、马氏体的组织形态(板条状和片状)
1)板条状马氏体组织 --- 低碳马氏体 (<0.2%C ) 30~50HRC δ = 9%~17%
低碳板条状马氏体组织金相图
2)片状马氏体组织 --- 高碳马氏体 (>1%C) 60~65HRC δ ≈ 1%
高碳片状马氏体组织金相图
3、马氏体的性能
——主要取决于马氏体中的碳浓度。
求、热加工工艺评定、产品质量分析中所规定的“晶粒度检验
”一般都是指依据 GB/T 63941986检验钢的奥氏体实际晶粒 度
3. 奥氏体晶粒大小的控制
1)合理选择并严格控制加热温度和保温时间 随着温度升高晶粒度将随之长大。温度愈高,晶粒长大 愈明显。在一定温度下,保温时间愈长,奥氏体晶粒也越粗 大。 2)合理选择原始组织 随着钢中奥氏体含碳量的增加,奥氏体晶粒长大的倾向 也增大。但当wc>1.2%时,奥氏体晶界上存在未溶的渗碳体 能阻碍晶粒的长大,故奥氏体实际晶粒度较小。 3)加入一定量的合金元素 若碳以未溶的碳化物形式存在,则它有阻碍晶粒长大的 作用。锰和磷是促进奥氏体晶粒长大倾向的元素。
• 可见:珠光体向奥氏体转变,是由成分相差悬殊、晶格 截然不同的两相混合物转变成单相固溶体的过程。因 此在奥氏体的形成过程必定发生晶格重构和铁、碳原 子的扩散。
1. 奥氏体晶核的形成
奥氏体的晶核易于在F和Fe3C渗碳体相界面上形成。这是因为在两
相的相界上原子排列不规则,空位和位错密度高;为形核提供了 良好的条件。
-100 0
1
10
102
103
104
时间(s)
(三)转变产物的组织和性能 1、珠光体型转变—高温转变(A1~ 550 ℃) A1 ~ 650 ℃ 650~ 600℃ 层片状珠光体 < 25HRC
细片状珠光体(索氏体 S) 25~35HRC
600~ 550 ℃ 极细片状珠光体(托氏体 T) 35~42HRC 珠光体性能 : 珠光体片越细→ HB↑,σb↑且δ↑,αk↑
残余Fe3C
A
残余Fe3C溶解
4. 奥氏体均匀化
渗碳体完全溶解后,开始时奥氏体中碳的浓度分布并不均匀 ,原 先是渗碳体的地方碳浓度高,原先是铁素体的地方碳浓度低。必 须继续保温,通过碳的扩散,使奥氏体成分均匀化。
AA 均Βιβλιοθήκη 化亚共析钢和过共析钢的A形 成过程与共析钢基本相似, 不同之处在于亚共析钢和过 共析钢需加热到Ac3或Accm以
冷 却
时间
2.热处理的主要目的:改善材料的使用、工艺性能 。 3.热处理的特点:在固态下,只改变工件的组织,不改变形 状和尺寸 。
4.按目的、加热条件和特点不同热处理分为 退火;正火; 整 体 淬火;回火; 热处理
热处理 表 面 热处理 (表面淬火) 感应加热淬火
火焰加热淬火
化 学 热处理
渗碳; 渗氮; 碳氮共渗;
过共析钢的C曲线
Fe3CⅡ A ACM A1 P + Fe3CⅡ S + Fe3CⅡ T B
M + A残
1
10
102
103
104
时间(s)
与共析钢C曲线比较: 1)亚共析钢的等温转变图随着含碳量的增加C曲线位置 往右移,过共析钢的等温转变图随着含碳量的增加C曲 线位置往左移,故在碳钢中以共析钢等温转变图的鼻 尖离温度坐标最远,其孕育期最长,过冷奥氏体也最 稳定 2)亚共析钢和过共析钢的过冷奥氏体,在转变为珠光 体类型组织之前,分别先有铁素体和渗碳体析出。这 样,在亚共析钢等温转变图上多一条先共析铁素体析 出线,在过共析钢等温转变图上多一条先共析渗碳体 析出线。 3) 随着含碳量的增加,Ms、Mf线下降 ,因而残余奥氏 体量随着奥氏体含碳量的增加而增多
二、过冷奥氏体的连续冷却转变
1. 过冷奥氏体连续冷却转变曲线 (CCT 曲线)
温 度
A1
Ps
(P转变开始线)
℃
Ms Mf 水冷 K(P转变中止线)
A+P
Pf
(P转变终了线)
炉冷 空冷
Vk´
油冷
Vc
(M临界冷却速度)
时间 t
共析碳钢 C 曲线与CCT曲线的比较
温度 (℃ )
800 700 600 500 400 300 Ms 200 100 0 Mf -100 0 1
2、合金元素的影响 除Co、Al (>2.5% ) 外,所有合金元素溶入奥氏 体中,会引起:
A1 向右移 Ms 向 下 移 Ms 含Cr合金钢 A1
3、加热温度和保温时间的影响 加热温度越高,保温时间越长,碳化物溶 解充分, 奥氏体成分均匀;同时晶粒也越大, 晶界面积则减少。这样,会降低过冷奥氏体转 变的形核率,提高了过冷奥氏体的稳定性, 从 而使 C曲线向右移。
根据组织形态和转变温度不同,贝氏体一般可分 为上贝氏体和下贝氏体两种
550 ~ 350 ℃ 羽毛状上贝氏体(B上) 强度低,塑性、韧性差 ;硬度 40 ~50HRC
条状F
Fe3C
它是通过奥氏体晶格改组为过饱和的铁素体,并在 铁素体条间析出渗碳体而形成.
上贝氏体组织金相图
350 ~ Ms 黑色针叶状下贝氏体(B下) 强度、塑性、韧性均高于上贝氏体,硬度 50 ~60HRC 针叶状铁素体 Fe3C
2. 奥氏体晶粒度:
• 晶粒度——晶粒大小的量度。 • 晶粒的大小通常用晶粒度级别指数来表示;奥氏体的晶粒度一 般分为8级,l-4级为粗晶粒,5-8级为细晶粒。 •奥氏体实际晶粒度:是指钢在具体热处理或热加工条件下获
得的奥氏体晶粒度;
它的大小决定了钢件热处理或热加工后室温组织的晶粒大小, 直接影响到钢件的力学性能。因此,在钢材验收、零件技术要
第二节 钢在冷却时的转变
• 过冷奥氏体的等温冷却转变
• 过冷奥氏体的连续冷却转变
在热处理生产中,常用的冷却方式:等温冷却和连续冷却。
温 度 热 加
保温 临界温度A1
连续冷却
等温冷却 时间
一、过冷奥氏体的等温冷却转变
过冷奥氏体:在相变温度A1以下,未发生转变而处于不稳定状态的
奥氏体。
过冷奥氏体的等温转变:指钢经奥氏体化后冷却到相变点以下的 某温度区间内等温时。过冷奥氏体所发生的转变。
5) 马氏体转变是不彻底的 总要残留少量奥氏体。残余奥氏体的含量与 Ms、Mf的位置有关。奥氏体中的碳含量越高,则 Ms、Mf越低,残余A含量越高。只在碳质量分数 少于0.6%时, 残余奥氏体可忽略。
A残的存在不仅降低淬火钢的硬度和耐磨化, 而且在工件长期使用过程中,由于A残会继续变成 M,使工件尺寸发生变化。
上,才能获得单一的奥氏体
组织,这个过程称为完全奥 氏体化。
三、奥氏体晶粒的长大及其影响因素
1.奥氏体晶粒的长大
由于奥氏体在铁素体与渗碳体相界面上形核,形成的晶核多,因
而刚完成珠光体向奥氏体的转变时奥氏体的晶粒是比较细小的。
但是如果在形成奥氏体后继续升高温度,或者是在高温长时间保 温,就会引起奥氏体晶粒长大。 由于晶粒粗大,往往使钢的强韧性恶化,特别是冲击韧性将明 显下降,韧脆转变温度相应升高,脆性倾向加大。 因此,钢在加热时应严格控制加热规范,以获得细小而均匀 的奥氏体晶粒。
冷度很大,奥氏体向马氏体转变时难以进行铁、碳
原子的扩展,只发生了γ -Fe向α -Fe的晶格转变。 固溶在奥氏体中的碳全部保留在α -Fe晶格中,形成 碳在α -Fe中的过饱和固溶体,称其为马氏体(M)
1、 马氏体转变特点
1)无扩散型转变 铁、碳原子都不能进行扩散。铁原子沿奥氏体 一定晶面,集体地作一定距离的移动,使面心立方晶 格改组为体心立方晶格,碳原子原地不动,过饱和 地留在新组成的晶胞中,过饱和碳使α-Fe 的晶格发 生很大畸变,产生很强的固溶强化。 2)转变时体积发生膨胀 马氏体的比容比奥氏体的比容大,转变时体积 要膨胀,引起淬火工件产生相变内应力, 严重时 导致工件变形和开裂。
与B上比较, B下具有良好的综合力学性能, 在生产中常用等温淬火来获得B下组织
下贝氏体组织金相图
3、马氏体型 ( M ) 转变
(Ms ~ Mf)
( 230~ -50℃ )