第30届全国中学生物理竞赛复赛考试试题解答与评分标准
30届全国中学生物理竞赛(复赛)模拟试题(一)
30届全国中学生物理竞赛(复赛)模拟试题(一)第一题:(20分)光子火箭从地球起程时初始静止质量(包括燃料)为M0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。
要求火箭在25年(火箭时间)后到达目的地。
引力影响不计。
1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M0ˊ,试问M0/ M0ˊ的最小值是多少?第二题.(20分)有一个两端开口、粗细均匀的U型玻璃细管,放置在竖直平面内,处在压强为0p的大气中,两个竖直支管的高度均为h,水平管的长度为2h,玻璃细管的半径为r,r«h,今将水平管内灌满密度为ρ的水银,如图所示。
1.如将U型管两个竖直支管的开口分别封闭起来,使其管内空气压强均等于大气压强,问当U型管向右作匀加速移动时,加速度应多大才能使水平管内水银柱长度稳定为h35。
2.如将其中一个竖直支管的开口封闭起来,使其管内气体压强为1atm,问当U型管绕以另一个竖直支管(开口的)为轴作匀速转动时,转数n应为多大才能使水平管内水银柱长度稳定为h35。
(U型管作以上运动时,均不考虑管内水银液面的倾斜)(1)图所示为一凹球面镜,球心为C,内盛透明液体,已知C至液面高度CE为40.0cm,主轴CO上有一物A,物离液面高度AE恰好为30.0cm时,物A的实像和物处于同一高度。
实验时光圈直径很小,可以保证近轴光线成像。
试求该透明液体的折射率n。
(2)体温计横截面如图所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C为圆柱面中心轴位置。
玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚实、正倒和放大倍数。
第四题(25分)左图为一无限多立方“格子”的电阻丝网络电路,每两节点之间电阻丝的电阻均为R,其中A、B两节点位于网络中部。
右图电路中的电源电动势(内阻为0)均为 ,电阻均为r。
若其中的a、b两节点分别与左图所示的电路中的A、B两节点相连结,试求流入电阻丝无限网络的电流。
第30届全国中学生物理竞赛复赛试题及参考答案
第30届全国中学生物理竞赛复赛考试试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)hxyzOθxyθλO八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛考试试题答案1参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
第30届全国中学生物理竞赛决赛试题与答案(2013年)
第30届全国中学生物理竞赛决赛考试试题、解答与评分标准一、一质量为m 的小球在距水平地面h落地反弹时水平速度不变,竖直速度大小按同样的比率减小。
若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2821h ,求小球在各次与地面碰撞过程中所受到的总冲量。
提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面的投影之间所包围的面积等于其最大高度和水平射程乘积的23。
参考解答:设小球每次落地反弹时,反弹后的竖直速度大小是反弹前的λ倍。
第一次落地时竖直速度为0v =(1)第一次反弹竖直速度大小为01v λ=<<(2) 第一次反弹高度为22112v h h gλ== (3)第一次反弹后飞行时间为1122v t g ==(4)第一次反弹至第二次反弹时水平方向的位移为14x h λ==(5) 小球在第一次反弹至第二次反弹之间的运动轨迹与其在地面 的投影之间所包围的面积为221111833s h x h λ== (6)设第n 次反弹后至1n +次反弹前的最大竖直速度大小和上升的最大高度分别为n v 和n h 。
由题意和上述论证知1n n s v λ+=(7) 21n n h h λ+=(8) 1n n t t λ+= (9) 1n n x x λ+=(10) 31n n s s λ+=(11)12,,s s …构成一无穷递缩等比娄列,其总和为36211318(1)121n n s ss s h λλλ∞==+++⋅⋅⋅==-∑(12) 由(6)、(12)式有12λ=(13) 设n I 表示小球在第(1)n n ≥次碰撞过程中小球受到的作用力的冲量,由动量定理有 11()(1)n n n n I mv m v m v λ--=--=+ (14)由于小球每次反弹前后速度的水平分量不变,小球每次碰撞过程中受到的沿水平方向的总量为零。
小球在各次与地面碰撞过程中所受到的总冲量为20011()(1)(1)1n n I I mv mv λλλλλ∞=+==++++⋅⋅⋅=-∑ (15)方向向上。
第30届全国中学生物理竞赛复赛考试试题解答与评分标准
第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为v0(v0≠0). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g.参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v分解成纬线切向(水平方向)分量vφ及经线切向分量vθ. 设滑块质量为m,在某中间状态时,滑块位于半球面内侧P处,P和球心O的连线与水平方向的夹角为θ. 由机械能守恒得mv02/2=-mgRsin θ+ mvφ2/2+ mvθ2/2(1)这里已取球心O处为重力势能零点. 以过O的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故mv0R= mvφRcos θ.(2)由(1) 式,最大速率应与θ的最大值相对应.(3)而由(2) 式,θ不可能达到π/2. 由(1)和(2)式,θ的最大值应与vθ=0相对应,即vθ(θmax)=0.(4)(4)式也可用下述方法得到:由(1)、(2) 式得.若sin θ≠0,由上式得.实际上,sin θ=0也满足上式。
由上式可知.由(3)式有. (4’)将vθ(θmax)=0 代入式(1),并与式(2)联立,得.(5)以sin θmax为未知量,方程(5)的一个根是sin θ=0,即θ=0,这表示初态,其速率为最小值,不是所求的解. 于是sin θ≠0. 约去sin θmax,方程(5)变为.(6)其解为. (7)注意到本题中sin θ≥0,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当θ=θmax时,, (8)考虑到(4)式有. (9)评分标准:本题15分. (1)式3分,(2) 式3分,(3) 式1分,(4) 式3分,(5) 式1分,(6) 式1分,(7) 式1分,(9) 式2分.二、(20分)一长为2l的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m的小物块D和一质量为αm(α为常数)的小物块B,杆可绕通过小物块B所在端的竖直固定转轴无摩擦地转动. 一质量为m的小环C套在细杆上(C与杆密接),可沿杆滑动,环C与杆之间的摩擦可忽略. 一轻质弹簧原长为l,劲度系数为k,两端分别与小环C和物块B相连. 一质量为m的小滑块A在桌面上以垂直于杆的速度飞向物块D,并与之发生完全弹性正碰,碰撞时间极短. 碰撞时滑块C恰好静止在距轴为r(r>l)处.1. 若碰前滑块A的速度为v0,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D、C和杆刚好做匀速转动,求碰前滑块A 的速度v0应满足的条件.参考解答:1. 由于碰撞时间Δt很小,弹簧来不及伸缩碰撞已结束. 设碰后A、C、D的速度分别为vA、vC、vD,显然有.(1)以A、B、C、D为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒. (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间Δt很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故. (3)由(1)、(2)、(3) 式解得(4)[代替(3) 式,可利用弹性碰撞特点.(3’)同样可解出(4). ]设碰撞过程中D对A的作用力为F1’,对A用动量定理有, (5)方向与v0方向相反. 于是,A对D的作用力为F1的冲量为(6)方向与v0方向相同.以B、C、D为系统,设其质心离转轴的距离为x,则. (7) 质心在碰后瞬间的速度为. (8)轴与杆的作用时间也为Δt,设轴对杆的作用力为F2,由质心运动定理有(9)由此得.(10)方向与v0方向相同. 因而,轴受到杆的作用力的冲量为,(11)方向与v0方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替(7)-(9) 式,可利用对于系统的动量定理. ][也可由对质心的角动量定理代替(7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C以速度vC=4lrv0/(8l2+r2)绕过B的轴做匀速圆周运动的向心力,即(12)则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A的速度v0应满足的条件(13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A的速度大小v0应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分,(2) 式2分,(3) 式2分,(4) 式2分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分;第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m、长为L的匀质细杆,可绕过其一端的光滑水平轴O在竖直平面内自由转动. 杆在水平状态由静止开始下摆,1. 令λ=m/L表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O在竖直平面内转动时,其转动动能可表示为式中,k为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O点为r处的横截面两侧部分的相互作用力. 重力加速度大小为g.提示:如果X(t)是t的函数,而Y(X(t))是X(t)的函数,则Y(X(t))对t的导数为例如,函数cos θ(t)对自变量t的导数为参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O在竖直平面内转动时,其动能是独立变量λ、ω和L的函数,按题意可表示为(1)式中,k为待定常数(单位为1). 令长度、质量和时间的单位分别为[L]、[M]和[T](它们可视为相互独立的基本单位),则λ、ω、L和Ek的单位分别为(2)在一般情形下,若[q]表示物理量q的单位,则物理量q可写为(3)式中,(q)表示物理量q在取单位[q]时的数值. 这样,(1) 式可写为(4)在由(2)表示的同一单位制下,上式即(5)(6)将(2)中第四式代入(6) 式得(7)(2)式并未规定基本单位[L]、[M]和[T]的绝对大小,因而(7)式对于任意大小的[L]、[M]和[T]均成立,于是(8)所以(9)2. 由题意,杆的动能为(10)其中,(11)注意到,杆在质心系中的运动可视为两根长度为L/2的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能Ek,r为(12)将(9)、(11)、(12)式代入(10)式得(13)由此解得(14)于是.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒(16)由(15)、(16)式得. (17)以在杆上距O点为r处的横截面外侧长为(L-r)的那一段为研究对象,该段质量为λ(L-r),其质心速度为.(18)设另一段对该段的切向力为T (以θ增大的方向为正方向),法向(即与截面相垂直的方向)力为N (以指向O点方向为正向),由质心运动定理得(19)(20)式中,at为质心的切向加速度的大小(21)而an为质心的法向加速度的大小. (22)由(19)、(20)、(21)、(22)式解得(23)(24)评分标准:本题25分.第1问5分,(2) 式1分,(6) 式2分,(7) 式1分,(8) 式1分;第2问7分,(10) 式1分,(11) 式2分,(12) 式2分,(14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19)式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G组成. 质量为m、带电量为q的球形液滴从G缓慢地自由掉下(所谓缓慢,意指在G和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h. 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G的电荷对正在下落的液滴的影响.重力加速度大小为g. 若容器初始电势为零,求容器可达到的最高电势Vmax.参考解答:设在某一时刻球壳形容器的电量为Q. 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器G出口自由下落到容器口的过程. 根据能量守恒有.(1)式中,v为液滴在容器口的速率,k是静电力常量. 由此得液滴的动能为.(2)从上式可以看出,随着容器电量Q的增加,落下的液滴在容器口的速率v不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为Qmax,则有. (3)由此得.(4)容器的最高电势为(5)由(4) 和(5)式得(6)评分标准:本题20分. (1)式6分,(2) 式2分,(3) 式4分,(4) 式2分,(5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于z=?d/2的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B,方向沿x轴负方向,如图所示.1. 在电容器参考系S中只存在磁场;而在以沿y轴正方向的恒定速度(0,v,0)(这里(0,v,0)表示为沿x、y、z轴正方向的速度分量分别为0、v、0,以下类似)相对于电容器运动的参考系S’中,可能既有电场(Ex’, Ey’, Ez’)又有磁场(Bx’, By’, Bz’). 试在非相对论情形下,从伽利略速度变换,求出在参考系S’中电场(Ex’, Ey’, Ez’)和磁场(Bx’, By’, Bz’).的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v,方向沿y轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S’中,由于液体处在第1问所述的电场(Ex’, Ey’, Ez’)中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(Ex’, Ey’, Ez’),而是ε0(Ex’, Ey’, Ez’)/ε,这里ε0是真空的介电常数. 这将导致在电容器参考系S中电场不再为零. 试求电容器参考系S中电场的强度以及电容器上、下极板之间的电势差. (结果用ε0、ε、v、B或(和)d表出. )参考解答:1. 一个带电量为q的点电荷在电容器参考系S中的速度为(ux’, uy’, uz’),在运动的参考系S’中的速度为(ux’, uy’, uz’). 在参考系S中只存在磁场(Bx’, By’, Bz’)= (-B, 0, 0),因此这个点电荷在参考系S中所受磁场的作用力为(1)在参考系S’中可能既有电场(Ex’, Ey’, Ez’)又有磁场(Bx’, By’, Bz’),因此点电荷q在S’参考系中所受电场和磁场的作用力的合力为(2)两参考系中电荷、合力和速度的变换关系为(3)由(1)、(2)、(3)式可知电磁场在两参考系中的电场强度和磁感应强度满足(4)它们对于任意的(ux’, uy’, uz’)都成立,故(5)可见两参考系中的磁场相同,但在运动的参考系S’中却出现了沿z方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度( 0,v, 0) 匀速运动. 电容器参考系S中的磁场会在液体参考系S’中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为.(6)为了求出电容器参考系S中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S’中的电场和磁场来确定电容器参考系S中的电场和磁场. 考虑一带电量为q的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S’中,这力(Fx’, Fy’, Fz’)如(2)式所示. 它在电容器参考系S中的形式为(7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得(8)对于任意的(ux’, uy’, uz’)都成立,故(9)可见,在电容器参考系S中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示. 注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为.(10)由(9)式中第一式和(10)式得. (11)评分标准:本题25分.第1问12分,(1) 式1分,(2) 式3分,(3) 式3分,(4) 式3分,(5) 式2分;第2问13分,(6) 式1分,(7) 式3分,(8) 式3分,(9) 式2分,(10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为1.0?10-5/度和2.0?10-5/度. 当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r,金属片原长为l,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T1=20℃升高到T2=120℃时的伸长量分别为Δl1和Δl2. 对于钢片(1)(2)式中,d=0.20 mm. 对于青铜片(3)(4)联立以上各式得(5)评分标准:本题15分. (1)式3分,(2) 式3分,(3) 式3分,(4) 式3分,(5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h. 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz平面平行,上表面与yz平面平行. 劈尖介质的折射率n随x而变化,n(x)=1+bx,其中常数b>0. 一束波长为λ的单色平行光沿x轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z方向平行、沿y方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y=0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y坐标;。
2021年第30届全国中学生物理竞赛复赛考试试题及答案(精选)
2021年第30届全国中学生物理竞赛复赛考试试题及答案(精选)一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,1. 令m Lλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)x y z E E E '''又有磁场(,,)xy z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x y z E E E ''',而是0(,,)x y z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. ) 六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;x2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<,有»1-12x .解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gR θθ≤v .实际上,sin =0θ也满足上式。
第30届全国中学生物理竞赛
第30届全国中学生物理竞赛
预赛试卷
第30届全国中学生物理竞赛预赛试卷
参考答案与评分标准
一、选择题
本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的的6分,选对但不全的的3分,有选错或不答的的0分.
答案:
1.A、B2.D 3.D 4.B、C 5.D
二、填空题和作图题
答案与评分标准:
三、计算题.
计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.。
全国中学生第30届——32届物理决赛实验试题和答案Doc1
第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)1.1设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。
线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确0.5分,连线无断点0.5分。
1.2简述测量原理及步骤(6分)测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=aR0.83计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。
小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。
(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大功率围的测量,只测量小功率下的即可。
答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电流围的测量,只测量小电流下的即可。
答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。
图中R1为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电压围的测量,只测量低电压下的即可。
原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。
第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)
从一系列的卫食的观测可以精确地求出卫食周期, 而该周期 T 的观察值大小依赖与地球
在以连线 SJ 作为一根坐标轴的参照
系中的相对位置。卫星绕木星转动
一周的平均周期为 T0=42 小时 28 分
16 秒,周期的最大观测值为 T0+15
秒。
设观测者(在地球上) 处在 k 位
置时,看到卫星 M 从木星的阴影中
' 0
78.5454 s 1,在汽车运行
的过程中,司机看到两条弹簧的振动幅度之比为
7。设 为小量,计算中可以略去,已知汽
车轮子的直径为 1m ,则汽车的运行速度为
。
4.核潜艇中 U 238 核的半衰期为 4.5 109 年,衰变中有 0.7%的概率成为 U 234 核,同时放
出一个高能光子,这些光子中的 93%被潜艇钢板吸收。 1981年,前苏联编号 U137的核潜艇透
4 ,其中
E m0c 2 , E 为电子总能量,
m0c2 为电子的静
止能量。)
页脚内容 8
全面质量管理的思想基础和方法依据
第 30 届全国中学生物理竞赛复赛模拟试卷
参考解答与评分标准
(全国中学生物理竞赛委员会及大连理工大学物理系)
一、参考解答:
1.
153 r
,
2r
209 3
2.本装置的几何结构尽管十分对称,但由于空气中离子分布及宇宙射线等因素的不确
pV a 恒量;
筒内气体的摩尔内能与温度的关系为
RT
Um
,式中 T 为气体的热力学温度, R 为摩尔
a1
气体常量。求当左气室吸热为 Q=1000J 时,左、 右两室气体的温度和压强。 设活塞与筒壁的
摩擦可忽略不计,且不漏气。计算过程各量均取三位有效数字。
2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析
2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析无锡市第一中学 魏熙锴一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv .设滑块质量为,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=−++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,不可能达到. 由(1)和(2)式,的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ−=≥v v .若sin 0θ≠,由上式得22sin 2cos gR θθ≤v .实际上,sin =0θ也满足上式。
由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=−=v v .(4’)]2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ−−=v .(5)以max sin θ为未知量,方程(5)的一个根是,即,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+−=v .(6)其解为20maxsin 14gR θ =−v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式 代入(1)式得,当max θθ=时,(22012ϕ+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分. 评析:首先,肯定可以知道牛顿第二定律很难完成本题的任务。
全国中学生第30届——32届物理决赛实验试题和答案Doc1
第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)1.1设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。
线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确0.5分,连线无断点0.5分。
1.2简述测量原理及步骤(6分)测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=aR0.83计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。
小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。
(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大功率围的测量,只测量小功率下的即可。
答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电流围的测量,只测量小电流下的即可。
答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。
图中R1为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电压围的测量,只测量低电压下的即可。
原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。
【物理竞赛试】2013年第30届全国中学生物理竞赛复赛试卷及答案与评分标准
【物理竞赛试】2013年第30届全国中学生物理竞赛复赛试卷及答案一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.备注: 复旦大学郑永令、贾起民、方小敏《力学 第二版》P213页有一道类似的题目。
第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)
第30届全国中学生物理竞赛复赛模拟试卷本卷共八题,满分160分。
计算题的解答应写出必要的文字说明、方程式和重要的演算步骤。
只写出最后结果的不能得分。
有数字计算的题,答案中必须明确写出数值和单位。
填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。
一、填空题•(本题共4小题,共25分)1•图1所示的电阻丝网络,每一小段电阻同为r,两个端点A、得分阅卷复核B间等效电阻R i= _____ 。
若在图1网络中再引入3段斜电阻丝,每一段电阻也为r,如图2所示,此时A、B间等效电阻R2= __________ 。
1 图22•右图为开尔文滴水起电机示意图。
从三通管左右两管口形成的水滴分别穿过铝筒州、A?后滴进铝杯B2,当滴了一段时间后,原均不带电的两铝杯间会有几千伏的电势差。
试分析其原理。
图中铝筒A1用导线与铝杯B2相连;铝筒A2用导线与B1相连。
3.受迫振动的稳定状态由下式给出x=Acos(,t •「),A = h_,中=arctan―2——笃。
其中h =—,而H cos仞t)为胁迫力,(•,02_■ ,2)2■ 4'-^ .2''0 m2一:=—,其中一dX是阻尼力。
有一偏车轮的汽车上有两个弹簧测力计,其中一条的固有m d t振动角频率为-.0 = 39.2727 s J,另外一条的固有振动角频率为「0=78.5454s‘ ,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。
设1为小量,计算中可以略去,已知汽车轮子的直径为1m,则汽车的运行速度为__________________ 。
4•核潜艇中U 238核的半衰期为4.5 109年,衰变中有0.7%的概率成为U 234核,同时放出一个高能光子,这些光子中的93%被潜艇钢板吸收。
1981年,前苏联编号U137的核潜艇透射到艇外的高能光子被距核源(处理为点状) 1.5m处的探测仪测得。
仪器正入射面积为22cm2,效率为0.25% (每400个入射光子可产生一个脉冲讯号),每小时测得125个讯号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上。
一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为v 0(v 0≠0)。
求滑块在整个运动过程中可能达到的最大速率。
重力加速度大小为g 。
参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故 0cos m R m R ϕθ=v v . (2) 由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即 max ()0θθ=v .(4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20max sin 14gR θ⎫=⎪⎪⎭v . (7) 注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8) 考虑到(4)式有max ==v (9)评分标准:本题15分。
(1)式3分,(2)式3分,(3)式1分,(4)式3分,(5)式1分,(6)式1分,(7)式1分,(9) 式2分。
二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为αm (α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动。
一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略。
一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连。
一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞时滑块C 恰好静止在距轴为r (r >l )处。
1.若碰前滑块A 的速度为v 0,求碰撞过程中轴受到的作用力的冲量;2.若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度v 0应满足的条件。
参考解答1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v .(1) 以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2) 由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5) 方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7) 质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v .(9) 由此得2022(2)28r l r F t m l r-∆=+v .(10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理 21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r=+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13) 可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动。
杆在水平状态由静止开始下摆,1.令λ=mL表示细杆质量线密度。
当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为E k =k λαωβL γ式中,k 为待定的没有单位的纯常数。
已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等。
由此求出α、β和γ的值。
2.已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值。
3.试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力。
重力加速度大小为g 。
提示:如果X (t )是t 的函数,而Y (X (t ))是X (t )的函数,则Y (X (t ))对t 的导数为 d Y (X (t ))d t =d Y d X d Xd t例如,函数cos θ(t )对自变量t 的导数为 dcos θ(t )d t =dcos θd θ d θd t参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5)[][][][]k E L αβγλω= (6) 将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9) 2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中,22,c c 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r 2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =(17) 以在杆上距O 点为r 处的横截面外侧长为L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得 ()()cos t T L r g L r a λθλ+-=- (19)()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t L θωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小 ()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+= (24) 评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成。