2019-2020年高中数学 第二章《解三角形》之正弦定理教案 北师大版必修5

合集下载

北师大版高中数学必修5《二章解三角形1正弦定理与余弦定理1.1正弦定理》赛课导学案_14

北师大版高中数学必修5《二章解三角形1正弦定理与余弦定理1.1正弦定理》赛课导学案_14

《正弦定理》教学设计一、教学内容解析:正弦定理是解决三角形的重要定理之一,也是必修五的重要章节,在历届高考中都是重要考点,无论选填还是大题都会考到,因此在必修五中的位置是不言而喻的。

教材先讲解该定理在直角三角形中的形式,在此基础上,将此结论推广至其他三角形,通过学习这部分知识,一方面可以加深学生对向量知识的理解,另一方面可以让学生体会到三角形和三角函数之间的内在关系。

二、教学目标设置:1.知识与能力:通过教学,使学生熟悉定理的内容,通过对任意三角形边长和对角正弦关系的探索,掌握正弦定理的内容及其证明方法;2.过程和方法:通过教学,使学生体会正弦定理在解决三角形中的重要作用让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角正弦的关系,引导学生通过观察,推导,比较,归纳出正弦定理,并进行定理的基本应用。

3.态度、情感、价值观:通过教学,培养学生合情推理探索数学规律的数学思想,通过三角函数、正弦定理、向量的数量积等知识之间的联系来体现事物之间的普遍联系与辩证统一。

重点:正弦定理的探索和证明及其基本应用。

难点:利用向量法证明正弦定理课型:新授课教学方法:讲授法启发讨论三、学生学情分析:经过高一的学习,学生虽然有了一定的数学基础但并不是很扎实;虽然对高中数学的学习有了自己的学习方法但还需要不断的调整;学生虽然聪明但欠缺踏实;虽然对新知识充满好奇但欠缺探索精神。

四、教学策略分析:针对学生的学情,为了使学生理解所学的知识,最大限度的了解知识的来龙去脉,最大限度的提升学生探求知识的能力,本节课我打算以“七个问题”作为主线,层层递进,引导学生进行讨论,同时进行分组指导,让学生在轻松的氛围中学习知识,理解知识,同时在总结中让学生对知识的理解得到升华。

五、教学过程⑴提出问题:1.在直角三角形中,三边和其对角的正弦的比值有什么关系?2.在等边三角形中(1)中的结论是否也成立?3.在其他的三角形中上述结论是否也成立?这种必然现象如何解释?4.上述结论如何用面积法,向量法进行证明?5.正弦定理如何叙述?6.正弦定理的变形公式有那些?7.正弦定理的基本应用是什么?⑵典例解析例1在△ABC 中,已知a =8,B =60°,C =75°,求A ,bc.析:指导学生讨论完成变式训练:已知△ABC 中,a =20,A =30°,C =45°,求B ,b ,c. 方法总结:本题属于已知两角与一边求解三角形的类型,若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边;若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.例2已知△ABC 中,6c,C=3, a =2,求A,B,b 析:指导学生讨论完成变式训练在△ABC中,b=3,B=60°c=1求C,A,a方法总结:已知三角形两边和其中一边的对角解三角形时的方法首先由正弦定理求出另一边对角的正弦值.如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.⑶课堂小结:本节课我们主要学习了正弦定理的内容及其证明,在此基础上学会了如何运用该定理解决三角形中已知两角和一边及已知两边和其中一边的对角两类问题,希望大家在理解定理的同时,加强对定理的应用。

正弦定理、余弦定理说课稿北师大版(优秀教案)

正弦定理、余弦定理说课稿北师大版(优秀教案)

正、余弦定理(说课稿)一、教材分析正弦定理是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系。

提出两个实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:()已知两角和一边,解三角形:()已知两边和其中一边的对角,解三角形。

二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标.知识与技能:()引导学生发现正弦定理的内容,探索证明正弦定理的方法;()简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题.过程与方法:通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法..情感、态度与价值观:()通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;()通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养.四、教学重点、难点教学重点:.正弦定理的推导. .正弦定理的运用教学难点:.正弦定理的推导. .正弦定理的运用.五、学法与教法学法与教学用具学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。

高中数学 第二章 解三角形教案 北师大版必修5

高中数学 第二章 解三角形教案 北师大版必修5

第二章解三角形§1正弦定理与余弦定理1.1 正弦定理(教师用书独具)●三维目标1.知识与技能通过对任意三角形边长和角度的关系探索,掌握正弦定理的内容及其证明方法;会用正弦定理与三角形内角和定理解斜三角形的基本问题.2.过程与方法让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生观察、推导、比较,由特殊到一般归纳出正弦定理.3.情感、态度与价值观培养学生在方程思想指导下处理三角形问题的运算能力;培养学生合情推理探索数学规律的能力.●重点难点重点:正弦定理的探索的证明及其应用.难点:已知两边和其中一边的对角解三角形时判断个数.(教师用书独具)●教学建议已知两边和其中一边的对角解三角形时判断个数,此类问题有两个、一个、零个的情况,需要进行讨论,可做如下处理:在△ABC中,已知a,b和A时三角形解的情况:A为锐角A为钝角或直角图 像关系式 ①a =b sin A②a ≥b b sin A<a <b a <b sin Aa >ba ≤b解的个数 一解两解无解一解无解●教学流程创设问题情境,提出了2个问题⇒通过引导学生回答所提问题,理解正弦定理及三角形面积公式⇒通过例1及互动探究,使学生掌握利用正弦定理解三角形问题⇒通过例2及变式训练,使学生掌握三角形面积公式的应用⇒通过例3及变式训练,使学生掌握判断三角形的形状问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第32页)课标解读1.通过对特殊三角形边角间数量关系的研究,发现正弦定理,了解其向量证法(难点).2.掌握正弦定理,并能解决一些简单的三角形度量问题(重点).正弦定理【问题导思】在Rt △ABC 中,c 为斜边,试问a sin A ,b sin B ,csin C 的值相等吗?为什么?对于一般的三角形而言,a sin A ,b sin B ,csin C的值是否相等?【提示】 在Rt △ABC 中,∵sin A =a c ,sin B =b c且C =90°, ∴a sin A =b sin B =csin C.对一般的三角形而言,也相等. 语言表述 在一个三角形中,各边和它所对角的正弦的比相等符号表示 asin A =bsin B =csin C比值的 含义a sin A =b sin B =csin C=2R(其中R 为△ABC 的外接圆半径)变形(1)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C.作用 揭示了三角形边、角之间的数量关系三角形面积公式【问题导思】在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等吗?猜想一下在一般三角形中是否成立?【提示】 ∵C =90°,∴S △ABC =12ab =12ab sin C ,设边c 上的高为h , 则sin B =ha ,sin A =h b,∴S △ABC =12hc =12ac sin B =12bc sin A ,∴在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等.猜想在一般三角形中也成立.三角形ABC 的面积:S =12ab sin__C=12bc sin__A =12ac sin__B .(对应学生用书第32页)利用正弦定理解三角形在△ABC 中,(1)若A =45°,B =30°,a =2,求b ,c 与C ; (2)若B =30°,b =5,c =53,求A 、C 与a .【思路探究】 (1)已知A ,B ,如何求C ?在正弦定理中b ,c 分别怎样表示? (2)已知B ,b ,c 运用正弦定理可先求出哪个量? 【自主解答】 (1)由三角形内角和定理,得:C =180°-(A +B )=180°-(45°+30°)=105°.由正弦定理a sin A =b sin B =csin C ,得b =a sin B sin A =2sin 30°sin 45°=2×1222=2,sin 105°=sin(60°+45°)=6+24, c =a sin C sin A =2sin 105°sin 45°=2×6+2422=3+1. (2)∵b =5,c =53,B =30°, ∴c ·si n B <b <c , ∴△ABC 有两解, 由正弦定理得:sin C =c sin B b =32, ∴C =60°或120°.当C =60°时,A =90°,易得a =10; 当C =120°时,A =30°,此时a =b =5.1.已知两角与任一边解三角形,可先利用三角形内角和定理求第三个角,再利用正弦定理求出两未知边.2.已知△ABC 的两边a ,b 和角A ,判断三角形解的个数,有以下两种方法: 法一 作图判断.作出已知角A ,边长b ,以点C 为圆心,以边长a 为半径画弧,与射线AB 的公共点(除去顶点A )的个数即为三角形解的个数.法二 根据三角函数的性质来判断. 由正弦定理,得sin B =b sin A a ,当b sin A a >1时,无解;当b sin Aa=1时,有一解;当b sin Aa<1时,如果a ≥b ,即A ≥B ,则B 一定为锐角,有一解;如果a <b ,即A <B ,有两解.本例(2)中,若B =60°,b =43,a =42,如何求解? 【解】 由正弦定理a sin A =b sin B =csin C,得 sin A =a sin Bb =42sin 60°43=22, 又a <b ,∴A =45°,C =180°-A -B =75°.∴c =b sin C sin B =43sin 75°sin 60°=43×2+6432=2(2+6).三角形的面积问题在△ABC 中,sin(C -A )=1,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.【思路探究】 (1)先寻找角A 、B 间的关系,再求sin A. (2)先由正弦定理求BC ,再代入三角形的面积公式求解. 【自主解答】 (1)由C -A =π2和A +B +C =π,得2A =π2-B ,0<A <π4.故cos 2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63. 又由正弦定理,得BC sin A =AC sin B ,BC =sin Asin BAC =32,又C =π2+A ,∴sin C =cos A =63.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A=3 2.1.求三角形的面积是在已知两边及其夹角的情况下求得的,所以在解题中要有目的的为具备两边及其夹角的条件作准备.2.三角形面积计算公式(1)S =12a ·h a =12b ·h b =12c ·h c (h a 、h b 、h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).已知△ABC 中,AB →·AC →<0,S △ABC =154,|AB →|=3,|AC →|=5,则∠BAC =( ) A .30° B .120° C .150° D .30°或150° 【解析】 由S △ABC =154,得12×3×5sin ∠BAC =154,∴sin ∠BAC =12,又由AB →·AC →<0,得∠BAC >90°, ∴∠BAC =150°. 【答案】 C判断三角形的形状已知△ABC 中,b sin B =c sin C ,且sin 2A =sin 2B +sin 2C ,试判断三角形的形状.【思路探究】 利用正弦定理的变形(如a =2R sin A ),将条件中的角化为边,或将边化为角,从而进行判断.【自主解答】 法一 由b sin B =c sin C 得,2R sin 2B =2R sin 2C , 即sin 2B =sin 2C. ∵0<B <π,0<C <π, ∴sin B >0,sin C >0. ∴sin B =sin C ,∴B =C.又sin 2A =sin 2B +sin 2C ,A =π-(B +C )=π-2B , ∴sin 22B =2sin 2B. 即4sin 2B ·cos 2B =2sin 2B. ∴cos 2B =12.由A =π-2B ∈(0,π)知,0<B <π2.∴cos B =22,∴B =π4,A =π2. 故△ABC 是等腰直角三角形.法二 由b sin B =c sin C 得:b ·2R sin B =c ·2R sin C , ∴b 2=c 2,b =c .由sin 2A =sin 2B +sin 2C 得,(2R sin A )2=(2R sin B )2+(2R sin C )2, ∴a 2=b 2+c 2,结合b =c 知,△ABC 为等腰直角三角形.1.本题已知三角形中的边角关系式,判断三角形的形状,可考虑使用正弦定理,把关系式中的边化为角,再进行三角恒等变换求出三个角之间的关系式,然后给予判定.2.在正弦定理的推广中,a =2R sin A ,b =2R sin B ,c =2R sin C 是边化角的主要工具.其他变形还有角化边,如sin A =a 2R ,sin B =b 2R ,sin C =c2R ,借助正弦定理可以进行三角形形状的判断,三角恒等式的证明.在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状.【解】 由已知得a 2sin B cos B =b 2sin Acos A,由正弦定理a =2R sin A ,b =2R sin B (R 为△ABC 的外接圆半径),得 4R 2sin 2A sinB cos B =4R 2sin 2B sin Acos A ,sin A cos A =sin B cos B , ∴sin 2A =sin 2B. ∴2A +2B =π或2A =2B. ∴A +B =π2或A -B =0.∴△ABC 为等腰三角形或直角三角形.(对应学生用书第34页)解三角形时忽视讨论致误在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且b =6,a =23,A =30°,求△ABC 的面积.【错解】 由正弦定理得: sin B =b sin A a =6×sin 30°23=32, ∴B =60°.故C =180°-A -B =180°-30°-60°=90°, 在Rt △ABC 中,C =90°,a =23,b =6, 故S △ABC =12ab =12×23×6=6 3.【错因分析】 上述解答错误之处在于在利用正弦定理求得sin B =32后直接得出B =60°,未对解的情况作出判断和讨论,从而导致丢解.【防范措施】 遇到已知两边及其中一边对角解三角形时一定要讨论. 【正解】 由正弦定理得, sin B =b sin A a =6×sin 30°23=32. 由b =6,a =23知,b >a ,∴B >A =30°. ∴B =60°或120°.(1)当B =60°时,C =180°-A -B =90°. ∴S △ABC =12ab =12×6×23=6 3.(2)当B =120°时,C =180°-A -B =30°. ∴S △ABC =12ab sin C =12×6×23×sin 30°=3 3.综合以上得△ABC 的面积为63或3 3.1.应用正弦定理可解决两类三角形问题:(1)已知三角形两角及一边;(2)已知两边及其中一边的对角. 2.已知两边及其中一边的对角解三角形时,要注意分类讨论.3.正弦定理揭示了三角形中边、角之间的数量关系,可以借助三角形外接圆的半径,用边表示角或用角表示边,从而在解决有关问题时,可利用其“化边为角”或“化角为边”.(对应学生用书第34页)1.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin A D .a cos B =b cos A 【解析】 由正弦定理得a sin A =bsin B,∴a sin B =b sin A.【答案】 C2.在△ABC 中,A =30°,C =105°,b =8,则a 等于( )A .4B .4 2C .4 3D .4 5【解析】 由三角形内角和定理知B =180°-A -C =180°-30°-105°=45°.由正弦定理a sin A =b sin B ,得a =b sin A sin B =8·sin 30°sin 45°=4 2.【答案】 B3.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________.【解析】 根据正弦定理,a sin A =csin C,由3a =2c sin A ,得3sin A =2sin C sin A , ∴sin C =32,而角C 是锐角,∴C =π3. 【答案】π34.在△ABC 中,求证:a 2sin 2B +b 2sin 2A =2ab sin C. 【证明】 由正弦定理得a 2sin 2B +b 2sin 2A ab =a b sin 2B +basin 2A=sin A ·sin 2B sin B +sin B ·sin 2Asin A=2(sin A ·cos B +sin B ·cos A ) =2sin(A +B )=2sin C ,故原式成立.(对应学生用书第97页)一、选择题1.在△ABC 中,下列a 与b sin A 的关系正确的是( ) A .a >b sin A B .a ≥b sin A C .a <b sin A D .a ≤b sin A 【解析】 由正弦定理得a sin A =bsin B,所以a =b sin Asin B,又因为sin B ∈(0,1], 所以a ≥b sin A. 【答案】 B2.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 【解析】 ∵a sin B =102, ∴a sin B <b =3<a =5, ∴符合条件的三角形有2个. 【答案】 B3.在△ABC 中,若A =75°,B =45°,c =6,则△ABC 的面积为( ) A .9+3 3 B.9(6-2)2C.9+332 D.9(6+2)2【解析】 ∵A =75°,B =45°,∴C =60°,b =c sin Bsin C=6×2232=26,∴S △ABC =12bc sin A =12×26×6×6+24=9+3 3.【答案】 A4.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且a cos B +a cos C =b +c ,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形【解析】 ∵a cos B +a cos C =b +c ,故由正弦定理得,sin A cos B +sin A cos C =sin B +sin C =sin(A +C )+sin(A +B ), 化简得:cos A (sin B +sin C )=0,又sin B +sin C >0, ∴cos A =0,即A =π2,∴△ABC 为直角三角形. 【答案】 D5.(2012·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725 D.2425【解析】 由b sin B =csin C ,且8b =5c ,C =2B ,所以5c sin 2B =8c sin B ,所以cos B=45.所以cos C =cos 2B =2cos 2B -1=725. 【答案】 A 二、填空题6.在△ABC 中,B =45°,C =60°,c =1,则最短边的边长等于________. 【解析】 由三角形内角和定理知:A =75°,由边角关系知B 所对的边b 为最小边,由正弦定理b sin B =c sin C 得b =c sin B sin C =1×2232=63.【答案】637.(2013·济南高二检测)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C =________.【解析】 ∵A +B +C =180°,且A +C =2B ,∴B =60°. 由正弦定理得sin A =a sin B b =1×sin 60°3=12, 又a <b ,∴A =30°.∴C =180°-(30°+60°)=90°.即sin C =1. 【答案】 18.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 【解析】 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形,∴AB =2. 【答案】 2 三、解答题9.在△ABC 中,c =6,A =45°,a =2,求b 和B ,C. 【解】 ∵a sin A =csin C,∴sin C =c sin A a =6×sin 45°2=32. ∵c sin A <a <c ,∴C =60°或C =120°. ∴当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1, ∴当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°.10.在△ABC 中,如果lg a -lg c =lgsin B =-lg 2,且B 为锐角,判断此三角形的形状.【解】 由lg a -lg c =lgsin B =-lg 2, 得sin B =22,又B 为锐角, ∴B =45°,又a c =22,∴sin A sin C =22, ∴sin C =2sin A =2sin(135°-C ), ∴sin C =sin C +cos C , ∴cos C =0,即C =90°, 故此三角形是等腰直角三角形.11.在△ABC 中,已知tan B =3,cos C =13,AC =36,求△ABC 的面积.【解】 设△ABC 中AB 、BC 、CA 的长分别为c 、a 、b . 由tan B =3,得B =60°, ∴sin B =32,cos B =12. 又cos C =13,∴sin C =1-cos 2C =223,由正弦定理得c =b sin Csin B =36×22332=8.又∵sin A =sin(B +C )=sin B cos C +cos B sin C =36+23, ∴三角形面积S △ABC =12bc sin A =62+8 3.(教师用书独具)已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +12c =b ,(1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.【思路探究】 (1)本题可考虑把边化为角,通过寻找三角形角与角之间的关系求解; (2)将周长表示为三角形某内角的函数,通过求函数的值域来求周长的取值范围. 【自主解答】 (1)由a cos C +12c =b 和正弦定理得,sin A cos C +12sin C =sin B ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12,∵0<A <π,∴A =π3.(2)由正弦定理得,b =a sin B sin A =23sin B , c =a sin C sin A =23sin C ,则l =a +b +c =1+23(sin B +sin C )=1+23[sin B +sin(A +B )]=1+2(32sin B +12cos B )=1+2sin(B +π6). ∵A =π3,∴B ∈(0,2π3),∴B +π6∈(π6,5π6),∴sin(B +π6)∈(12,1],∴△ABC 的周长l 的取值范围为(2,3].利用正弦定理可以实现边、角互化(1)将边转化为角:a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)将角转化为边:sin A =a 2R ,sin B =b 2R ,sin C =c 2R.已知△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,若1-c 2a =sin (B -C )sin (B +C ),求cosA +C2的值.【解】 由正弦定理以及sin A =sin(B +C ),得: 1-sin C 2sin A =sin (B -C )sin A, 整理得2sin A -sin C =2sin(B -C ), ∴4cos B sin C =sin C , 又sin C ≠0, ∴cos B =14,∴1-2sin 2B 2=14,sin B 2=64, ∴cosA +C2=cos π-B 2=sin B 2=64. 趣味材料中国南宋末年数学家秦九韶发现三斜求积公式,其著作《数书九章》卷五第二题即三斜求积.“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之为实,……开平方得积.”若以大斜记为a ,中斜记为b ,小斜记为c ,秦九韶的方法相当于下面的一般公式:S =14[a 2c 2-(a 2+c 2-b 22)2],这里a >b >c .1.2 余弦定理(教师用书独具)●三维目标1.知识与技能掌握余弦定理的两种表示形式及余弦定理的向量方法;并会用余弦定理解决基本的解三角形问题.2.过程与方法利用向量数量积推出余弦定理并通过实践演算掌握运用余弦定理解决解三角形问题.3.情感、态度与价值观培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辨证统一.●重点难点重点:余弦定理的发现和证明过程及应用.难点:正、余弦定理与三角函数、三角恒等变换的综合问题.(教师用书独具)●教学建议探究和证明余弦定理的过程既是本节课的重点,也是本节课的难点.学生已具备了勾股定理的知识,即当C=90°时,有c2=a2+b2,作为一般的情况,当C≠90°时,三角形的三边满足什么呢?学生一时很难找到思路.最容易想到的思路就是构造直角三角形,尝试用勾股定理去探究三角形的边角关系.用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合.因此教师在授课时可以适当点拨、启发.鼓励学生大胆的探索.在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加深学生对余弦定理的理解,又能培养学生形成良好的思维习惯,从而突破本节难重点.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题,结合勾股定理,理解余弦定理⇒通过例1及变式训练,使学生掌握利用余弦定理解三角形问题⇒通过例2及互动探究,使学生掌握、判断三角形形状问题⇒通过例3及变式训练,使学生掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第35页)课标解读1.了解用向量数量积证明余弦定理的方法,体会向量工具在解决三角形度量问题时的作用(难点). 2.掌握余弦定理,并能解决一些简单的三角形度量问题(重点).余弦定理【问题导思】图2-1-1如图2-1-1,在△ABC 中,设CB →=a ,CA →=b ,AB →=c ,如果C =90°,如何求AB 边的长?当C ≠90°,如何用向量的数量积表示AB 边的长?【提示】 利用勾股定理求AB 的边长. |c |2=c·c =(a -b )·(a -b )=a 2-2a·b +b 2=a 2+b 2-2|a ||b |cos C ∴c 2=a 2+b 2-2ab cos C. 余弦定理语言表述三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号表示a 2=b 2+c 2-2bc cos__A ;b 2=a 2+c 2-2ac cos__B ; c 2=a 2+b 2-2ab cos__C.推论cos A =b 2+c 2-a 22bc;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.作用 实现三角形边与角的互化.(对应学生用书第35页)利用余弦定理解三角形(1)在△ABC 中,若a =1,b =1,C =120°求c ;(2)已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各内角的度数. 【思路探究】 (1)直接利用余弦定理求解. (2)先根据比值设出各边的长,再利用余弦定理求解. 【自主解答】 (1)c 2=a 2+b 2-2ab cos C =1+1-2cos 120°=3, ∴c = 3.(2)∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理得cos A =b 2+c 2-a 22bc =6+(3+1)2-426(3+1)=22,∴A =45°.cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1)=12,∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.1.本题(2)关键是根据已知条件设出三边,为使用余弦定理的推论求角创造条件. 2.余弦定理是刻画三角形两边及其夹角的余弦与第三边关系的定理.在余弦定理的每一个等式中均含有四个不同的量,它们分别是三角形的三边和一个角,知道其中的任意三个量,便可求得第四个量.(1)在△ABC 中,已知角A ,B ,C 所对的三边长分别为a ,b ,c ,若A =π4,b =2,S △ABC=2,求a .(2)在△ABC 中,a ∶b ∶c =2∶3∶13,求△ABC 中最大角的度数.【解】 (1)因为S △ABC =12bc sin A =12×2×22c =22c =2,所以c =2 2.根据余弦定理得a 2=b 2+c 2-2bc cos A =4+8-2×2×22×22=4,所以a =2. (2)∵a ∶b ∶c =2∶3∶13,∴令a =2k ,b =3k ,c =13k (k >0),由b <a <c ,知C 为△ABC 最大内角,cos C =a 2+b 2-c 22ab =4+3-132×2×3=-32,又0°<C <180°∴C =150°.判断三角形的形状在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.【思路探究】 可先把角的关系转化为边的关系,通过边来判断三角形的形状,也可把边的关系转化为角的关系,通过角来判断三角形的形状.【自主解答】 法一 由正弦定理得sin C sin B =cb ,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为(a +b +c )(a +b -c )=3ab , 所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,即b 2=c 2.所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B. 又由(a +b +c )(a +b -c )=3ab 得(a +b )2-c 2=3ab , 所以a 2+b 2-c 2+2ab =3ab ,即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°. 所以△ABC 为等边三角形.1.本题解法一利用了边的关系判断,解法二利用了角的关系判断.2.判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,此时要注意应用A +B +C =π这个结论.若将例题中的条件改为“△ABC 中,b ,c 是角B 、C 的对边,且cos 2A 2=b +c 2c”,试判断△ABC 的形状.【解】 法一 ∵cos 2A 2=1+cos A2且cos 2A 2=b +c 2c, ∴1+cos A 2=b +c 2c ,即cos A =bc. 由正弦定理,得cos A =sin B sin C,∴cos A sin C =sin(A +C ),整理得sin A cos C =0. ∵sin A ≠0,∴cos C =0,∴C =π2.故△ABC 为直角三角形.法二 同法一得cos A =b c.由余弦定理得b 2+c 2-a 22bc =b c,整理得a 2+b 2=c 2,故△ABC 为直角三角形.正、余弦定理的综合应用在△ABC 中,C =2A ,a +c =10,cos A =34,求b .【思路探究】 先根据正弦定理求出a ,c 的值,再利用余弦定理建立b 的方程求b . 【自主解答】 由正弦定理得c a =sin C sin A =sin 2A sin A =2cos A =32, 又a +c =10, ∴a =4,c =6.由余弦定理a 2=b 2+c 2-2bc cos A 得b 2-9b +20=0, 解得b =4或b =5. 当b =4时, ∵a =4,∴A =B ,又C =2A 且A +B +C =180°, ∴A =45°与cos A =34矛盾,舍去,∴b =5.1.本题易忽视检验b =4的情况导致出错.2.余弦定理和正弦定理都是解三角形的重要工具,都可以实现三角形中的边角转化.在解决三角形中的综合问题时,要有意识地合理选择,一般情况下,如果条件中含有角的余弦或边的二次式,要考虑余弦定理;若条件中含有角的正弦或边的一次式,则考虑正弦定理.学习时应注意归纳总结正、余弦定理的应用技巧,如公式的正用、逆用以及变形用等,同时牢固掌握内角和定理的运用和三角变换的技巧.已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C =3sin A sin B. 求证:A +B =120°.【证明】 由(sin A +sin B )2-sin 2C =3sin A sin B 可得sin 2A +sin 2B -sin 2C =sin A sinB.由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R,∴a 24R 2+b 24R 2-c 24R 2=a 2R ·b2R, 即a 2+b 2-c 2=ab .由余弦定理的推论得cos C =a 2+b 2-c 22ab =12,∴C =60°, ∴A +B =120°.(对应学生用书第37页)转化思想在三角形中的应用(12分)在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且a cos A =b cos B =ccos C ,试判断△ABC 的形状.【思路点拨】 可以把角转化为边,也可以把边转化为角来处理. 【规范解答】 法一 由正弦定理a sin A =b sin B =csin C=2R 得:a =2R sin A ,b =2R sin B ,c =2R sin C.代入a cos A =b cos B =c cos C 中,得:2R sin A cos A =2R sin B cos B =2R sin C cos C,4分即sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C .10分又∵A 、B 、C 是△ABC 的内角,∴A =B =C. ∴△ABC 是等边三角形.12分 法二 由余弦定理得a ·2bcb 2+c 2-a 2=b ·2ac a 2+c 2-b 2=c ·2aba 2+b 2-c 2,6分∴b 2+c 2-a 2=a 2+c 2-b 2=a 2+b 2-c 2. 得a 2=b 2=c 2,即a =b =c .10分∴△ABC 是等边三角形.12分转化也称化归,它是将未知的,陌生的,复杂的问题转为已知的,熟悉的,简单的问题,从而使问题解决的数学思想.在解三角形时,若已知条件中含边角共存的关系式时,往往可利用正弦定理或余弦定理实现边角间的互化,从而发现各元素间的关系.1.余弦定理揭示了任意三角形边角之间的客观规律,也是解三角形的重要工具,可解决以下两类问题:(1)已知两边及其夹角,求第三边和其他两角; (2)已知三边求三角.2.判断三角形的形状,应围绕三角形的边角关系进行思考,依据已知条件中的边角关系判断时,可利用正弦定理或余弦定理转化为边的关系作代数运算,也可转化角的关系,通过三角变换求解.(对应学生用书第37页)1.在△ABC 中,已知a =5,b =4,C =120°,则c 为( ) A.41 B.61 C.41或61 D.21【解析】 ∵c 2=a 2+b 2-2ab cos 120°=25+16+2×5×4×12=61.∴c =61.【答案】 B2.在△ABC 中,若a =3+1,b =3-1,c =10,则△ABC 的最大角的度数为( ) A .60° B .90° C.120° D .150° 【解析】 ∵c >a >b ,∴C 是最大角,由余弦定理得:cos C =(3+1)2+(3-1)2-(10)22×(3+1)×(3-1)=8-104=-12.∴C =120°.【答案】 C3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 【解析】 由正弦定理知a ∶b ∶c =5∶11∶13, 设a =5k ,b =11k ,c =13k (k >0),由余弦定理知cos C =a 2+b 2-c 22ab =(5k )2+(11k )2-(13k )22×5k ×11k =-23110<0,∴C 为钝角.【答案】 C4.已知△ABC 的边长满足等式a 2-(b -c )2bc =1时,求A.【解】 由a 2-(b -c )2bc =1,得b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,所以A =π3.(对应学生用书第99页)一、选择题1.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2【解析】 在△ABC 中,易知B =30°,由余弦定理得b 2=a 2+c 2-2ac cos 30°=4,∴b =2. 【答案】 A2.a 、b 、c 是△ABC 的三边,B =60°,那么a 2-ac +c 2-b 2的值( ) A .大于0 B .小于0 C .等于0 D .不确定【解析】 由余弦定理得b 2=a 2+c 2-2ac cos 60°=a 2+c 2-ac , 所以a 2-ac +c 2-b 2=(a 2+c 2-ac )-b 2=b 2-b 2=0. 【答案】 C3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2【解析】 由余弦定理得,b 2=a 2+c 2-2ac ·cos B , ∴6=a 2+2+2a ,∴a =2或-22(舍去). 【答案】 D4.(2012·上海高考)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定【解】 由正弦定理知a sin A =b sin B =csin C =2R ,∴sin A =a 2R ,sin B =b 2R ,sin C =c2R.∵sin 2A +sin 2B <sin 2C ,∴a 24R 2+b 24R 2<c 24R2,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形. 【答案】 C5.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19【解析】 由余弦定理的推论cos B =AB 2+BC 2-AC 22AB ·BC =1935,又AB →·BC →=|AB →|·|BC →|·cos (π-B )=5×7×(-1935)=-19.【答案】 D 二、填空题6.在△ABC 中,若(a -c )(a +c )=b (b -c ),则A =________. 【解析】 由(a -c )(a +c )=b (b -c )得a 2-c 2=b 2-bc , 即b 2+c 2-a 2=bc 与余弦定理b 2+c 2-a 2=2bc cos A , 比较知cos A =12,∴A =60°.【答案】 60°7.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是________. 【解析】 ∵a 是最大边,∴A >π3,又a 2<b 2+c 2,由余弦定理cos A =b 2+c 2-a 22bc >0,∴A <π2,故π3<A <π2.【答案】 (π3,π2)8.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.【解析】 在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×(-14),整理得15b -60=0.∴b =4. 【答案】 4 三、解答题9.已知△ABC 的顶点为A (2,3),B (3,-2)和C (0,0),求∠AB C. 【解】 |AB |=(3-2)2+(-2-3)2=26, |BC |=(0-3)2+[0-(-2)]2=13, |CA |=(2-0)2+(3-0)2=13, 由余弦定理得cos ∠ABC =(13)2+(26)2-(13)22×13×26=22,又∵∠ABC ∈(0,π),∴∠ABC =π4.10.a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且(sin B +sin C +sin A )(sin B +sinC -sin A )=185sin B sin C ,边b 和c 是关于x 的方程x 2-9x +25cos A =0的两根(b >c ).(1)求角A 的正弦值; (2)求边a ,b ,c ; (3)判断△ABC 的形状.【解】 (1)∵(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B ·sin C.结合正弦定理得(b +c +a )(b +c -a )=185bc ,整理得b 2+c 2-a 2=85bc .由余弦定理得cos A =b 2+c 2-a 22bc =45,∴sin A =35.(2)由(1)知方程x 2-9x +25cos A =0, 可化为x 2-9x +20=0, 解之得x =5或x =4. ∵b >c ,∴b =5,c =4.由余弦定理知:a 2=b 2+c 2-2bc cos A , ∴a =3.(3)由(1)(2)知,a 2+c 2=b 2, ∴△ABC 为直角三角形.11.(2013·潍坊高二检测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2b ·cosA =c ·cos A +a ·cos C ,(1)求角A 的大小;(2)若a =7,b +c =4,求△ABC 的面积.【解】 (1)根据正弦定理2b ·cos A =c ·cos A +a ·cos C ⇒ 2cos A sin B =sin A cos C +cos A sin C =sin(A +C )=sin B , ∵sin B ≠0,∴cos A =12,又∵0°<A <180°,∴A =60°. (2)由余弦定理得:7=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc =(b +c )2-3bc , 代入b +c =4得bc =3,故△ABC 面积为S =12bc sin A =334.(教师用书独具)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sin C.【思路探究】 本题可考虑把边化为角,通过三角变换寻找等式左、右两边的联系. 【自主解答】 由余弦定理可知:a 2=b 2+c 2-2bc ·cos A ,b 2=a 2+c 2-2ac ·cos B则a 2-b 2=b 2-a 2-2bc ·cos A +2ac ·cos B , 整理得:a 2-b 2c 2=a cos B -b cos A c , 又a c =sin A sin C ,b c =sin B sin C, ∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .【解】 法一 ∵sin B =4cos A sin C , 由正弦定理,得b 2R =4cos A c2R,∴b =4c cos A ,由余弦定理得b =4c ·b 2+c 2-a 22bc,∴b 2=2(b 2+c 2-a 2),∴b 2=2(b 2-2b ),∴b =4. 法二 由余弦定理,得a 2-c 2=b 2-2bc cos A , ∵a 2-c 2=2b ,b ≠0,∴b =2c cos A +2,①由正弦定理,得b c =sin Bsin C,又由已知得,sin Bsin C =4cos A ,∴b =4c cos A .②由①②得b =4.§2三角形中的几何计算(教师用书独具)●三维目标1.知识与技能掌握正、余弦定理解任意三角形的方法,体会正、余弦定理在平面几何计算与推理中的作用.2.过程与方法能过图形的观察、识别、分析、归纳来正确选择正、余弦定理.3.情感、态度与价值观通过本节课的探究,培养学生勇于探索、创新的学习习惯.●重点难点重点:利用正、余弦定理解决三角形中的几何计算.难点:将几何计算转化为解三角形问题.(教师用书独具)●教学建议通过例题的活动探究,要让学生结合图形理解题意,学会分析问题状态,确定合适的求解顺序,明确所用的定理.其次,在教学中还要让学生分析讨论,明确正、余弦定理各自实用的范围.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题理解三角形中的几何计算——长度、角度、面积等⇒通过例1及变式训练,使学生掌握与长度或角度有关的问题的计算⇒通过例2及变式训练,使学生掌握有关面积问题的处理⇒通过例3及变式训练,使学生进一步掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第38页)课标解读1.掌握正、余弦定理解任意三角形的方法(重点).2.提高分析问题解决问题的能力(难点).三角形中的几何计算【问题导思】图2-2-1如图2-2-1,2011年8月,利比亚战争期间,北约为了准确分析战场形势,由位于相距32a的英法两军事基地C和D,测得卡扎菲的两支精锐部队分别位于A、B两处,且∠ADB=∠BDC=30°,∠DCA=60°,∠ACB=45°.试问你能根据实例中测量的数据计算卡扎菲这支精锐部队的距离吗?【提示】在△BCD中用正弦定理求出BC,在△ABC中用余弦定理求AB的长.(对应学生用书第38页)与长度或角度有关的问题图2-2-2(2013·中山高二检测)在△ABC 中,已知B =30°,D 是BC 边上的一点,AD =10,AC =14,DC =6,(1)求∠ADC 的大小; (2)求AB 的长.【思路探究】 (1)在△ACD 中已知了AD 、AC 、DC ,可根据余弦定理求∠AD C. (2)在△ABD 中,可用正弦定理求A B.【自主解答】 (1)在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12,∴∠ADC =120°.(2)由(1)知∠ADB =60°,在△ABD 中,AD =10,B =30°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD sin ∠ADB sin B =10sin 60°sin 30°=10×3212=10 3.1.正弦、余弦定理是解三角形常用的两个重要定理,在使用时要根据题设条件,恰当选择定理,使求解更方便、简捷.2.解决此类问题要处理好两个方面:(1)找出已知某边长的三角形,从中筛选出可解三角形;(2)找要求线段所在的三角形,确定所需条件.图2-2-3如图2-2-3所示,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC=(23)22×2×23=32, 则C =30°.在△ACD 中,由正弦定理,有ADsin C=ACsin ∠ADC,∴AD =AC ·sin30°sin 45°=2×1222=2,即AD 的长度等于 2. 【答案】 2有关面积问题图2-2-4如图2-2-4所示,在△ABC 中,BC =5,AC =4,cos ∠CAD =3132且AD =BD ,求△ABC的面积.【思路探究】 先由余弦定理建立方程求CD 的长,再在△ACD 中由正弦定理求sin C ,进而可求△ABC 的面积.【自主解答】 设CD =x ,则AD =BD =5-x . 在△CAD 中,由余弦定理可知 cos ∠CAD =(5-x )2+42-x 22×4×(5-x )=3132,解得x =1.在△CAD 中,由正弦定理可知ADsin C=CDsin ∠CAD,∴sin C =AD CD·1-cos 2∠CAD =41-(3132)2=387.∴S △ABC =12AC ·BC ·sin C=12×4×5×387=1547. 即△ABC 的面积为1547.1.本题求三角形面积容易考虑用12×底×高,但高不易求得,应灵活应用三角形面积公式.2.涉及三角形面积问题通常选用S =12ab sin C =12bc sin A =12ac sin B ,这个公式中含有正弦值,可以和正弦定理建立关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是根据题中的条件选择正确的变换方向.图2-2-5如图2-2-5所示,△ABC 中,D 在边BC 上,且BD =2,DC =1,B =60°,∠ADC =150°,求AC 的长及△ABC 的面积.【解】 在△ABC 中,∠BAD =150°-60°=90°, ∴AD =BD sin 60°=2×32=3, 在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC =(3)2+12-2×3×1×cos 150°=7,∴AC =7.又∵AB =BD cos 60°=1,∴S △ABC =12AB ·BC sin B =12×1×3×32=34 3.正、余弦定理的综合应用。

2019-2020年高中数学 第二章《解三角形》之解三角形应用举例教案(四) 北师大版必修5

2019-2020年高中数学 第二章《解三角形》之解三角形应用举例教案(四) 北师大版必修5

2019-2020年高中数学第二章《解三角形》之解三角形应用举例教案(四)北师大版必修5一、教学目标1、知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用2、过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。

另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。

只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

3、情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验二、教学重点:推导三角形的面积公式并解决简单的相关题目。

教学难点:利用正弦定理、余弦定理来求证简单的证明题。

三、教学方法:探析归纳,讲练结合四、教学过程Ⅰ.课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。

在ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生:h=bsinC=csinB,h=csinA=asinC ,h=asinB=bsinaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?生:同理可得,S=bcsinA, S=acsinB师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解Ⅱ.探析新课[范例讲解]例1、在ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm )(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5
∴本题有一解.
∵sin B=
sin

=
10sin60 °
5 6
=
2
2
, ∴ = 45°,
∴A=180°-(B+C)=75°.
∴a=
sin
sin
=
10sin75 °
sin45 °
=
10×
6+ 2
4
2
2
= 5( 3 + 1).
题型一
题型二
题型三
题型四
题型二
判断三角形的形状
【例 2】 在△ABC 中,若 lg a-lg c=lg sin B=-lg 2, 且为锐角,
sin
∴C=60°或 C=120°.

当 C=60°时,A=90°,
1
∴S△ABC = ·AC·sin A=2 3.
2
当 C=120°时,A=30°,
1
∴S△ABC = ·AC·sin A= 3.
2
故三角形的面积是 2 3或 3.
=
3
2
.
1
2
3
4
5
1在△ABC中,若b=2asin B,则A的值是(
BC=
.
解析:c=AB=3,B=75°,C=60°,则 A=45°.


由正弦定理,得
=
,
所以 a=BC=
答案: 6
sin
sin
sin
3sin45 °
sin
sin60 °
=
= 6.
π
【做一做 3-2】 在△ABC 中,若 a=3,b= 3, = ,
3
.
则的大小为

北师大版高中数学必修五第二章解三角形之正弦定理教案

北师大版高中数学必修五第二章解三角形之正弦定理教案

北师大版高中数学必修5 第二章《解三角形》全部教案第一课时 §2.1.1 正弦定理一、教学目标1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3、情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

二、教学重点:正弦定理的探索和证明及其基本应用。

教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

三、教学方法:探析归纳,讲练结合 四、教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? A 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.探析新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

北师大版高中数学必修5《二章 解三角形 1 正弦定理与余弦定理 1.1正弦定理》赛课导学案_6

北师大版高中数学必修5《二章 解三角形  1 正弦定理与余弦定理  1.1正弦定理》赛课导学案_6

“正弦定理”教学设计一、教学内容解析《正弦定理》是高中课程人教A版数学(必修5)第一章第一节内容,教学安排二个课时,本节为第一课时内容。

学生在初中已经学习了直角三角形的边角关系。

教师带领学生从已有知识出发,通过对实际问题的探索,构建数学模型,利用观察-猜想-验证-发现正弦定理,并从理论上加以证实,最后进行简单的应用。

课本按照从简原则和最近发展区原则,采用“作高法”证明了正弦定理。

教学过程中,为了发展学生思维,再引导学生从向量,作外接圆,三角形面积计算等角度找到证明的途径,让学生感受数学知识相互紧密联系的特点。

正弦定理是研究任意三角形边角之间关系的重要开端;用正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;正弦定理作为三角形中的一个定理,在日常生活和工业生产中的应用又十分广泛。

因此,正弦定理的地位体现在它的基础性,作用体现在它的工具性。

二、学生学情分析我所任教的学校是一所普通高中,大多数学生基础相对薄弱,对一些重要的数学思想和数学方法的应用意识和技能还不高。

正弦定理是学生在已经系统学习了平面几何,解直角三角形,三角函数,平面向量等知识基础上进行的。

虽然对于学生来说,有一定观察、分析、解决问题的能力,但正弦定理的发现,探索、证明还是有一定的难度,教师恰当引导调动学生学习主动性,注重前后知识间的联系,激起学生学习新知的兴趣和欲望,发现并探索正弦定理。

三、教学目标定位1、掌握正弦定理的内容及其证明方法;能用正弦定理解决一些简单的三角度量问题;2、让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生通过观察、猜想、推导,由特殊到一般归纳出正弦定理,培养学生合情推理探索数学规律的数学思想能力。

3、通过参与、思考、交流,体验正弦定理的发现及探索过程,逐步学生培养探索精神和创新意识。

教学重点:正弦定理的探索与发现。

教学难点:正弦定理证明及简单应用。

四、教学策略“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。

数学 第二章 解三角形 2.1 正弦定理教案 北师大版必修5 教案

数学 第二章 解三角形 2.1 正弦定理教案 北师大版必修5 教案
学情分析
文一:在初中,学生已经学习了三角形的边和角的基本关系及相应基础知识,为学习本节正弦定理打下了坚实的基础。但是从本校学生的实际学情来看,本节内容中涉及的对三角函数、向量、三角恒等变换的应用反而成为大部分学生学好新知识的“绊脚石”。究其根本在于学生底子薄弱,这些知识的学习至今间隔有一定时间,学生无法做到“随用随取”,更遑论作为“基础”来探究新课。因此在教学设计中,对本节内容进行了适当的简化处理,使学生能更好的掌握核心内容。
由以上探究可得下面的定理.
正弦定理
在一个三角形中,各边和它所对角的正弦的比相等,即
= =
我们运用由特殊到一般的方法发现了正弦定理,这种思想方法经常用于发现数学规律。
三、运用新知
例1 在△ABC中,若sinA>sinB,则有( )
例2 在△ABC中,c=10,A=45°,C=30°,求a,b和B
例3 在△ABC中,c=错误!未找到引用源。,A=45°,a=2,求b,B和C.
即 = =c
而sinC=sin90°=1,所以可得
= =
那么对于锐角三角形,该式是否成立呢?
如图,过点C作AB边上的高CD,则有
sinA= ,CD=bsinA
sinB= ,CD=asinB
所以,bsinA=asinB,即 =
同理可得
=
所以,对于锐角三角形,等式
= =
成立。
该式对于钝角三角形是否成立?此证明留作课后练习,由学生自行证明。
练习3 在△ABC中,已知a=2,C=120°,c=错误!未找到引用源。,求B.
作业布置
专家伴读 测水平
板书设计
2.1 正弦定理
一、正弦定理
例3
例2
教学反思

高中数学北师大版第二章解三角形正弦定理与余弦定理 正弦定理教学设计

高中数学北师大版第二章解三角形正弦定理与余弦定理 正弦定理教学设计

正弦定理教学设计教学目标:1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

五、教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理的猜想提出过程。

教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。

六、教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习 ,对科技楼熟悉吗?生:当然熟悉。

师:那大家知道科技楼有多高吗?学生不知道。

激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。

生1:在楼的旁边取一个观测点C ,再用一个标杆,利用三角形相似。

师:方法可行吗?生2:B 点位置在楼内不确定,故BC 长度无法测量,一次测量不行。

师:你有什么想法?生2:可以再取一个观测点D.师:多次测量取得数据,为了能与上次数据联系,我们应把D 点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设60∠=︒ACB ,45∠=︒ADB ,CD=10m,那么我们能计算出AB 吗?生3:由tan 45tan3010οο-=AB AB 求出AB 。

师:很好,我们可否换个角度,在∆Rt ABD 中,能求出AD,也就求出了AB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学第二章《解三角形》之正弦定理教案北师大版必
修5
第一课时§2.1.1 正弦定理
一、教学目标
1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3、情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

二、教学重点:正弦定理的探索和证明及其基本应用。

教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

三、教学方法:探析归纳,讲练结合
四、教学过程
Ⅰ.课题导入
如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。

思考:C的大小与它的对边AB的长度之间有怎样的数量关系? A
显然,边AB的长度随着其对角C的大小的增大而增大。

能否
用一个等式把这种关系精确地表示出来? C B Ⅱ.探析新课
[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又, A
则 b c
从而在直角三角形ABC中, C a B
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C
同理可得, b a
从而 A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作, C
由向量的加法可得


()()
00
cos900cos90
-=+-
j AB A j CB C∴,即同理,过点C作,可得从而
类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导)从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
[理解定理]:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;(2)等价于,,从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]
例1.在中,已知,,cm,解三角形。

解:根据三角形内角和定理,;
根据正弦定理,
sin42.9sin81.8
80.1()
sin sin32.0
==≈
a B
b cm
A

根据正弦定理,
sin42.9sin66.2
74.1().
sin sin32.0
==≈
a C
c cm
A
评述:对于解三角形中的复杂运算可使用计算器。

例2.在中,已知cm ,cm ,,解三角形(角度精确到,边长精确到1cm )。

解:根据正弦定理,0
sin 28sin40sin 0.8999.20
==≈b A B a 因为<<,所以,或
⑴ 当时,00000
180()180(4064)76=-+≈-+=C A B ,0
0sin 20sin7630().sin sin40==≈a C c cm A ⑵ 当时,00000
180()180(40116)24=-+≈-+=C A B ,0
0sin 20sin2413().sin sin40==≈a C c cm A 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

Ⅲ.课堂练习:课本本节练习1和练习2。

[补充练习]已知ABC 中,sin :sin :sin 1:2:3A B C =,求 (答案:1:2:3)
Ⅳ.课时小结(由学生归纳总结):(1)定理的表示形式:()0sin sin sin a b c k k A B C ++=>++;
或,,(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业:课本习题2-1 A 组3、4
五、教后反思:。

相关文档
最新文档