电气设备状态监测与故障诊断
电力设备的在线监测与故障诊断
超声一体化气室+膜渗透平衡脱气
气敏传感器
H2,CO,CH4,C2H6,C2H4,C2H2 单一色谱柱,单一传感器
空气做载气(部分型号)
TRANSFIX
英国Kelman 凯尔曼
动态顶空平衡
光声光谱技术(PAS)
H2,CO,CH4,C2H6,C2H4,C2H2,CO2,O2,八种气体加水分
机械振动监测
高压导体、触头温度监测
①母线电流 ②磁场 ③组件。a 温度传感器, b 感应线圈,c 电子线路 ④红外发光二极管 ⑤红外光接收器 ⑥温度信息接收器
主要问题:绝缘、供电 方法:无线(射频、红外)、光纤
高压开关柜局部放电的监测
暂态地电压(Transient Earth Voltages,TEV) 声发射(AE)
绕组变形
变压器的在线监测
在电场的作用下,绝缘系统中只有部分区域发生放电,而没有贯穿施加电压的导体之间,即尚未击穿。
在绝缘结构中局部场强集中的部位,出现局部缺陷时,将导致局部放电。
变压器局部放电监测
局部放电监测的意义
刷形树枝 丛林状树枝
局部放电是造成高压电气设备最终发生绝缘击穿的主要原因。这是一个“日积月累”的过程,可谓“冰冻三尺非一日之寒”。
宽带脉冲电流法局部放电监测
宽带脉冲电流法局部放电监测
常规局放测量的相位谱图不能分离噪声与信号,不能分离不同种类的信号,从而不能准确识别放电类型。
宽带脉冲电流法局部放电监测
b
1
)
b
2
)
d
1
)
d
2
)
局放A
基于脉冲信号分离分类技术的局放检测则可根据信号特征将每一类局放的相位谱图分离出来
发电厂电气设备状态监测与故障诊断方法分析
发电厂电气设备状态监测与故障诊断方法分析随着电力行业的发展,发电厂的电气设备的状态监测与故障诊断越来越受到重视。
现有的电气设备状态监测与故障诊断方法主要包括人工巡检、数据采集与分析、在线监测、智能诊断等,下面针对这些方法进行详细的分析。
一、人工巡检人工巡检是传统的电气设备状态监测与故障诊断方法,其优点是简单易行、低成本、易于实施等。
但是,它存在人力成本高、易受人的主观判断影响、难以实现全面覆盖等缺点。
因此,目前逐渐被其他方法所替代。
二、数据采集与分析数据采集与分析指的是通过传感器等技术手段,对电气设备进行实时数据采集,并借助数据分析软件进行数据处理和分析,提取有用的信息,以实现状态监测与故障诊断。
这种方法可以实现实时监测和自动诊断,避免了人工巡检的缺点,但是缺点是需要高质量的采集数据和精细的数据分析算法支持。
三、在线监测在线监测是指在运行时实时捕捉信号并分析处理数据的技术,有助于及时发现故障,减轻其损失。
在线监测可以对电气设备的信号进行实时抓取,一旦监测到异常值,就可以快速报警,并进行针对性检修。
在线监测相较于传统的手动检测和数据采集与分析,具有更高的效率和准确性。
四、智能诊断智能诊断可以精准地对电气设备的故障进行定位。
智能诊断旨在通过对电气设备状态监测与故障诊断的数据进行分析,利用人工智能、机器学习等技术手段,建立准确的故障诊断模型,并快速准确地进行故障诊断。
该方法通过分析设备运行数据,建立设备的运行模型,实现多维度故障诊断,最终实现对电气设备运行状态的自动监测、管理与调度,提高了设备的稳定性和可靠性。
总之,不管采用哪种方法进行电气设备状态监测与故障诊断,都需要建立高质量、精细的数据采集体系和数据分析算法支持。
同时,还需要以数据为基础,结合先进的技术手段,实现故障预测、故障诊断、故障预警等多项功能,丰富电气设备状态监测与故障诊断的应用场景。
电气设备状态监测与故障诊断系统的研究
电气设备状态监测与故障诊断系统的研究摘要:电气设备状态监测与故障诊断系统是整个电力系统状态检修的重要组成。
本文阐述了一个电气设备状态监测与故障诊断系统的结构组成及功能,并着重介绍了变压器状态监测及故障诊断实现的方式。
本系统利用在线及离线测量技术获得电气设备试验数据,并通过对试验的数据分析,获取设备的绝缘状态及可能存在的故障。
关键词:电气设备故障诊断检修1 电气设备状态检测重要性电气设备的定期检修试验,是整个电力系统长期以来的一条原则。
状态检修是根据设备当下的实际情况决定它是否需要及时检修,对需要进行检修的设备及时修理,以保证其安全性和运行的可靠性,对于不需要检修的设备,可以延长其检修周期,在需要检修时再进行检修。
目前实际系统中造成电气设备内部各类安全隐患有很多,例如:出厂时试验不严格、厂家设计不够合理、搬运安装工程中不规范操作也可能导致绝缘损伤等。
较轻的安全隐患在试验中较难发现,而随着设备使用年限的增加,又在外部强大电磁交融的诱导下,安全隐患会逐步转换为故障,会导致供电系统随时出现停电故障,会影响到整个系统供电质量。
那么,电气预防试验则是电力系统设备可靠运行有效的保障。
2 故障诊断系统的功能及构成2.1 故障诊断系统的功能本文介绍的故障诊断系统的功能有如下几个主要方面。
(1)数据浏览电气设备的状态监测和故障诊断系统采用的是浏览器方式实现。
使用者可以在任何一台联网机上查询有关设备的数据和工作状态,也可以要求主机对设备的数据进行计算、分析和判断,并将分析结论返回给使用者。
诊断中用到的数据则是由数据库获取,而诊断结果存到数据库中。
这样,使得本系统与数据库紧密结合在一起,可以实现资源共享,成为一个有机整体。
(2)故障和灾害的分析计算。
当电气设备发生故障和灾害时,有助于分析发生的原因和对损失的计算等。
(3)智能诊断。
将神经网络、专家系统、粗糙集理论这些人工智能理论使用到设备的运行状态和故障的判断,故障诊断和检修建议。
《电气设备状态监测与故障诊断技术》复习提纲(附答案)
《电气设备状态监测与故障诊断技术》复习提纲1预防性试验的缺乏之处〔P4〕答:1、需停电进展试验,而不少重要电力设备,轻易不能停顿运行。
2、停电后设备状态〔如作用电压、温度等〕与运行中不符,影响推断准确度。
3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期内发生故障。
4、由于是定期检查和修理,设备状态即使良好时,按打算也需进展试验和修理,造成人力物力铺张,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度修理。
2状态修理的原理〔P4〕答:绝缘的劣化、缺陷的进展虽然具有统计性,进展的速度也有快慢,但大多具有肯定的发展期。
在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。
随着电子、计算机、光电、信号处理和各种传感技术的进展,可以对电力设备进展在线状态监测,准时取得各种即使是很微弱的信息。
对这些信息进展处理和综合分析,依据其数值的大小及变化趋势,可对绝缘的牢靠性随似乎做出推断并对绝缘的剩余寿命做出推测,从而能早期觉察埋伏的故障,必要时可供给预警或规定的操作。
3老化的定义〔P12〕答:电气设备的绝缘在运行中会受到各种因素〔如电场、热、机械应力、环境因素等〕的作用,内部将发生简单的化学、物理变化,会导致性能渐渐劣化,这种现象称为老化。
4电气设备的绝缘在运行中通常会受到哪些类型的老化作用?(P12)答:有热老化、电老化、机械老化、环境老化、多应力老化等。
5热老化的定义〔P12〕答:由于在热的长期作用下发生的老化称为热老化。
6 什么是8℃规章?〔P13〕答:依据 V.M.Montsinger 提出的绝缘寿命与温度间的阅历关系式可知,lnL 和 t 呈线性关系,并且温度每上升 8℃,绝缘寿命大约削减一半,此即所谓8℃规章。
7在弱电场和强电场的作用下,设备绝缘的电气特性有哪些?答:〔1〕在强电场〔外施场强大于该介质的击穿强度〕下,将消灭放电、闪络、击穿等现象,这在气体中表现最为明显。
电气设备在线监测与故障诊断技术综述
电气设备在线监测与故障诊断技术综述周远超摘㊀要:随着经济的发展ꎬ国内电量需求日益加大ꎬ电网超负荷运转ꎬ再加上电网设备自身存在一些故障ꎬ导致国内电网大面积停电的事故时有发生ꎮ文章在阐述电气设备状态监测及诊断相关概念的基础上ꎬ分析电气设备状态监测与故障诊断系统的组成及相应功能ꎬ总结并提出了目前常用的在线监测与故障诊断技术存在的问题及解决办法ꎮ关键词:电气设备ꎻ在线监测ꎻ故障诊断一㊁电气设备在线监测与故障诊断的定义与实现(一)电气设备在线监测与故障诊断的定义1.在线监测在线监测是在电气设备正常运行的前提下ꎬ利用传感技术㊁计算机技术和光电技术对电气设备状态进行连续㊁自动的监测方法ꎮ为防止产品质量问题对电气设备运行可靠性造成不利影响ꎬ采用在线监测技术ꎬ对电气设备的运行状态进行实时监测ꎬ及时发现隐患ꎮ2.故障诊断故障诊断主要是对电气设备的在线实时监测数据进行比较分析ꎬ给出设备的故障点㊁故障类型和故障发展趋势ꎬ提出有效的维修策略ꎬ以保证设备安全稳定运行ꎬ减少电气设备故障造成的不利影响ꎮ(二)电气设备在线监测与故障诊断的实现一般来说ꎬ电气设备的在线监测和故障诊断过程可分为运行信号检测㊁信号特征提取㊁运行状态识别和故障诊断结果ꎮ运行信号检测:根据对电气设备的监测和监测目的ꎬ选择相应的不同传感器ꎬ对电气设备的运行信号进行监测ꎬ将模拟信号同声传译为数字信号ꎮ信号特征提取:保留或增加信号中有用的部分ꎬ提取一些与电气设备故障有关的信号ꎬ便于后续故障诊断ꎮ二㊁制约电气设备状态在线监测与故障诊断技术的问题根据以往的经验ꎬ从停电后电气设备的诊断和维护过渡到电气设备的诊断和评估ꎬ确定电气设备的剩余寿命ꎬ并提供维修计划ꎬ是一项重大的技术变革ꎮ它需要大量的技术支持ꎮ根据我国国情ꎬ引进先进技术ꎬ开展长期的实践工作和经验ꎬ总结了防治的技术流程ꎮ电气设备的在线监测与故障诊断技术是实现无停电检修的基本和必要条件ꎮ因此ꎬ要发展电气设备在线监测与故障诊断技术ꎬ必须解决运行中存在的问题ꎮ(一)在线监测设备稳定性在线监测设备的稳定性是电气设备在线监测与故障诊断技术广泛应用的基础和必要条件ꎮ电气设备监测元件老化㊁电气设备状态在线监测和故障诊断设备中使用的元器件种类繁多ꎬ而电子元器件在恶劣的环境条件下ꎬ经受住电网电压㊁短路等正常故障的考验ꎬ很容易损坏ꎮ对于温度变化范围大㊁工作环境恶劣的电器元件ꎬ也要求其工作温度和稳定性要求较高ꎮ但是ꎬ如果后台工控机的质量不能得到保证ꎬ很容易受到负载的冲击ꎬ导致主板㊁控制器等元器件损坏ꎬ导致频繁的死机ꎮ监测电气设备的电磁兼容性和防止电磁干扰一直是阻碍电气设备在线监测与故障诊断技术发展的重要原因ꎮ制造商一直在不断地研究和探索这个问题ꎮ从现有技术来看ꎬ在线监测主要是软硬件结合ꎬ软件是电气设备在线监测的主导因素ꎬ但在强电磁场干扰下ꎬ监测信号的提取非常困难ꎮ虽然已经取得了一流的进展ꎬ但在实际运行过程中ꎬ不同变电站的干扰是不同的ꎬ需要具体分析才能得到在线监测结果ꎮ因此ꎬ有必要在积累大量经验的基础上ꎬ根据不同的工作环境定制相应的设备标准ꎮ电气设备的现场维护监测ꎬ由于电气设备的在线监测设备长期工作在复杂的环境中ꎬ受多种因素的影响ꎮ电子元器件的老化速度和灵敏度下降很快ꎬ导致采集的数据存在一定的误差ꎬ需要定期更换和维修ꎮ这就要求生产厂家对电气设备进行在线监测ꎬ给出准确的设备维护和更换时间ꎮ电力监控不仅可以对这些设备进行归档ꎬ建立信息ꎬ以便及时更换和维护以及相应的维修队伍ꎬ并增设专职岗位负责ꎮ(二)实行电气设备状态在线监测与故障诊断系统标准化电气设备在线监测与故障诊断技术尚处于起步阶段ꎮ相关软件和技术还不成熟ꎬ软件有待开发和完善ꎮ而且ꎬ互相交流是不现实的ꎮ电气设备在线监测与故障诊断技术的标准化在短期内是不可能建立的ꎮ为了发展电气设备在线监测和故障诊断技术ꎬ必须建立标准的产品模型和信息管理系统ꎬ采用标准的现场总线技术和数据管理系统ꎬ相互借鉴ꎬ统一标准ꎬ使设备的任何一部分都可以由不同的厂家更换ꎬ不同厂家的不同产品具有一定的可开发性㊁互换性和可扩展性ꎬ减少维修的制约性和依赖性ꎬ降低维修成本和人员ꎬ以便用户及时维修和维护电气监控设备ꎮ(三)电气设备剩余寿命的精确预测电气设备在线监测与故障诊断技术的最大优点是根据大量的数据和实证分析来判断电气设备在正常情况下的使用寿命ꎮ在电气设备正常运行的情况下ꎬ故障主要分为初次安装调试一年左右暴露的故障ꎬ在稳定期为5~10年期间ꎬ定期检查主要是为了延长电气监控设备的使用寿命ꎻ在劣化期从10年开始到20年ꎬ根据实际情况逐步增加定期检查的频率ꎬ根据大量监测数据判断电气设备的剩余寿命ꎻ主要采用20年以上的风险期ꎬ要持续监测ꎬ准确预测剩余寿命ꎬ制订更换和维护计划ꎮ三㊁结束语随着电力设备状态检修策略的全面推广和智能电网的加速发展ꎬ状态监测与故障诊断技术将得到广泛应用ꎮ电气设备状态监测系统和诊断结果的准确性将直接影响状态检修策略的有效实施ꎮ因此ꎬ电力系统状态监测应与前沿技术成果紧密结合ꎬ创新开发智能化㊁系统化的信息诊断专家应用系统ꎬ提高电气设备运行的可靠性ꎬ优化设备状态检修策略ꎮ参考文献:[1]钟连宏ꎬ梁异先.智能变电站技术应用[M].北京:北京出版社ꎬ2019.[2]王波ꎬ陆承宇.数字化变电站继电保护的GOOSE网络方案[J].电力系统自动化ꎬ2019(37).作者简介:周远超ꎬ男ꎬ山东省青岛市ꎬ研究方向:电气方向ꎮ222。
电气设备设施管理“三三二五制”规定与监测、检测、故障诊断及技术评估方法
电气管理“三三二五制”规定与监测、检测、故障诊断及技术评估方法一、电气管理“三三二五制”的规定:(一)、认真执行三图、三票、三定、五规程、五记录制度:1、“三图”指一次系统图、二次回路图、电缆走向图。
2、“三票”指工作票、操作票、临时用电票。
3、“三定”指定期检修、定期清扫、定期试验。
4、“五规程”是指检修规程、试验规程、运行规程、安全规程、事故处理规程。
5、“五记录”指检修记录、试验记录、运行记录、事故记录、设备缺陷记录。
6、各单位电气一次系统图、二次原理图、电缆走向图应是完整的竣工图纸,必须与现场实际相吻合,并绘制电子版以便及时修改。
7、6KV及以上等级的变电所必须健全模拟图,电气设备运行及维护部门必须有各系统完整的二次接线图,图纸要与实际完全相符。
8、二次系统的改接以及保护连锁的摘除与恢复必须经由单位主管电气的经理审核批准后方可进行。
电气设备运行及维护部门必须有完整的电缆走向图。
9、电气作业要严格执行工作票制度、工作许可制度、工作监护制度、工作间断、转移和终结恢复送电制度,“三票”(《第一种工作票》、《第二种工作票》、《变电站(所)倒闸操作票》、《临时用电作业许可证》)的填写内容要依据《电业安全工作规程》(发电厂和变电所电气部分)等要求进行规范填写,内容准确、字迹清晰、工整,严禁有任何涂改。
10、签名处要由相关人员亲笔填写,不得代笔。
11、“三票”的保存时间为一年。
(二)、工作票规定:1、工作票是允许在电气设备上从事作业的书面命令,工作票制度是保证工作人员人身和设备安全的具体组织措施。
2、公司电气工作人员及在公司各单位(场所)进行施工作业的外来施工人员必须遵照《电业安全工作规程》的规定严格执行,严禁不使用工作票在电气设备上工作。
3、工作票的签发必须由符合资格的车间专责技术工程师或车间主任完成,不得由他人代签。
4、工作票中地线的封拆要严格按照《电业安全工作规程》的规定执行,坚决杜绝带地线分合刀闸或带电封地线等恶性事故发生。
电气设备的状态监测与故障诊断
电气设备的状态监测与故障诊断随着电气设备在各行各业的广泛应用,电气设备的状态监测与故障诊断变得尤为重要。
它不仅可以提高设备的可靠性和安全性,还能降低维修成本,延长设备的使用寿命。
本文将从监测技术的发展、故障诊断的方法以及未来的发展方向等方面探讨电气设备的状态监测与故障诊断。
一、监测技术的发展近年来,随着传感器技术的进步和数据通信技术的发展,电气设备的状态监测技术取得了长足的进步。
传统的监测方法主要是通过人工巡检,无法及时准确地获取设备状态信息,且容易漏检。
而现在,通过各种传感器可以实时监测设备的电流、电压、温度、振动等参数,从而及时发现异常信号。
例如,电气设备的温度是其正常运行的重要指标之一。
传统的温度监测需要工作人员定期使用温度计测量设备的温度。
而现在,可以通过温度传感器实时采集设备的温度,并将数据传输到中央监控系统进行分析。
当设备温度异常时,监控系统会自动报警,提醒工作人员进行检修,从而避免设备由于过热而引起的故障。
二、故障诊断的方法电气设备的故障诊断是指通过对设备的状态监测数据进行分析,判断设备是否存在故障,并找出故障的原因和位置。
目前,常见的故障诊断方法有基于规则的诊断和基于模型的诊断。
基于规则的诊断方法是通过建立故障的规则库,将设备状态监测数据与规则进行匹配,从而判断设备是否存在故障。
这种方法在一些简单的故障诊断中比较常用,但是由于无法考虑到各种复杂的因素,对于一些复杂的故障诊断往往效果不佳。
而基于模型的诊断方法是通过建立设备的数学模型,将设备状态监测数据与模型进行比较,从而找出设备故障的原因和位置。
这种方法可以考虑到设备的复杂因素,并能提供更精确的故障诊断结果。
但是,建立模型需要花费较大的人力和物力,且模型的准确性对诊断结果有很大影响。
三、未来的发展方向随着人工智能技术的不断发展和应用,电气设备的状态监测与故障诊断将迎来新的发展机遇。
目前,人工智能技术已经在一些大型电力设备和机械设备的状态监测与故障诊断中得到应用。
电气设备状态监测与故障诊断word版本
电气设备状态监测与故障诊断1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
电气设备状态监测与故障诊断
电气设备状态监测与故障诊断1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
电气设备状态监测与故障诊断技术
电气设备状态监测与故障诊断技术1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
电气设备的状态监测与故障诊断
电气设备的状态监测与故障诊断随着电气设备应用范围的不断扩大,设备的运行状态及故障诊断成为了一个重要的研究方向。
电气设备状态监测与故障诊断技术不仅对于设备的运行效率和安全性具有重要意义,也能够节约维护成本和提高设备寿命。
本文将分别从状态监测和故障诊断两个方面进行探讨。
一、电气设备状态监测电气设备的状态监测是指通过各种手段对电气设备的运行状态进行实时监测和评估,在设备状态变化前提前发现问题,从而及时进行维护和修复,保证设备的正常运行并延长设备的使用寿命。
电气设备状态监测需要实现对三大工业环节的全面监测,即设备的运行情况、气体感应情况以及机械振动情况。
1. 设备运行情况设备运行情况是通过监测设备的电流、电压、功率、温度等参数,分析设备发生故障的原因和位置,并提供预警信息。
现在大多数电气设备的运行数据都可以通过物联网的方式实时上传到云端,通过云端分析和处理的方式对设备进行监测。
2. 气体感应情况气体感应情况是指通过对变电设备中气体成分及其变化情况进行监测,判断设备的状态,从而提前发现电气设备可能存在的故障。
目前,常用的气体监测方法主要有红外吸收法、色谱法等,其中红外吸收法是目前最为常用的方法之一。
3. 机械振动情况机械振动情况是指通过对设备振动信号的分析和处理,判断设备是否存在故障或者要发生故障。
监测机械振动需要使用专业的振动传感器和数据采集系统。
二、电气设备故障诊断电气设备故障诊断是指在设备发生故障时,通过对设备进行分析和处理,找出故障原因,并进行修复,从而恢复设备正常运行状态。
电气设备故障诊断具有以下几个方面的内容。
1. 故障预测故障预测是在设备运行中,通过对设备的故障危险程度进行评估,提前预测可能会发生故障的设备,并提供相应的措施来避免设备故障。
故障预测需要通过设备运行数据的统计分析和数据挖掘算法实现。
2. 故障定位设备遭受故障时,需要对故障进行定位,找出故障点,并进行修复,以保证设备的正常运行。
电力系统中的设备状态监测与故障诊断
电力系统中的设备状态监测与故障诊断电力系统是现代社会不可或缺的基础设施,它为工业、商业和居民提供了稳定可靠的电力供应。
然而,与电力系统的规模不断扩大和负荷不断增加相比,设备故障和事故的发生频率也在逐渐上升。
因此,电力系统中的设备状态监测与故障诊断显得尤为重要。
设备状态监测是通过对电力系统中的设备进行实时监测和数据采集来了解设备的工作状态和运行特征,以及预测设备的健康状况。
它可以帮助电力系统运维人员及时发现设备故障、预测设备失效,从而采取相应的维修措施,避免设备故障给电网运行带来的不良影响。
一种常见的设备状态监测方法是利用传感器对电力系统中的设备进行连续监测。
这些传感器可以监测设备的温度、振动、声音、电流和电压等参数,将采集到的数据实时传输到监控中心或云平台上进行处理和分析。
通过对这些数据进行挖掘和诊断,可以及时发现设备运行异常和潜在故障的蛛丝马迹。
另一种设备状态监测方法是利用无人机技术进行设备巡检。
无人机可以搭载各种传感器和摄像设备,通过飞行巡检电力系统中的设备,实时采集设备的图像、视频和数据等信息。
这些数据可以帮助运维人员发现设备的损坏、腐蚀、松动等异常情况,及时进行维护和修复,避免设备故障的发生。
除了设备状态监测外,故障诊断是电力系统中的另一个重要环节。
故障诊断是通过对设备故障的原因和特征进行分析和判断,找出故障根源,制定合理的维修方案。
常见的故障诊断方法包括传统的经验法和基于人工智能的智能诊断法。
传统的经验法是依靠运维人员多年的经验和知识来判断设备故障的原因和位置。
这种方法具有经济、便捷的特点,但也存在主观性强、缺乏准确性和可靠性的问题。
随着人工智能技术的快速发展,基于人工智能的智能诊断法逐渐引起了人们的关注。
基于人工智能的智能诊断法利用机器学习、数据挖掘和模式识别等技术,从大量的历史数据中学习和提取设备故障的模式和规律。
通过与实时监测数据进行比对和分析,可以及时判断设备是否存在故障,以及故障的类型和位置。
电力设备的状态监测与故障诊断
电力设备的状态监测与故障诊断电力设备作为现代工业和生活的基石之一,其正常运行对于社会经济的发展至关重要。
然而,电力设备的长期使用不可避免地会出现各种各样的问题,例如电气故障、设备老化以及不当操作等。
为了确保电力系统的稳定运行,状态监测与故障诊断技术被广泛应用。
一、状态监测技术电力设备状态监测技术是通过实时数据采集、分析和处理,对设备的运行状态进行监测和评估的一种技术。
它可以帮助工程师及时发现设备的异常状况,预测设备可能出现的故障,并采取相应的维修措施,避免设备停机造成的经济损失。
1.1 无线传感技术无线传感技术是一种监测设备状态的有效手段。
传统的有线监测系统需要铺设大量的电缆,不仅造成空间上的限制,还增加了安装和维护的成本。
而无线传感技术则可以通过传感器直接读取设备的参数,并通过无线通信将数据传输到监测中心。
这种技术不仅提高了监测的灵活性和可靠性,还节省了大量的成本。
1.2 数据分析与处理状态监测技术采集到的数据需要经过一系列的分析和处理才能转化为有用的信息。
利用数据分析算法,我们可以提取出设备的特征参数,对数据进行特征提取和降维,以减少数据量和提高分析效率。
同时,对数据进行故障诊断和预测,可以帮助工程师及时发现设备的异常行为,预测设备的寿命并制定相应的维修计划。
二、故障诊断技术故障诊断技术是通过对设备运行过程中的各种故障进行分析和判断,找出故障原因,并提出相应的维修和保养方案。
故障诊断技术主要包括以下几个方面:2.1 特征提取与分析特征提取是故障诊断的基础。
通过对设备运行数据进行分析,我们可以提取出与故障相关的特征参数。
例如,电机轴承的振动信号可以反映出轴承的磨损程度,而电力变压器的温度可以反映出变压器的负载情况。
通过对这些特征参数的提取和分析,可以准确判断设备是否存在故障。
2.2 故障诊断方法故障诊断方法是指根据特定的故障特征和模式,对设备的故障进行判断和鉴定的方法。
常用的故障诊断方法包括模式识别、人工智能、神经网络等。
电力系统设备状态监测与故障诊断技术分析
电力系统设备状态监测与故障诊断技术分析1. 引言1.1 电力系统设备状态监测与故障诊断技术分析的重要性电力系统设备状态监测与故障诊断技术在电力系统运行中起着至关重要的作用。
随着电力系统规模的不断扩大和复杂性的增加,设备状态监测与故障诊断技术的重要性也日益凸显。
通过实时监测电力系统设备的状态,可以及时发现设备的异常情况,提前预警可能的故障发生,避免因设备故障导致的停电事故,保障电力系统的稳定运行。
设备状态监测与故障诊断技术可以帮助电力系统运维人员对设备进行有效管理和维护,延长设备的使用寿命,提高电力系统的可靠性和安全性。
通过分析设备状态监测数据,可以为电力系统运行和维护决策提供科学依据,提升运行效率和降低运维成本。
深入研究和应用电力系统设备状态监测与故障诊断技术,对于确保电力系统的正常运行,提高能源利用效率,保障电力供应的持续稳定具有重要意义。
1.2 研究背景电力系统设备状态监测与故障诊断技术一直是电力系统领域的重要研究方向。
随着电力系统的发展和电力设备的增多,保障电力系统设备的正常运行和及时发现故障已成为亟待解决的问题。
研究背景包括电力系统设备涉及的电力设备种类繁多,设备的运行状态与安全性直接关系到电力系统运行的可靠性和稳定性;电力系统设备故障会给生产生活带来严重影响。
通过引入先进的监测与诊断技术,可以实现对电力系统设备状态的实时监测和故障的及时诊断,从而提高电力系统的运行效率和可靠性。
为此,本论文将对电力系统设备状态监测与故障诊断技术进行深入分析与探讨,以期为电力系统设备状态监测与故障诊断技术的研究与应用提供有益的借鉴和指导。
1.3 研究目的电力系统设备状态监测与故障诊断技术分析的研究目的是为了提高电力系统的可靠性和安全性,降低设备故障所带来的损失,优化设备运行维护策略,提高设备利用率和能源利用效率。
通过对各种监测技术和故障诊断技术的研究,可以实时监测设备运行状态,及时发现潜在问题并进行预测性维护,确保设备运行在最佳状态。
电力设备故障诊断与状态监测技术
电力设备故障诊断与状态监测技术随着电力行业的快速发展,电力设备的故障诊断和状态监测技术变得异常重要。
电力设备是电力系统运行的核心,其正常运行保障着电力供应的可靠性和稳定性。
因此,及时有效地诊断设备故障并进行状态监测,对于提高电力系统的可靠性和安全性具有关键性的作用。
首先,电力设备故障诊断技术是防范设备故障的重要手段。
故障诊断技术主要通过精确、迅速地确定设备故障的类型、位置和原因,为设备维修提供准确的信息和指导。
目前,根据设备类型和故障特点,电力设备故障诊断技术主要包括以下几种方法。
第一种方法是基于传统的测量和检测技术,如温度、振动、声波和气体检测等。
这些技术通过采集设备运行状态的实时数据,结合经验与分析,可以有效地判断设备是否存在故障,并对故障类型进行初步诊断。
例如,测量设备温度可以判断设备是否发生过载或过热,并通过对温度变化趋势的分析,可以预测设备故障的可能性。
第二种方法是基于故障模式识别技术,通过建立设备故障的模型库,结合故障特征提取和匹配算法,可以快速准确地诊断设备故障。
例如,对于变压器故障诊断,可以通过收集变压器运行数据,提取特征参数,并将其与故障模式库进行比对,从而准确地判断设备故障的类型和位置。
第三种方法是基于人工智能和机器学习技术,通过对大量数据进行处理和分析,建立设备故障的预测模型。
这种方法能够在设备故障发生之前提前发现潜在的问题,并采取相应的措施进行修复或预防。
例如,通过建立神经网络模型,可以对电力设备进行故障预测和状态监测,以提高电力设备的维护效率和可靠性。
除了故障诊断技术,电力设备状态监测技术也是提高设备可靠性和安全性的重要手段。
状态监测技术通过对设备运行状态进行实时监测,可以及时有效地发现设备的异常情况,并及时采取措施进行修复或维护。
当前,电力设备状态监测技术主要包括以下几种方法。
第一种方法是基于传感器技术,通过安装各类传感器对设备的电流、电压、温度、振动等参数进行实时监测。
电力设备状态监测与故障诊断
电力设备状态监测与故障诊断随着电力系统的不断发展,电力设备的状态监测和故障诊断变得越来越重要。
电力设备的正常运行对于保障电力系统的稳定运行以及电力供应的可靠性至关重要。
而当电力设备出现故障时,不仅可能导致电力系统瘫痪,还会对生产、生活以及环境带来严重的影响。
因此,对电力设备的状态进行实时监测和故障诊断显得尤为重要。
一、电力设备状态监测的重要性电力设备状态监测是通过对电力设备的各项参数、指标进行实时、连续、自动、远程的检测和监视,对设备的工作状态进行评估和判断的过程。
电力设备状态监测的主要优势在于它可以及时发现设备运行中的问题,避免因设备状态恶化而导致的故障和事故发生。
除此之外,电力设备状态监测还可以帮助电力系统的管理人员进行运行决策,提高设备的可用性和可靠性。
例如,对于高压开关设备的状态监测,可以通过检测温度、电流、电压等指标来判断设备的工作状况。
通过实时监测,可以及时发现设备的异常情况,如过载、温度异常等,并及时采取相应的措施。
这样就可以避免因设备故障而引发的火灾、停电等严重后果,保障电力系统的稳定运行。
二、电力设备故障诊断的意义电力设备故障诊断是在电力设备发生故障时,通过采集和分析设备工作状态的变化,确定故障的类型、位置和原因,并提出相应的修复方案的过程。
电力设备故障诊断的意义在于可以帮助维护人员快速准确地确定故障原因,并迅速采取相应的措施,以减少故障对电力系统的影响。
电力设备的故障种类繁多,可能包括线路短路、设备损坏、绝缘击穿等。
这些故障会导致设备无法正常运行,甚至造成设备烧毁、爆炸等严重后果。
通过故障诊断,可以帮助维护人员及时了解故障的发生,并迅速修复,从而减少因故障而带来的停电时间和设备维修费用。
三、电力设备状态监测与故障诊断的方法1. 传统方法传统的电力设备状态监测和故障诊断主要依靠人工巡检和定期检测。
这种方法需要维护人员定期进入现场,使用检测仪器对设备进行检查和测试。
然而,这种方法存在人力成本高、效率低等问题。
电气设备的状态监测与故障诊断
-
1— 4
科 黑江— 技信总 — 龙— —
科 技论 坛 l l l
马 晓 伟 卜令 勇 丁 宏 学
电气设 的状态监测 与故 障诊 断
( 黑龙江建龙钢铁 有限公司, 黑龙江 双鸭山 15 0 ) 5 10
摘 要 : 文主要就 目 电器设备 的状 态监测及故障诊 断技术做一分析 阐述。 本 前 关键词 : 电器设备 ; 态监测 ; 状 故障诊 断 状态监测是通过各种测量、检测和分析方 法, 结合 系统运行 的历史和现状 , 对设备 的运行 状态进行评估 ,以便了解和掌握设备 的运行状 况。 并且对设备状态进行显示和记录 , 对异常情 况进行处理 , 并为设备的故障分析、 能评估提 性 供基础数据。 1 高压断路器的状态监测 1 断路器合、 闸线圈电流的监测 . 1 分 高压断路器一般都以电磁铁作为操作 的第 级控制元件 , 操动机构中使用的绝大部分是直 流电磁铁。当线圈中通过电流时 , 电磁铁 内产 在 生磁通 , 动铁心受磁力吸引 , 断路器分l 使 戈合 闸, 从能量角度看 , 电磁铁的作用是把来 自电源 的电能转化为磁能 , 并通 过动铁心 的动作 , 再转 换成机械功输出。合 、 分闸线圈的电流中含有可 作为诊断机械故障用 的丰富信息 , 以选用补偿 可 式霍尔电流传感器监测电流信号。 对线圈电流的 监测主要是提取事件发生的相对时刻 , 根据时间 间隔来判断故障征兆 , 于诊断拒动 、 对 误动故障 有效。 1 断路器行程、 . 2 速度的监测 位移量采集是靠光电式行程传感器来实现 的。其工作原理如下 : 把旋转光栅安装在断路器 操动机构的主轴上 , 利用光栅和光 电断续器的相 对运动 , 经光电转换, 将速度行程信号转换 为电
一
直接监测 : 应用压力传感器 , 通过测量合闸 其在线监测过程 , 是将变压器本体油经循环管路 弹簧压力值的大小 , 判断弹簧压缩状态。这种方 循环并进入脱气装置 ,经脱气装置进入分析仪 , 法需要在机构上安装压力传感器。 在经数 据处理打印出可燃气体等的谱图及含量 间接监测 : 应用电流传感器 , 通过测量储能 值 , 主要根据变压器油中溶解气体 甲烷、 乙烷、 乙 电动机的工作电流变换及工作时间, 监测合闸弹 块等 , 反映出变压器内部是放电故障还是过热故 簧的状态 , 通过分析电流波形得到 电流特征参数 障 。 22 .局部放电的监测 的变化 , 从而反映弹簧状态的变化 。 1 . 6真空度的检测 变压器绝缘内部若存在如气泡或局部电场 现有对 真空度测定 的方法主要有 : 观察法 , 增强等缺陷, 中这些局部区域内可能发生放 运行 但导体间绝缘并未发生贯穿性击穿 , 为局 称 仅仅用 于对玻璃外壳的真空灭弧室适应 。 并且只 电, 能作为经验判断 , 参考使用 ; 交流耐压法 , 在分闸 部放电 , 局部放电本身是绝缘老化的原 因。设备 状态下 的真空断路器的触头间施加交流 电压 , 根 发生击穿事故前 , 往往以局部放电为其先兆。其 据电压施力 口过程中相关参数的变化来判定真 监测主要采用: 安装在接地线与套管末屏引下线 安装 空度 , 但这种方法只能为真空灭弧室的真空状况 上的电流传感器提取放 电的脉 冲电流信号 ; 提供—个相 略的判定 , 不能判断真空度 的变化趋 在外壳上 的 超声传感器提取局部放电的声信号 。 势, 只是 一个定性的判断方法 , 有时和实际结果 声 、 电信号经过数据采集单元实现数字化测量并 并不一致; 火花计法, 这种方法也仅适用于玻璃 送人计算机进行数据处理与存储。 为了抑制电磁 管真空灭弧室 , 使用时, 让火花探漏仪在灭弧室 于扰 ,采用了包括数字滤波技术在 内的各种干 表面移动, 根据高频电场作用下不同的发光情况 扰。 来判 断 真 空度 。 3电缆的状态监测 31 流叠 加法 .直 1 . 7动态 电 阻的 监测 般的 S 6断路器有 主触头和弧触 头 , F 灭 借助电抗器将直流电压在线叠加于电缆绝 弧主要靠弧触头, 断路器在闭合状态时 , 测得的 缘 , 即直流电源经电抗器连接于三相导线 , 由 并 通 回路 电阻主要时主触头接触 电阻和弧触头接触 并联电容来免除交流高压对直流电源的影响 , 电阻的并联值 , 一般情况下 , 主触头接触电阻 比 过测量流过绝缘的直流电流进行诊断。 于 电缆 由 信号。 经数据处理后可得断路器操作过程中的行 弧触头接触电阻小的多 , 以所测回路电阻无法 绝缘处于交流高压的作用下 , 所 尽管所加直流电压 程和速度 随时间的变化关 系。 据此可计算出以下 反映弧触头的烧损情况 。 不高, 仍能真实反映绝缘的实际情况。 在分闸过程 中, 主触 头矢分离 , 开断电流转 32 .介质损耗因 ̄(n 8避 t a 参数 :动触头行 程,超行程 ,刚分后及 刚分前 lrs o 内平均值等。通过触头的时间一行程信号 移到弧触头上 , e 弧触头问先出现 电弧 , 借助灭弧 将加于电缆的电压( 电压互感器) 通过 及流过 可以提取触头运动过程中各个事件发生 的时刻 , 装置使 电弧熄灭。如果弧触头严重烧损 , 在分断 绝缘的工频电流( 通过电流互感器) 信号取出, 再 根据事件时间来诊断故障。 过程中先于主触头分离 , 则灭弧装置不能发挥作 通 过数 字化 测 量装 置 测 出 电缆绝 缘 的 tn8。根 a 1 开断电流累计监测 . 3 用, 这样会导致断路器烧损 。从主触头分离到弧 据资料分析 ,当 t a 8> %时 , n 1 绝缘可判为不 在分闸过程中 ,由高压电流互感器和二次 触头分离这段时间称为有效接触时间 , 其行程称 良。 由此法所得信息反映的是绝缘缺陷的平均程 电流传感器测量高压开关的主电流波形 , 通过测 为有效接触行程。 只有保证弧触头有足够有效接 度 。 通过检测 33 _复合判断法 量触头每次开断 电流 , 经过数据处理得到该次开 触行程和时间才能使断路器顺利灭弧。 断电流的有效值 , 然后根据下式计算 : 断路器动作过程 中的回路 电阻变化曲线可以不 由于绝缘状态与其特性参数间的统计分散 仅用一种方法来诊断绝缘 , 会有漏判 和虚警 用拆开断路器就能得到弧触头的有效接触时间, 性, Q ∑ =m-I 这种检测方法称为动态回路检测, 测得的电阻称 的可能。采用几种方法, 互相配合进行复合诊断 其中 : n为开断 的次数 ; n为该 次开断电 为动态 回路电阻 , I b 用以区别通常的在断路器闭合 可提高诊断的正确性。资料表明, 采用包含直流 流 的有 效 值 ; 开 断 电 流 指 数 ; a为 Q为 开 断 电 流 时测得的回路电阻, 后者称为静态回路 电阻。 叠加法以及 t 8的复合诊断 ,对不 良电缆诊 a n 的加权 累计值。 Q值超过闭值时, Q 当 当 值超过 1 机械振动信号的监测 - 8 断准确率高达 10 0 %。根据测量装置的难易程度 机械振动信号是一个丰富的信息载体 , 包含 现场 的干扰情况 ,采 用包含直流叠加及 t 8 a n 阈值时, 则表明应该检修、 更换 , 从而间接的反映 触头的磨损情况。 有大量的设备状态信息 , 由 系列瞬态波形构 的复合诊断是较好的选择 。 它 一 1 . 分闸时间, 4合、 同期测量 成 ,每一个瞬态波形都是断路器操作期 间内部 4 金属氧化物避雷器 的状态监测 的反映。 振动是对设备内部多种激励源的 41 .补偿法 监测阻性电流:基本原理是在测 关于合分闸时间及同期 的测量 电路 原理 , “ 事件” 既是在断路器断 口上下接线端子接上测量信号 响应 , 对高压断路器而言 , 激励源包括 分合 闸电 量电流 的同时 , 检测 系统 的电压 , 利用 电压信号 线, 当断路器合上时, 信号线上有电流流过 , 经光 磁铁 、 储能机构、 脱扣机构 、 四连杆机构等内部构 消除 泄漏 电流 中 的容性 电流 分量 。 电隔 离器 、 电压 比较 器 , 出高 电平 信 号 ; 输 当断 路 件的运动。 断路器机械状态的改变将导致振动信 42 波 分析 法 监测 阻 性 电流 :原 理 是在 正 -谐 这是利用振动信号作为故障诊断依据 弦交流电压下 ,由于避雷器阀片的非线性特性 , 器分开时 , 信号线上无电流通过 , 出信号是一 号的变化 , 输 而使 低电平。 测量 系统 以一 定 时 间周 期 同时 读取 所 有 的理论基础 。 通过适 当的检测手段和信号处理方 阻性电流分量中除基波外还含有高次谐波 , 断 口的信号, 以操作线圈电流信号 为起点 , 计算 法 , 以识 别 振 动的 激励 源 , 找 出故 障 源 。 可 从而 阀 片发热 的仅是 阻性 电 流 中的基 波 分量 , 是 即正 基波分量才是避雷器劣化的关键指标 。 通过数字 出各个相的各断 【的分合闸时问和相间与相内 J l 2变压器的状态监测 化测 量 和 谐 波 分 析技 术 可 以 从 总 泄漏 电流 中分 的同期差。这种技术只能用于临时性  ̄l t l 。 V r … 21 压 器 油色 谱 在线 监测 .变 油色谱在线监测是灵敏度较高 的 测试方法, 离 出基 波 电流 。 责任 编辑 : 兆杰 孙 1 . 5合闸弹簧状态监测
电气设备状态监测与故障诊断方法
电气设备状态监测与故障诊断方法首先,常见的状态监测方法包括使用传感器对设备进行实时监测,监测设备的参数如电压、电流、温度、湿度等。
这些监测数据可以通过自动化系统实时采集和处理,然后进行状态分析,如果发现异常,就可以及时采取措施进行处理。
其次,故障诊断方法可以采用传统的手动检查和测试,也可以通过数据分析和算法识别。
手动检查和测试需要对设备进行拆卸和检查,这种方法操作繁琐,且难以确保对设备进行全面的检测。
而数据分析和算法识别则可以利用监测数据,通过模型识别故障模式,并对故障进行定位和分析。
对于电气设备状态监测与故障诊断,需要充分考虑实际的应用场景和设备特性,选择合适的监测方法和诊断手段。
同时,还需要不断研究和创新,结合新的技术手段,提高状态监测和故障诊断的准确性和效率。
通过科学的监测与诊断方法,可以确保电气设备的可靠性和安全性,为电力系统的稳定提供保障。
电气设备状态监测与故障诊断是电气工程领域中非常重要的一个环节。
通过监测和诊断,可以及时发现电气设备的异常情况,提前预防故障的发生,确保设备的正常运行和安全稳定的电力系统。
下面将介绍一些常见的电气设备状态监测与故障诊断方法。
传感器是电气设备状态监测的重要工具。
传感器可以监测设备的电流、电压、温度、湿度等参数,并将这些数据传输至监测系统中。
通过分析这些数据,可以得知设备运行状态是否正常。
此外,还可以使用振动传感器来监测设备的振动情况,这对于早期发现设备的机械故障非常有帮助。
另一种常见的监测方法是热红外成像技术。
这种技术可以通过红外相机监测设备的热量分布情况。
通过对比正常和异常情况下的热量分布图,可以识别出设备潜在的热问题,如过载、接触不良等。
这可以帮助工程师在设备损坏之前就采取相应的措施,防止事故的发生。
除了实时监测外,数据分析也是重要的一环。
通过数据分析和处理,可以对监测到的大量数据进行归纳、分析和挖掘隐藏的信息。
数据分析可以帮助找出设备的生命周期变化趋势,预测设备的寿命,从而提前进行维护和更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气设备状态监测与故障诊断1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
但是,如前所述,对于大型设备,突发性事故将造成巨大损失。
其后,发展成定期试验和维修,即预防性维修。
现在,定期预防性试验和维修已在电力部门形成制度,对减少和防止事故的发生起到了很好的作用。
但预防性试验是离线进行的,有很多不足之处:1) 离线试验需停电进行,而不少重要电力设备轻易不能停止运行。
2) 停电后设备状态(如作用电压、温度等)和运行中不符,影响判断准确度。
3) 由于是周期性定期检查,而不是连续地随时监测,设备仍可能在试验间隔期间发生故障,即造成维修不足。
4) 由于是定期检查和维修,设备状态即使良好时,按计划仍需进行试验和维修,造成人力物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓维修过度。
因此,目前正在发展以状态监测(通常是在线监测)和故障诊断为基础的状态维修。
其基本原理可简述如下。
设备的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。
在这期间,会产生各种前期征兆,表现为其电气、物理、化学等特性发生少量渐进的变化。
随着电子技术、计算机技术、光电技术、信号处理技术和各种传感技术的发展,可以对电气设备进行在线的状态监测,及时取得各种即使是微弱的信息。
对这些信息进行处理和综合分析后,根据其数值的大小及变化趋势,可对设备的可靠性随时作出判断和对设备的剩余寿命作出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。
状态监测(在线监测)与故障诊断技术的特点是可以对电气设备在运行状态下进行连续或随时的监测与判断,故可避免上述预防性试验的缺点。
在线监测和离线试验也不是对立的,而是相辅相成的。
如在线监测中发现事故隐患后,必要时在离线状态下进行更为彻底的全面检查。
采用状态监测与故障诊断技术后,可以使预防性维修向预知性维修即状态维修过渡,从“到期必修”过渡到“该修则修”。
状态监测与故障诊断技术有很大的难度。
潜伏性故障前期征兆的信号通常极为微弱,而运行条件下现场又存在强烈的电磁干扰。
因此,抑制各种干扰,提高信噪比是在线监测中首先必须解决的难题。
此外,监测到的各种特征量和设备的状态通常也不是一一对应的,而具有错综复杂的关系。
如果说离线的预防性试验结果的分析,已经积累了大量经验,据此可以制订出相应的规程推广施行(当然也需要根据科学技术的发展,不断加以修订补充);那么对于在线诊断现在则仍处于研究试行、积累经验的阶段。
发展在线诊断技术,既需对设备结构及其老化机理有深入的了解,也需应用传感、微电子等高新技术。
它是具有交叉学科性质的一门新兴技术,有重大的学术意义,也有显著的经济价值。
1.3 状态监测与故障诊断技术的发展概况国外对电气设备状态监测与故障诊断技术的研究,始于60年代。
各发达国家都很重视。
但直到70~80年代,随着传感、计算机、光纤等高新技术的发展与应用,设备在线诊断技术才真正得到迅速发展。
加拿大、日本、前苏联等国陆续研制了油中溶解气体,变压器、发电机、气体绝缘封闭组合电器(GIS)等的局部放电,电容型设备的介质损耗因数(tgδ)等特性,交链聚乙烯电缆的泄漏电流等等的在线监测系统。
其中少数已发展成为正式产品。
国际大电网会议于1990年发表了关于电气绝缘诊断技术的综述性报告,对这一领域截止80年代未的研究成果作了系统的总结。
我国对电气设备状态监测与故障诊断技术的重要性也早已认识。
60年代就提出过不少带电试验的方法,但由于操作复杂,测量结果分散性大,没有得到推广。
80年代以来,随着高新技术的发展与应用,我国的电气设备在线诊断技术也得到了迅猛发展。
由于我国工业发展迅速,用电一直紧张,加之部分设备故障率较高,因此,对于推行在线诊断技术以提高电力系统的运行可靠性更为迫切。
我国高等院校和电力部门科研院所的不少有关专业都相继开展了这方面的研究。
自1985年以来,由电力部主持,先后三次(分别在安徽、湖北、广东三省)召开了全国电力设备绝缘带电测试、诊断技术交流会,不仅进行了学术交流,而且就如何发展和推广在线诊断技术开展了讨论。
可以认为,我国电气设备状态监测与故障诊断技术的研究和国际上是同步发展的,处于几乎相同的水平。
由于状态监测与故障诊断技术的难度,不论是国内,还是国外,除个别项目以外,大多还不很成熟,仍处于研究发展阶段。
由于客观的需要,相信这门技术一定能迅速发展成长,从而对提高电力系统的运行水平发挥巨大的作用。
1.4 状态监测与故障诊断系统的组成1.4.1 系统分类监测与诊断系统可分成以下几种类型:1) 简易式:功能简单。
如模拟量监测装置,机械式或荧光屏显示。
又如便携式数据采集器,由数码管显示或将采得数据带回,输入计算机处理。
2) 以单片机为核心的监测装置:以单片机为核心,结合传感器、多路开关、模/数转换器、微型打印机和固化在可编程序存储器中的软件,可组成最简单的连续监测系统。
3) 以计算机为核心的监测系统:采用单台计算机代替单片机,可以提高系统的数据处理能力,增加分析诊断功能。
可发展为分级管理的分布式监测诊断系统。
1.4.2 基本单元监测与诊断系统包括以下基本单元。
1) 信息的检出及适配单元:由相应的传感器从待测设备上检出反映设备状态的物理量(特征量)并将其转换为合适的电信号,向后续单元传送。
2) 数据采集及前置单元:对传感器变送来的信号进行预处理,主要是对混杂在信号中的干扰进行抑制以提高信噪比。
对经过预处理的信号进行A/D转换及采集记录。
3) 信息的传输单元:将采集到的信息传送到后续单元。
对于固定式监测系统,因数据处理单元远离现场,故需配置专门的信息传输单元;对便携式检测装置,只需对信号进行适当的变换和隔离。
4) 数据处理单元:对所采集到的数据进行处理和分析,例如读取特征值,作时域频域分析、平均处理等,为诊断提供有效的数据。
5) 诊断单元: 对处理后数据及历史数据、判据、规程以及运行经验等进行分析比较,对设备的状态及故障部位作出判断,为采取进一步措施(如需否退出运行、安排维修计划等)提供依据,必要时提供预警。
由于特征量和状态不是一一对应, 需作综合性的分析与判断,专家的经验会发挥重要作用。
人工智能的重要分支C专家系统在诊断技术中的应用已得到重视。
2 电容型设备的监测与诊断2.1 概述电介质的耐电强度通常随其厚度的增加而下降,因此电力电容器常由一些极间介质厚度较小的电容元件串联组成。
电容型套管、电容型电流互感器的绝缘中也设有一些均压电极,将较厚的绝缘分隔为若干份较薄的绝缘,也形成了电容串联结构。
由于结构上的这一共同特点,电力电容器、耦合电容器、电容型套管、电容型电流互感器以及电容型电压互感器等统称为电容型设备。
设电容型设备的绝缘完好时,流经绝缘的电流超前电压U的相位φ为π/2弧度(见图1)。
相对于其他电气设备,电容型设备的工作电场强度较高,长期工作后设备绝缘可能发生局部损坏,即绝缘老化,此时流经绝缘的电流变化为。
由图1可看出,监测电流值的变化ΔI/I、绝缘的介质损耗因数tgδ(相应于电流相量Δ 的实部)以及电容量的变化ΔC/C(相应于电流相量Δ 的虚部),可判断电容型设备是否已有绝缘缺陷。
2.2 介质损耗因数监测介质损耗因数是衡量电力设备绝缘性能的重要指标之一,长期以来大多用西林电桥测量。
在线监测要求测量过程自动化,不宜采用电桥,改为采用数字化测量技术。
对电力设备绝缘,流经绝缘的电流i的相位超前绝缘两端电压u的相位小于π /2弧度,介质损耗角δ=(π/2)- 。
使用数字化测量技术就是通过先测量,然后按公式计算来求得介质损耗角δ。
以下将介绍两种介质损耗角的数字化测量方法:过零点时差法和正弦波参数法。
2.2.1 过零点时差法流经绝缘的电流i和绝缘两端的电压u是频率f为约50Hz的正弦波。
过零点时差法是在时域中,通过脉冲计数来测量正弦电流、电压由负变正过零点的时差ΔT,再换算为i超前u的相位差,并进而算得介质损耗角δ的一种方法。
已知正弦波的周期T=1/f,在测得过零点时差ΔT后,易知φ=2π(ΔT/T),而δ=(π/2)- =(π/2)-2π(ΔT/T)。
为采用脉冲计数流来测量过零点时差,要将正弦波形的电流i(t)、电压u(t)整形为相应的方波A、B,如图2所示。
应用方波A·B来控制脉冲计数器对时基脉冲的计数,若计数器计得的脉冲数为n,而时基脉冲的重复周期为τ,则ΔT≈nτ.。
当τ以微秒计时,测量装置对、也即对δ的分辨为πτ×10-4。
可知为使装置具有必需的分辨率,时期脉冲的重复周期τ应足够短。
2.2.2 正弦波参数法设流经绝缘的电流i=Imsin(ωt+ i),绝缘两端的电压u=Umsin(ωt+ u)。
正弦波参数法是通过模/数转换,将电流、电压信号离散化后,应用一定的算法,求得正弦波参数Im、i、Um、u,再计算出i超前u的相伴差,并进而算得介质损耗角δ的一种方法。