高二数学课件:第二章 第三节 函数的奇偶性与周期性
高三数学复习课件【函数的奇偶性及周期性】
f(x)=- x,4x02≤+x2<,1,-1≤x<0, 则 f 32=________. 解析:∵f(x)是定义在 R 上的周期为 2 的函数,
且 f(x)=-x,4x02≤+x2<,1,-1≤x<0, ∴f 32=f -12=-4×-122+2=1. 答案:1
返回 2.已知定义在 R 上的函数满足 f(x+2)=-f1x,x∈(0,2]时,f(x)
关 于 _原__点_ 对称
f(x)就叫做奇函数
返回 2.函数的周期性 (1)周期函数
对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)=f(x) ,那么就称函数 f(x)为周期函数,称 T 为这个函数的周期. (2)最小正周期 如果在周期函数 f(x)的所有周期中存在一个 最小的正数 , 那么这个 最小正数 就叫做 f(x)的最小正周期.
关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项
定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数也
不是偶函数. 答案:B
返回
3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b
的值是
()
A.-13
B.13
C.12
D.-12
解ห้องสมุดไป่ตู้:∵f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,∴a-
奇函数,所以 f 121=f -12=-f 12=123=18. 答案:B
返回
5.函数 f(x)在 R 上为奇函数,且 x>0 时,f(x)=x+1,则当 x<0 时,f(x)=________. 解析:∵f(x)为奇函数,x>0 时,f(x)=x+1, ∴当 x<0 时,-x>0,f(x)=-f(-x)=-(-x+1), 即 x<0 时,f(x)=-(-x+1)=x-1. 答案:x-1
数学函数的奇偶性与周期性课件
数学知识点:函数的奇偶性与周期性一、考纲目标1.结合具体函数,了解函数奇偶性的含义;2.运用函数图像,理解和研究函数的奇偶性;3.了解函数的奇偶性、最小正周期的含义,会判断、应用简单函数的周期性;二、知识梳理(一)函数的奇偶性1.定义:如果对于函数 f (x)的定义域内的任意一个x,都有f(x)=f(-x)(f(-x)=f(x)),那么这个函数就是偶(奇)函数;2.性质及一些结论:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含,则因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)断函数的奇偶性有时可以用定义的等价形式:,(7)设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇(8)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(二)函数的周期性1.定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期2.简单理解:一般所说的周期是指函数的最小正周期,周期函数的定义域一定是无限集,但是我们可能只研究定义域的某个子集三、考点逐个突破1.奇偶性辨析例1.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零例2.判断下列函数的奇偶性:(1)f(x)=|x|(x2+1);(2)f(x)=x+1 x ;(3)f(x)=x-2+2-x;(4)f(x)=1-x2+x2-1;(5)f(x)=(x-1)1+x1-x.解析 (1)此函数的定义域为R.∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x),∴f(-x)=f (x),即f(x)是偶函数.(2)此函数的定义域为x>0,由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(3)此函数的定义域为{2},由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(4)此函数的定义域为{1,- 1},且f(x)=0,可知图像既关于原点对称,又关于y 轴对称,故此函数既是奇函数又是偶函数.(5)定义域:⎩⎨⎧1-x≠01+x1-x ≥0⇒-1≤x<1是关于原点不对称区间,故此函数为非奇非偶函数. 2.奇偶性的应用 例3.已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称.在中,令,得,令,得,∴,∴,即, ∴是奇函数(2)由,及是奇函数,得例4.(1)已知是上的奇函数,且当时,,则的解析式为(2)已知是偶函数,,当时,为增函数,若,且,则 ()例5设为实数,函数,(1)讨论的奇偶性; (2)求 的最小值解:(1)当时,,此时为偶函数;当时,,,∴此时函数既不是奇函数也不是偶函数(2)①当时,函数,若,则函数在上单调递减,∴函数在上的最小值为;若,函数在上的最小值为,且②当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,∴函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是3.函数周期性的应用例6.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).解 (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x -x 2, ∴f(x)=x 2+2x.又当x ∈[2,4]时,x -4∈[-2,0], ∴f(x -4)=(x -4)2+2(x -4). 又f(x)是周期为4的周期函数,∴f(x)=f(x -4)=(x -4)2+2(x -4)=x 2-6x +8. 从而求得x ∈[2,4]时,f(x)=x 2-6x +8. (3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 011)=0. 4.单调性与奇偶性的交叉应用例7.已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.①求a 、b 的值;②若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 解:①∵f(x)是定义在R 上的奇函数,∴f(0)=0, 即b -1a +2=0,∴b =1,∴f(x)=1-2x a +2x +1, 又由f(1)=-f(-1)知1-2a +4=-1-12a +1,解得a =2.②由①知f(x)=1-2x 2+2x +1=-12+12x +1,易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),∵f(x)为减函数,∴由上式得t 2-2t>k -2t 2,即对任意的t ∈R 恒有:3t 2-2t -k>0,从而Δ=4+12k<0,∴k<-13.一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2 解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+sin(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x(x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x -12x +1,∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ).又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5)D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12,f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增,∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5).二、填空题6.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x+a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-17.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎨⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎨⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a =12.答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4), 即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确, 又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误.答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝⎛⎭⎪⎫x +122-a +34,∵a≥-12,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-12≤a≤12时,函数f(x)的最小值为a2+1.。
2015届高考数学总复习第二章 第三节函数的奇偶性与周期性课件 理
又f(x+a)为偶函数,其图象关于y轴对称,
所以需将f(x)图象向左平移2个单位长度,故a=2. (法二)因为f(x)=x2-4x+3, 所以f(x+a)=x2+(2a-4)x+(a2-4a+3), 而f(x+a)为偶函数,所以2a-4=0,所以a=2.
答案:2
函数奇偶性、单调性的综合应用
【例3】 设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
点评:判断函数的奇偶性,一般有以下几种方法: (1)定义法:若函数的定义域不是关于原点对称的区间,则 立即可判断该函数既不是奇函数也不是偶函数;若函数的定义
域是关于原点对称的区间,再判断f(-x)是否等于±f(x).
(2)图象法:奇函数的图象关于原点对称,偶函数的图象关 于y轴对称. (3) 性质法:在公共定义域内,偶函数的和、差、积、商 (分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)
点评:利用函数的奇偶性可求函数解析式中参数的范围或 最值,主要方法是根据函数奇偶性的定义或奇偶函数图象的对 称关系寻找解题的突破口.
变式探究
2.设a为常数,函数f(x)=x2-4x+3,若f(x+a)为偶函 数,则a等于________. 解析:(法一)因为f(x)=(x-2)2-1,对称轴方程为x=2,
(1)讨论f(x)的奇偶性; (2)求f(x)的最小值. 解析:(1)当a=0时,f(-x)=(-x)2+|-x|+1=f(x),此时 f(x)为偶函数; 当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
∴f(-a)≠f(a),且f(-a)≠-f(a).
∴函数f(x)是非奇非偶函数.
解 析 : 注意 到 , 满足 题 中 的性 质 的 函数 有 f( - x) = -
第二章 2.3函数奇偶性与周期性
1.函数的奇偶性奇偶性定义图象特点奇函数设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数关于坐标原点对称偶函数设函数y=g(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数关于y轴对称2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建)下列函数为奇函数的是()A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x答案 D解析 对于D ,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.故选D.2.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2 答案 A解析 f (-1)=-f (1)=-(1+1)=-2. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c=f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a答案 B解析 由函数f (x )=2|x-m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0,所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0),故选B.4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ). 又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数. (2)由1-x1+x≥0可得函数的定义域为(-1,1]. ∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ). ∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( )A .F (x )是奇函数,G (x )是奇函数B .F (x )是偶函数,G (x )是奇函数C .F (x )是偶函数,G (x )是偶函数D .F (x )是奇函数,G (x )是偶函数 答案 (1)C (2)B解析 (1)易知f (x )|g (x )|的定义域为R , ∵f (x )是奇函数,g (x )是偶函数, ∴f (-x )|g (-x )|=-f (x )|g (x )|, ∴f (x )|g (x )|为奇函数.(2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x )=-G (x ), ∴F (x )是偶函数,G (x )是奇函数. 题型二 函数的周期性例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 017)=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)337 (2)2.5解析 (1)∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1.∴f (1)+f (2)+f (3)+…+f (2 017)=337. (2)由已知,可得f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0). 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=________________________________________________________________________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 题型三 函数性质的综合应用 命题点1 函数奇偶性的应用例3 (1)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A .4 B .3 C .2 D .1(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)B (2)1解析 (1)∵f (x )是奇函数,∴f (-1)=-f (1). 又g (x )是偶函数, ∴g (-1)=g (1).∵f (-1)+g (1)=2,∴g (1)-f (1)=2.① 又f (1)+g (-1)=4, ∴f (1)+g (1)=4.②由①②,得g (1)=3.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11) 答案 (1)A (2)D解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A. (2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1). ∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________. 答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x +k , ∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ). 由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x , 即⎩⎨⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论;②保证各段上同增(减)时,要注意左、右段端点值间的大小关系;③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验. 2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:35分钟)1.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( ) A .y =log 2|x |B .y =cos 2xC .y =2x -2-x 2 D .y =log 22-x 2+x答案 A解析 对于A ,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于B ,函数y =cos 2x 在区间(1,2)上不是增函数;对于C ,函数y =2x -2-x 2不是偶函数;对于D ,函数y =log 22-x2+x 不是偶函数,故选A.2.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝⎛⎭⎫lg 12等于( ) A .-1 B .0 C .1 D .2 答案 D解析 设g (x )=ln(1+9x 2-3x )=f (x )-1, g (-x )=ln(1+9x 2+3x )=ln 11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+f ⎝⎛⎭⎫lg 12-1=g (lg 2)+g ⎝⎛⎭⎫lg 12=0, 因此f (lg 2)+f ⎝⎛⎭⎫lg 12=2. 3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)等于( ) A .-2 B .2 C .-98 D .98 答案 A解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 答案 A解析 由题意知f (x )为偶函数,所以f (-2)=f (2),又x ∈[0,+∞)时,f (x )为减函数,且3>2>1, ∴f (3)<f (2)<f (1),即f (3)<f (-2)<f (1),故选A.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2) C .(-2,1) D .(-∞,-2)∪(1,+∞) 答案 C解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1. 二、填空题6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1.7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________. 答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞). 8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2.三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ). 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:25分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是( )A.⎝⎛⎭⎫1,53B.⎝⎛⎭⎫-∞,53 C .(1,3)D.⎝⎛⎭⎫53,+∞ 答案 A解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22, 即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.13.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.答案 7解析 因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7.14.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的结论:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0).其中正确结论的序号是________.答案 ①②⑤解析 对于①,f (x +2)=-f (x +1)=-[-f (x )]=f (x ),故2是函数f (x )的一个周期,故①正确;对于②,由于函数f (x )是偶函数,且函数f (x )是以2为周期的函数,则f (2-x )=f (x -2)=f (x ),即f (2-x )=f (x ),故函数f (x )的图象关于直线x =1对称,故②正确;对于③,由于函数f (x )是偶函数且在[-1,0]上是增函数,根据偶函数图象的性质可知,函数f (x )在[0,1]上是减函数,故③错误;对于④,由于函数f (x )是以2为周期的函数且在[-1,0]上为增函数,由周期函数的性质知,函数f (x )在[1,2]上是增函数,故④错误;对于⑤,由于函数f (x )是以2为周期的函数,所以f (2)=f (0),故⑤正确.综上所述,正确结论的序号是①②⑤.15.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。
函数的奇偶性与周期性
函数的奇偶性与周期性函数是数学中的一种重要工具,用来描述两个变量之间的关系。
在实际问题中,我们通常会遇到一些特殊类型的函数,比如奇函数、偶函数以及周期函数。
本文将讨论函数的奇偶性与周期性,并探究它们在数学和实际应用中的作用。
一、奇函数和偶函数奇函数和偶函数是函数在自变量取相反数时所具有的性质。
具体来说,一个函数 f(x) 是奇函数,当且仅当对于任意的 x,有 f(-x) = -f(x)。
反之,若对于任意的 x 有 f(-x) = f(x),则函数 f(x) 是偶函数。
奇函数和偶函数的性质如下:1. 对于奇函数 f(x),如果 f(a) = b,则 f(-a) = -b。
2. 对于偶函数 f(x),如果 f(a) = b,则 f(-a) = b。
3. 奇函数关于原点对称,即图像关于原点旋转180度后与原图像重合。
4. 偶函数关于 y 轴对称,即图像关于 y 轴对称。
在实际应用中,奇函数和偶函数广泛存在。
例如,奇函数在描述电路中的交流信号的正负变化、对称图形的性质等方面有广泛的应用。
而偶函数则在描述偶对称的物理现象、对称图形的性质等方面发挥重要作用。
二、周期函数周期函数是指函数在自变量增加或减少一个周期后,函数值保持不变的函数。
常见的周期函数包括正弦函数、余弦函数等三角函数。
周期函数的性质如下:1. 周期性:如果函数 f(x) 是周期为 T 的周期函数,那么对于任意的x 和正整数 k,都有 f(x + kT) = f(x)。
2. 周期的计算:对于三角函数,周期 T 可以通过函数的周期公式推导得出,例如正弦函数的周期为2π。
周期函数在科学和工程领域有广泛的应用,在描述物体振动、电磁波传播等现象时发挥重要作用。
周期函数的性质使得我们能够更好地理解和分析这些周期性的现象。
三、函数的奇偶性与周期性的关系奇函数和偶函数可以看作是周期函数的特殊形式。
事实上,任何一个周期函数都可以表示为奇函数和偶函数的和。
具体来说,如果一个函数 f(x) 是奇函数或偶函数,并且具有周期 T,那么它也是一个周期函数。
函数的奇偶性与周期性课件
∴函∴数函数f(xf)(在x)在[a,[a,++∞∞)上)上的的最最小小值值f(af()a=)=a2a+2+1.1.
综综上上,,当当 aa≤≤--1212时时,,函函数数f(fx(x)的)的最最小小值值是是34-34-a,a,当当--21<21a<≤a≤21时21时,,函函数数 ff((xx))的的最最小小值值是是aa22++11,,当当aa>>1212,,函函数数f(fx()x的)的最最小小值值是是a+a+34 34
C
0, 1 2,
2
D
0, 1 1 ,2 8 2
例:设 f x 、 gx分别是定义在 R 上的奇函数
和偶函数,当 x 0 时, f xg(x) f (x)g(x) 0
且 g(3) 0 ,则不等式 f (x)g(x) 0 的解集是
( D)
A (3,0) (3,) B (3,0) (0,3)
是奇函数,则a=________
解⇒析1-2:x2解 ⇒fx(+-析 1-2a: xx=2)=fx(+ --2a-x=2)x1= -x- -121- 1+2x+1- x- 1aa=11+⇒+1a-a22=xa2⇒=1x- +221xa2-a=x1,+21x- af-(1,-21xfx- (-- 2)=x12x-2x)-== x2xf- 1= (x. f)1(x. )
3.(2008年上海卷)设函数f(x)是定义在R上的
奇函数,若当x∈(0,+∞)时,f(x)=lg x,则 满足f(x)>0的x的取值范围(-1是,0_)_∪__(_1__,+∞)
函数奇偶性的判断
第二章 第3讲 函数的奇偶性、周期性与对称性-2025年高考数学备考
第二章函数第3讲函数的奇偶性、周期性与对称性课标要求命题点五年考情命题分析预测1.了解奇偶性的概念和几何意义.2.了解周期性的概念和几何意义.函数的奇偶性2023新高考卷ⅠT11;2023新高考卷ⅡT4;2023全国卷乙T4;2023全国卷甲T13;2022新高考卷ⅠT12;2022全国卷乙T16;2021全国卷乙T4;2021全国卷甲T12;2021新高考卷ⅠT13;2021新高考卷ⅡT8;2021新高考卷ⅡT14;2020全国卷ⅡT9;2020新高考卷ⅠT8;2019全国卷ⅡT14;2019全国卷ⅢT11本讲为高考命题重点,命题热点有函数奇偶性的判断,利用函数的奇偶性求解析式、求函数值、解不等式等,函数周期性的判断及应用.题型以选择题、填空题为主,函数性质综合命题时难度中等偏大.预计2025年高考命题稳定,备考时注重常规题型训练的同时,关注命题角度创新试题及抽象函数性质的灵活运用.函数的周期性2022新高考卷ⅠT12;2022新高考卷ⅡT8;2022全国卷乙T12函数图象的对称性2022全国卷乙T12函数性质的综合应用2022新高考卷ⅠT12;2022全国卷乙T12;2021新高考卷ⅡT8;2021全国卷甲T12;2020新高考卷ⅠT8;2019全国卷ⅢT11学生用书P0241.函数的奇偶性奇偶性定义图象特征特性单调性奇函数一般地,设函数f (x )的定义域为D ,如果∀x ∈D ,都有-x ∈D ,且①f (-x )=关于②原点对称.(1)如果定义域中包含0,那么f (0)=③0.(2)若函数在关于原在关于原点对称的区间上单调性⑤相同.-f(x),那么函数f(x)就叫做奇函数.点对称的区间上有最值,则f(x)max+f(x)min=④0.偶函数一般地,设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且⑥f(-x)=f(x),那么函数f(x)就叫做偶函数.关于⑦y轴对称.f(x)=f(|x|).在关于原点对称的区间上单调性⑧相反.注意(1)只有函数在x=0处有定义时,f(0)=0才是f(x)为奇函数的必要不充分条件;(2)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.规律总结1.常见的奇(偶)函数(1)函数f(x)=a x+a-x为偶函数,函数g(x)=a x-a-x为奇函数;(2)函数f(x)=--+-=2-12+1为奇函数,函数g(x)=log a-+为奇函数;(3)函数f(x)=log a(x+2+1)为奇函数,函数g(x)=log a(2+1-x)也为奇函数.2.函数奇偶性的拓展结论(1)若函数y=f(x+a)是偶函数,则f(x+a)=f(-x+a),函数y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x+b)是奇函数,则f(x+b)+f(-x+b)=0,函数y=f(x)的图象关于点(b,0)中心对称.2.函数的周期性(1)周期函数一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且⑨f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的⑩最小正周期.注意并不是所有的周期函数都有最小正周期,如f(x)=5.常用结论函数周期性的常用结论设函数y=f(x),x∈R,a>0,a≠b.(1)若f(x+a)=-f(x),则2a是函数f(x)的周期;(2)若f(x+a)=±1(),则2a是函数f(x)的周期;(3)若f(x+a)=f(x+b),则|a-b|是函数f(x)的周期.3.函数图象的对称性已知函数f(x)是定义在R上的函数,(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线⑪x=+2对称.(2)若f(a+x)+f(b-x)=c,则y=f(x)的图象关于点⑫(+2,2)对称.注意(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内x的符号相同,对称性的表示中,括号内x的符号相反.常用结论函数f(x)图象的对称性与周期的关系(1)若函数f(x)的图象关于直线x=a与直线x=b对称,则函数f(x)的周期为2|b-a|;(2)若函数f(x)的图象既关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期为2|b-a|;(3)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期为4|b-a|.1.已知函数f(x)为奇函数,当x>0时,f(x)=x2+1,则f(-1)=(A)A.-2B.0C.1D.22.函数f(x)=r1图象的对称中心为(B)A.(0,0)B.(0,1)C.(1,0)D.(1,1)解析由题知f(x)=r1=1+1,其图象可由y=1的图象向上平移一个单位长度得到,又y=1的图象关于(0,0)对称,所以f(x)=1+1的图象关于(0,1)对称.3.[多选]以下函数为偶函数的是(AC)A.f(x)=x2-1B.f(x)=x3C.f(x)=x2+cos xD.f(x)=1+|x|4.已知函数f(x)为R上的偶函数,且当x<0时,f(x)=x(x-1),则当x>0时,f(x)=x(x+1).5.已知定义在R上的函数f(x)满足f(x)=f(x-2),当x∈[0,2)时,f(x)=x2-4x,则当x∈[4,6)时,f(x)=x2-12x+32.解析设x∈[4,6),则x-4∈[0,2),则f(x-4)=(x-4)2-4(x-4)=x2-12x +32.又f(x)=f(x-2),所以函数f(x)的周期为2,所以f(x-4)=f(x),所以当x∈[4,6)时,f(x)=x2-12x+32.6.[2024北京市海淀区中国农业大学附属中学模拟]若f(x)=+,<0,B-1,>0是奇函数,则a=1,b=1.解析由f(x)为奇函数,知f(-x)=-f(x),当x>0时,可得-x+a=-bx+1,所以b=1,a=1.学生用书P026命题点1函数的奇偶性角度1判断函数的奇偶性例1(1)[全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(B)A.f(x)g(x)是偶函数B.f(x)|g(x)|是奇函数C.|f(x)|g(x)是奇函数D.|f(x)g(x)|是奇函数解析因为f(x)为奇函数,g(x)为偶函数,所以f(x)g(x)为奇函数,f(x)·|g(x)|为奇函数,|f(x)|g(x)为偶函数,|f(x)g(x)|为偶函数,故选B.(2)[2021全国卷乙]设函数f (x )=1-1+,则下列函数中为奇函数的是(B )A.f (x -1)-1B.f (x -1)+1C.f (x +1)-1D.f (x +1)+1解析解法一因为f (x )=1-1+,所以f (x -1)=1-(-1)1+(-1)=2-,f (x +1)=1-(r1)1+(r1)=-r2.对于A ,F (x )=f (x -1)-1=2--1=2-2,定义域关于原点对称,但不满足F (x )=-F (-x );对于B ,G (x )=f (x -1)+1=2-+1=2,定义域关于原点对称,且满足G (x )=-G (-x );对于C ,f (x +1)-1=-r2-1,定义域不关于原点对称;对于D ,f (x +1)+1=-r2+1,定义域不关于原点对称.故选B.解法二f (x )=1-1+=2-(r1)1+=21+-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1,故选B.方法技巧1.(1)函数定义域关于原点对称是函数有奇偶性的前提条件;(2)若定义域关于原点对称,则判断f (x )与f (-x )是否具有等量关系,具体运算中,可转化为判断f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.2.在公共定义域内有:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数.注意对于分段函数奇偶性的判断,要分段判断f (-x )=f (x )或f (-x )=-f (x )是否成立,只有当所有区间都满足相同关系时,才能判断该分段函数的奇偶性.角度2函数奇偶性的应用例2(1)[2023新高考卷Ⅱ]若f (x )=(x +a )·ln 2-12r1为偶函数,则a =(B )A.-1B.0C.12D.1解析解法一设g(x)=ln2-12r1,易知g(x)的定义域为(-∞,-12)∪(12,+∞),且g(-x)=ln-2-1=ln2r12-1=-ln2-12r1=-g(x),所以g(x)为奇函数.若-2r1f(x)=(x+a)ln2-12r1为偶函数,则y=x+a应为奇函数,所以a=0,故选B.解法二因为f(x)=(x+a)ln2-12r1为偶函数,f(-1)=(a-1)ln3,f(1)=(a+1)ln13=-(a+1)ln3,所以(a-1)ln3=-(a+1)ln3,解得a=0,经检验,满足题意,故选B.(2)[2024江苏南通模拟]已知定义在R上的函数f(x),g(x)分别是奇函数和偶函数,且f(x)+g(x)=x2-2x,则f(2)+g(1)=-3.解析由f(x)是奇函数,g(x)是偶函数,得f(-x)=-f(x),g(-x)=g(x),∵f(x)+g(x)=x2-2x,∴f(-x)+g(-x)=(-x)2-2(-x)=x2+2x,即-f(x)+g(x)=x2+2x,则有f(x)=-2x,g(x)=x2,则f(2)+g(1)=-4+1=-3.方法技巧函数奇偶性的应用类型及解题策略(1)求函数解析式或函数值:借助奇偶性转化为求已知区间上的函数解析式或函数值,或利用奇偶性构造关于f(x)的方程(组)求解析式.(2)求参数值:利用定义域关于原点对称或f(x)±f(-x)=0列方程(组)求解,对于在x=0处有定义的奇函数f(x),可考虑列等式f(0)=0求解.注意利用特殊值法求参数时要检验.训练1(1)[2024辽宁鞍山一中模拟]下列函数中,既是偶函数又在(0,+∞)上单调递增的是(C)A.f(x)=x ln xB.f(x)=ln(-x+2+1)C.f(x)=e x+e-xD.f(x)=e x-e-x解析对于A,因为f(x)=x ln x的定义域为(0,+∞),不关于原点对称,所以f(x)=x ln x不是偶函数,故A选项不符合题意;对于B,因为f(x)=ln(-x+2+1)的定义域为R,关于原点对称,f(x)+f(-x)=ln(-x+2+1)+ln(x+2+1)=ln 1=0,所以f (x )=ln (-x +2+1)是奇函数,故B 选项不符合题意;对于C ,因为f (x )=e x +e -x 的定义域为R ,关于原点对称,且f (-x )=e -x +e x =f (x ),所以f (x )=e x +e -x 是偶函数.f '(x )=e x -e -x ,当x ∈(0,+∞)时,有e >e 0=1>e -,则f '(x )=e x -e -x >0,所以f (x )=e x +e -x 在(0,+∞)上单调递增,故C 选项符合题意;对于D ,因为f (x )=e x -e -x 的定义域为R ,关于原点对称,但f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以f (x )=e x -e -x 是奇函数,故D 选项不符合题意.故选C.(2)[2024江苏省扬州中学模拟]定义在R 上的奇函数f (x ),当x ≥0时,f (x )=2x -a ·3-x ,当x <0时,f (x )=3x -2-x.解析因为函数f (x )为奇函数,定义域为R ,所以f (0)=20-a ×30=0,解得a =1.若x <0,则-x >0,所以f (-x )=2-x -3x ,又f (x )为奇函数,所以当x <0时,f (x )=-f (-x )=3x -2-x ,即当x <0时,f (x )=3x -2-x .命题点2函数的周期性例3(1)已知f (x +1)是定义在R 上且周期为2的函数,当x ∈[-1,1)时,f (x )=-22+4,-1≤<0,sin π,0≤<1,则f (3)·f (-103)=(A)A.3B.-3C.解析因为f (x +1)是定义在R 上且周期为2的函数,所以f (x )也是周期为2的函数,(解题关键:由f (x +1)的周期得到f (x )的周期)则f (3)=f (-1)=-2+4=2,f (-103)=f (23)=sin 2π3=f (3)·f (-103)=2=3,故选A.(2)[2022新高考卷Ⅱ]已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )·f (y ),f (1)=1,则∑J122f (k )=(A )A.-3B.-2C.0D.1解析因为f (1)=1,所以在f (x +y )+f (x -y )=f (x )f (y )中,令y =1,得f (x +1)+f (x -1)=f (x )f (1),所以f (x +1)+f (x -1)=f (x )①,所以f (x+2)+f (x )=f (x +1)②.由①②相加,得f (x +2)+f (x -1)=0,故f (x +3)+f (x )=0,所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的一个周期为6.在f (x +y )+f (x -y )=f (x )f (y )中,令x =1,y =0,得f (1)+f (1)=f (1)f (0),所以f (0)=2,再令x =0,代入f (x +3)+f (x )=0,得f (3)=-2.令x =1,y =1,得f (2)+f (0)=f (1)f (1),所以f (2)=-1.由f (x +3)+f (x )=0,得f (1)+f (4)=0,f (2)+f (5)=0,f (3)+f (6)=0,所以f (1)+f (2)+…+f (6)=0,根据函数的周期性知,∑J122f (k )=f (1)+f (2)+f (3)+f (4)=f (2)+f (3)=-1-2=-3,故选A.方法技巧(1)利用函数的周期性可以将局部的函数性质扩展到整体.(2)判断抽象函数的周期一般需要对变量进行赋值.训练2(1)[2024广东梅州模拟]已知函数f (x )=e r1,≤1,-(-1),>1,则f (2024-ln 2)=(A )A.-22B.-2C.2D.22解析当x >1时,f (x )=-f (x -1),则f (x +2)=-f (x +1)=f (x ),所以x >1时,f (x )是周期为2的函数.因为2024-ln 2=2022+2-ln 2,且2>2-ln 2>2-ln e =1,所以f (2024-ln 2)=f (2-ln 2)=-f (1-ln 2)=-e1-ln 2+1=-e 2e ln2=-e 22.故选A.(2)[2024云南部分名校联考]已知f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,当0≤x ≤2时,f (x )=a ·2x +x 2,则f (2024)=-1.解析因为f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,所以f (x )=-f (4-x )=-f (x -4),f (x -4)=-f (x -8),所以f (x )=f (x -8),故f (x )是以8为周期的函数,则f (2024)=f (0).令x =2,则f (2)+f (4-2)=2f (2)=8a +8=0,则a =-1,所以f (0)=-20=-1,即f (2024)=-1.命题点3函数图象的对称性例4(1)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =r1与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1(x i +y i )=(B)A.0B.mC.2mD.4m解析由f (-x )=2-f (x )知f (x )的图象关于点(0,1)对称,而y =r1=1+1的图象也关于点(0,1)对称,因此两个函数图象的交点也关于点(0,1)对称,且成对出现,则x1+x m=x2+x m-1=…=0,y1+y m=y2+y m-1=…=2,所以∑i=1(x i+y i)=0×2+2×2=m.(2)函数f(x)=(x2-1)(e x-e-x)+x+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为2.解析设g(x)=(x2-1)(e x-e-x)+x,则f(x)=g(x)+1.因为g(-x)=(x2-1)(e-x-e x)-x=-g(x),且g(x)的定义域关于原点对称,所以g(x)是奇函数.由奇函数图象的对称性知g(x)max+g(x)min=0,故M+N=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.方法技巧1.解决与函数图象的对称性有关的问题,应结合题设条件的结构特征及对称性的定义,求出函数图象的对称轴或对称中心,进而利用对称性解决求值或参数问题.2.常用结论:三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象的对称中心为(-3,f(-3)).训练3(1)[多选]关于函数f(x)=sin x+1sin,下列结论正确的是(BC)A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的图象关于直线x=π2对称D.f(x)的最小值为2解析由题意知f(x)的定义域为{x|x≠kπ,k∈Z},且关于原点对称.又f(-x)=sin(-x)+1sin(-)=-(sin x+1sin)=-f(x),所以函数f(x)为奇函数,其图象关于原点对称,所以A错误,B正确.因为f(π-x)=sin(π-x)+1sin(π-)=sin x+1sin=f(x),所以函数f(x)的图象关于直线x=π2对称,C正确.当sin x<0时,f(x)<0,所以D错误.故选BC.(2)已知函数f(x)=x3-3x2+x+1+sin(x-1),则函数f(x)在(0,2)上的最大值与最小值的和为0.解析由三次函数图象的对称性可得,y=x3-3x2+x+1的图象的对称中心为(1,0),因为y=sin(x-1)的图象也关于(1,0)对称,所以函数f(x)在(0,2)上的图象关于(1,0)对称,所以f(x)在(0,2)上的最大值与最小值的和为0.命题点4函数性质的综合应用例5(1)[2021全国卷甲]设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f(92)=(D)A.-94 B.-32 C.74 D.52解析因为f(x+1)为奇函数,所以函数f(x)的图象关于点(1,0)对称,即有f(x)+f(2-x)=0,令x=1,得f(1)=0,即a+b=0①,令x=0,得f(0)=-f(2).因为f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,即有f(x)-f(4-x)=0,令x=1,得f(3)=f(1),所以f(0)+f(3)=-f(2)+f(1)=-4a-b+a+b=-3a=6②.根据①②可得a=-2,b=2,所以当x∈[1,2]时,f(x)=-2x2+2.根据函数f(x)的图象关于直线x=2对称,且关于点(1,0)对称,可得函数f(x)的周期为4,所以f(92)=f(12)=-f(32)=2×(32)2-2=52.(2)[2024平许济洛第一次质检]定义在R上的偶函数f(x)满足f(2-x)+f(x)=0,且f(x)在[-2,0]上单调递增.若a=f(tan5π18),b=f(3),c=f(log43),则(A)A.a<b<cB.a<c<bC.c<b<aD.c<a<b解析由f(2-x)+f(x)=0可得f(x)的图象关于点(1,0)中心对称,由f(x)为偶函数可得f(x)的图象关于y轴对称,根据函数周期性结论可得函数f(x)的周期为4,所以f(3)=f(3-4)=f(-1)=f(1),因为0<log43<1,1=tanπ4<tan5π18<tanπ3=3<2,所以0<log43<1<tan5π18<2,因为偶函数f(x)在[-2,0]上单调递增,所以函数f(x)在(0,2]上单调递减,所以f(tan5π18)<f(1)=f(3)<f(log43),即a<b<c.故选A.方法技巧1.对于函数单调性与奇偶性的综合问题,常利用奇、偶函数的图象的对称性,以及奇、偶函数在关于原点对称的区间上的单调性求解.2.对于函数周期性与奇偶性的综合问题,常利用奇偶性及周期性将所求函数值的自变量转换到已知函数解析式的自变量的取值范围内求解.3.函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,在解题时,往往需要先借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.训练4(1)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=e x+x2+x,则不等式f(2-a)+f(2a-3)>0的解集为(B)A.(-1,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,1)解析易知f(x)在(0,+∞)上单调递增,且在(0,+∞)上,f(x)>1.因为f(x)为R上的奇函数,所以f(0)=0,f(x)在(-∞,0)上单调递增,且在(-∞,0)上f(x)<-1,故f(x)在R上单调递增.原不等式可化为f(2-a)>-f(2a-3),即f(2-a)>f(3-2a),所以2-a>3-2a,故a>1,选B.(2)[2024湖北部分重点中学联考]已知函数y=f(x)是R上的奇函数,∀x∈R,都有f(2-x)=f(x)+f(2)成立,则f(1)+f(2)+f(3)+…+f(2024)=0.解析因为函数f(x)是R上的奇函数,所以f(0)=0.因为∀x∈R,都有f(2-x)=f(x)+f(2),所以令x=2,得f(0)=2f(2),得f(2)=0,所以f(2-x)=f(x),则函数f(x)的图象关于直线x=1对称.因为函数f(x)的图象关于原点对称,所以函数f(x)是以4为周期的周期函数,且函数f(x)的图象关于点(2,0)中心对称,则f(1)+f(3)=0,又f(2)=0,f(4)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0,所以f(1)+f(2)+f(3)+…+f(2024)=506[f(1)+f(2)+f(3)+f(4)]=0.学生用书P028抽象函数问题的解题策略策略1赋值法例6[多选/2023新高考卷Ⅰ]已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则(ABC)A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点解析解法一令x=y,则有f(x2)=2x2f(x).当x=0时,可得f(0)=0,A正确.当x =1时,可得f(1)=2f(1),所以f(1)=0,B正确.因为f((-x)2)=2(-x)2·f(-x),即f(x2)=2x2f(-x),所以f(-x)=f(x),所以函数f(x)为偶函数,C 正确.因为无法判断函数f(x)的单调性,所以无法确定f(x)的极值点,故D不正确,故选ABC.解法二取x=y=0,则f(0)=0,故A正确;取x=y=1,则f(1)=f(1)+f(1),所以f(1)=0,故B正确;取x=y=-1,则f(1)=f(-1)+f(-1),所以f(-1)=0,取y=-1,则f(-x)=f(x)+x2f(-1),所以f(-x)=f(x),所以函数f(x)为偶函数,故C正确;因为f(0)=0,且函数f(x)为偶函数,所以函数f(x)的图象关于y轴对称,所以x=0可能为函数f(x)的极小值点,也可能为函数f(x)的极大值点,也可能不是函数f(x)的极值点,故D不正确.综上,选ABC.方法技巧赋值法是指利用已知条件,对变量赋值,从而得出抽象函数在某点处的函数值或抽象函数的性质.策略2性质转化法例7(1)[2022全国卷乙]已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图象关于直线x=2对称,g(2)=4,则∑22J1f(k)=(D)A.-21B.-22C.-23D.-24解析由y=g(x)的图象关于直线x=2对称,可得g(2+x)=g(2-x).在f(x)+g(2-x)=5中,用-x替换x,可得f(-x)+g(2+x)=5,可得f(-x)=f(x)①,所以y=f(x)为偶函数.在g(x)-f(x-4)=7中,用2-x替换x,得g(2-x)=f(-x-2)+7,代入f(x)+g(2-x)=5中,得f(x)+f(-x-2)=-2②,所以y=f(x)的图象关于点(-1,-1)中心对称,所以f(1)=f(-1)=-1.由①②可得f (x )+f (x +2)=-2,所以f (x +2)+f (x +4)=-2,所以f (x +4)=f (x ),所以函数f (x )是以4为周期的周期函数.由f (x )+g (2-x )=5可得f (0)+g (2)=5,又g (2)=4,所以可得f (0)=1,又f (x )+f (x +2)=-2,所以f (0)+f (2)=-2,得f (2)=-3,又f (3)=f (-1)=-1,f (4)=f (0)=1,所以∑J122f (k )=5(f (1)+f (2)+f (3)+f (4))+f (1)+f (2)=-24.故选D.(2)[多选/2022新高考卷Ⅰ]已知函数f (x )及其导函数f '(x )的定义域均为R ,记g (x )=f '(x ).若f (32-2x ),g (2+x )均为偶函数,则(BC )A.f (0)=0B.g (-12)=0C.f (-1)=f (4)D.g (-1)=g (2)解析解法一(转化法)因为f (32-2x )为偶函数,所以f (32-2x )=f (32+2x ),函数f (x )的图象关于直线x =32对称,则f (-1)=f (4),所以C 正确;因为g (2+x )为偶函数,所以g (2+x )=g (2-x ),函数g (x )的图象关于直线x =2对称,因为g (x )=f'(x ),所以函数g (x )的图象关于点(32,0)对称,(二级结论:若函数h (x )为偶函数,则其图象上在关于y 轴对称的点处的切线的斜率互为相反数,即其导函数的图象关于原点对称.本题函数f (x )的图象关于直线x =32对称,则其导函数g (x )的图象关于点(32,0)对称)因为g (x )的定义域为R ,所以g (32)=0.由g (x )的图象既关于直线x =2对称,又关于点(32,0)对称,知g (x )的周期T =4×(2-32)=2,所以g (-12)=g (32)=0,g (-1)=g (1)=-g (2),所以B 正确,D 错误;不妨取f (x )=1(x ∈R ),经验证满足题意,则f (0)=1,所以选项A 不正确.综上,选BC.解法二(特例法)因为f (32-2x ),g (2+x )均为偶函数,所以函数f (x )的图象关于直线x =32对称,函数g (x )的图象关于直线x =2对称.取符合题意的一个函数f (x )=1(x ∈R ),则f (0)=1,排除A ;取符合题意的一个函数f (x )=sin πx ,则f'(x )=πcos πx ,即g (x )=πcos πx ,所以g (-1)=πcos (-π)=-π,g (2)=πcos 2π=π,所以g (-1)≠g (2),排除D.又该题为多选题,选BC.方法技巧1.思路:利用题设中的条件等式,将其变形为满足函数某些性质的定义表达式,从而利用这些性质转化求解.2.设函数f(x)及其导函数f'(x)的定义域均为R.(1)若f(x)的图象关于x=a对称,则f'(x)的图象关于(a,0)对称;(2)若f(x)的图象关于(a,b)对称,则f'(x)的图象关于x=a对称;(3)若f(x)是以T为周期的函数,则f'(x)也是以T为周期的函数.注意利用函数图象的平移变换解决抽象函数性质问题时,注意在进行图象变换的同时,函数图象的对称轴或者对称中心也进行了相应的变换.策略3特殊函数模型法例8定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=(C)A.2B.3C.6D.9解析解法一由函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),联想到函数模型f(x)=x2+bx,由f(1)=2,可得b=1,则f(x)=x2+x,所以f(-3)=(-3)2+(-3)=6.解法二f(1)=f(1+0)=f(1)+f(0)+2×1×0=f(1)+f(0),得f(0)=0;f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1=f(-1)+2-2=f(-1),得f(-1)=0;f(-2)=f(-1-1)=f(-1)+f(-1)+2×(-1)×(-1)=2f(-1)+2=2;f(-3)=f(-2-1)=f(-2)+f(-1)+2×(-2)×(-1)=2+0+4=6.故选C.方法技巧常用函数模型抽象函数性质基本函数模型f(x±y)=f(x)±f(y)∓b一次函数f(x)=kx+b(k≠0)f(x+y)=f(x)+f(y)+2xy二次函数f(x)=x2+bxf(xy)=f(x)f(y)或f()=()()幂函数f(x)=xαf(x+y)=f(x)f(y)或f(x-y)=()()指数函数f(x)=a x(a>0,且a≠1)f(xy)=f(x)+f(y)或f()=f(x)-对数函数f(x)=log a x(a>0,且a≠1)f(y)f(x+y)+f(x-y)=2f(x)f(y)余弦函数f(x)=cosωx(ω一般取满足要求的最小正数)注意应用特殊函数模型法解题时,要注意检验所选模型是否满足已知条件.训练5(1)[新高考卷Ⅰ]若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是(D)A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析由题意知f(x)在(-∞,0),(0,+∞)上单调递减,且f(-2)=f(2)=f(0)=0.当x>0时,令f(x-1)≥0,得0≤x-1≤2,∴1≤x≤3;当x<0时,令f(x-1)≤0,得-2≤x-1≤0,∴-1≤x≤1,又x<0,∴-1≤x<0;当x=0时,显然符合题意.综上,原不等式的解集为[-1,0]∪[1,3],故选D.(2)[多选/2024安徽省阜阳市模拟]已知函数f(x)的定义域为R,对任意实数x,y满足f(x-y)=f(x)-f(y)+1,且f(1)=0,当x>0时,f(x)<1.则下列选项正确的是(ACD)A.f(0)=1B.f(2)=-2C.f(x)-1为奇函数D.f(x)为R上的减函数解析解法一设f(x)=kx+1,因为f(1)=0,所以k=-1,所以f(x)=-x+1,满足x>0时,f(x)<1,则易得A,C,D均正确,故选ACD.解法二对于A,取x=y=0,则f(0)=f(0)-f(0)+1,故f(0)=1,A正确;对于B,取x=0,y=1,则f(-1)=f(0)-f(1)+1=2,取x=1,y=-1,则f(2)=f(1)-f(-1)+1=-1,B错误﹔对于C,取x=0,则f(-y)=f(0)-f(y)+1=2-f(y),f(-y)-1=-[f(y)-1],则f(y)-1为奇函数,所以f(x)-1为奇函数,C正确;对于D,当x1>x2时,x1-x2>0,f(x1-x2)<1,则f(x1)-f(x2)=f(x1-x2)-1<0,故f(x)是R上的减函数,D正确,故选ACD.(3)已知函数f(x)满足f(1)=14,且4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2024)=-14.解析解法一令y=1,得4f(x)f(1)=f(x+1)+f(x-1),即f(x+1)=f(x)-f(x-1),f(x+2)=f(x+1)-f(x)=-f(x-1),即f(x+3)=-f(x),所以函数f(x)的周期为6,则f(2024)=f(2).令x=1,y=0,得f(0)=12,由f(x+1)=f(x)-f(x-1),可得f(2)=f(1)-f(0)=-14,所以f(2024)=-14.解法二因为f(x+y)+f(x-y)=4f(x)f(y),x,y∈R,联想到余弦函数模型cos(x+y)+cos(x-y)=2cos x cos y,两边同除以2,得12cos(x+y)+12cos(x-y)=cos x cos y=4·12cos x12cos y,故猜想f(x)=12cos(ωx),又f(1)=14,则f(1)=12cosω=14,当ω∈(0,π)时,可得ω=π3,即f(x)=12cos(π3x),故f(x)的周期为T=6,所以f(2024)=f(2)=12cos2π3=-14.1.[命题点1角度2/全国卷Ⅱ]设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=(D)A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1解析依题意得,当x<0时,f(x)=-f(-x)=-(e-x-1)=-e-x+1,故选D.2.[命题点1角度2/2023全国卷乙]已知f(x)=x e B-1是偶函数,则a=(D)A.-2B.-1C.1D.2解析解法一f(x)的定义域为{x|x≠0},因为f(x)是偶函数,所以f(x)=f(-x),即x e B-1=-x-e-B-1,即e(1-a)x-e x=-e(a-1)x+e-x,即e(1-a)x+e(a-1)x=e x+e-x,所以a-1=±1,解得a=0(舍去)或a=2,故选D.解法二f(x)=x e B-1=e(-1)-e-,f(x)是偶函数,又y=x是奇函数,所以y=e(a-1)x-e-x是奇函数,故a-1=1,即a=2,故选D.3.[命题点2,3/多选/2024江苏省兴化市名校联考]已知函数f(x)为R上的奇函数,g(x)=f(x+1)为偶函数,下列说法正确的有(ABD)A.f(x)图象关于直线x=-1对称B.g(2023)=0C.g(x)的周期为2D.对任意x∈R都有f(2-x)=f(x)解析因为函数f (x )为R 上的奇函数,所以函数f (x )的图象关于点(0,0)中心对称,因为g (x )=f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )的图象关于x =1对称,所以f (-x +1)=-f (-x -1),所以f (x -1)=f (-x -1),所以函数f (x )的图象关于x =-1对称,故A 正确;由f (-x +1)=f (x +1)可得f (2-x )=f (x ),故D 正确;由f (2-x )=f (x )可得f (2+x )=f (-x )=-f (x ),所以f (4+x )=f (x ),即函数f (x )的周期为4,故C 错误;因为f (x )的周期为4,所以g (2023)=f (2024)=f (0)=0,故B 正确.故选ABD.4.[命题点3/2023大同学情调研]函数f (x )=6e +1+B ||+1在[-5,5]上的最大值为M ,最小值为N ,则M +N =(C )A.3B.4C.6D.与m 的值有关解析由题意可知,f (x )=6e +1+B ||+1=3-3(e -1)e +1+B ||+1,设g (x )=-3(e -1)e +1+B ||+1,则g (x )的定义域为(-∞,+∞),g (-x )=-3(e --1)e -+1+(-)|-|+1=-[-3(e -1)e +1+B ||+1]=-g (x ),所以g (x )为奇函数,所以当x ∈[-5,5]时,g (x )max +g (x )min =0,所以当x ∈[-5,5]时,f (x )max +f (x )min =M +N =g (x )max +3+g (x )min +3=6,故选C.5.[思维帮角度1,2/2021新高考卷Ⅱ]设函数f (x )的定义域为R ,且f (x +2)为偶函数,f (2x +1)为奇函数,则(B )A.f (-12)=0B.f (-1)=0C.f (2)=0D.f (4)=0解析因为函数f (2x +1)是奇函数,所以f (-2x +1)=-f (2x +1),所以f (1)=0,f (-1)=-f (3).因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),所以f (3)=f (1),所以f (-1)=-f (1)=0.故选B.6.[思维帮角度2/多选/2023四省联考]已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且f (x ),g (x )在(-∞,0]上均单调递减,则(BD )A.f (f (1))<f (f (2))B.f (g (1))<f (g (2))C.g(f(1))<g(f(2))D.g(g(1))<g(g(2))解析因为f(x)与g(x)分别是定义在R上的偶函数与奇函数,且两函数在(-∞,0]上均单调递减,所以f(x)在[0,+∞)上单调递增,g(x)在[0,+∞)上单调递减,即g(x)在R上单调递减,所以f(1)<f(2),g(2)<g(1)<g(0)=0,(提示:定义在R上的奇函数的图象必过原点)所以f(g(1))<f(g(2)),g(f(1))>g(f(2)),g(g(1))<g(g(2)),故B,D正确,C不正确.若f(1)<f(2)<0,则f(f(1))>f(f(2)),故A不正确.综上所述,选BD.学生用书·练习帮P2661.[2024黑龙江省鸡西市第一中学模拟]下列函数中,是奇函数且在定义域内单调递减的是(C)A.f(x)=tan(-x)B.f(x)=2-xC.f(x)=e-x-e xD.f(x)=2解析f(x)=tan(-x)=-tan x的定义域是{x|x≠kπ+π2,k∈Z},f(x)是奇函数,在定义域上不具有单调性,故A错误;f(x)=2-x=(12)x既不是奇函数也不是偶函数,在R上单调递减,故B错误;f(x)=e-x-e x的定义域为R,∵f(-x)=e x-e-x=-f(x),∴f(x)是奇函数,∵y=e-x,y=-e x均为R上的减函数,∴f(x)在R上单调递减,故C正确;f(x)=2的定义域为{x|x≠0},f(x)是奇函数,在定义域上不具有单调性,故D错误.故选C.2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=(D)A.e x-e-xB.12(e x+e-x)C.12(e-x-e x)D.12(e x-e-x)解析因为f(x)+g(x)=e x,f(x)为偶函数,g(x)为奇函数,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=12(e x-e-x).故选D.3.已知函数f(x)=2+2,≥0,2-2,<0,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(C)A.[-1,0)B.[0,1]C.[-1,1]D.[-2,2]解析若x<0,则-x>0,f(-x)=x2-2x=f(x),若x>0,则-x<0,f(-x)=x2+2x=f(x),故函数f(x)为偶函数,且当x≥0时,函数f(x)单调递增,由f(-a)+f(a)≤2f(1),得2f(a)≤2f(1),即f(a)≤f(1),所以|a|≤1,所以-1≤a≤1.故选C.4.[2024青岛市检测]若函数f(x)=cos x·lg(2+-x)为奇函数,则m=(C)A.-1B.0C.1D.±1解析解法一因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,则g(x)+g(-x)=0,即lg(2+-x)+lg(2++x)=0,即lg[(2+-x)(2++x)]=lg(x2+m-x2)=lg m=0,解得m=1,故选C.解法二因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,所以g(0)=0,即lg=0,解得m=1.经检验,符合题意.故选C.5.[2024安徽月考]已知函数f(x)=2sin x+x+2,x∈[-2π,2π],f(x)的最大值为M,最小值为m,则M+m=(A)A.4 D.2π+3-1解析因为y=2sin x+x的图象关于原点对称,所以f(x)=2sin x+x+2的图象关于点(0,2)对称,所以f(x)在[-2π,2π]上的最大值与最小值的和M+m=4.故选A.6.[2023南京市、盐城市一模]若函数f(x)=x3+bx2+cx+d满足f(1-x)+f(1+x)=0对一切实数x恒成立,则不等式f'(2x+3)<f'(x-1)的解集为(C)A.(0,+∞)B.(-∞,-4)C.(-4,0)D.(-∞,-4)∪(0,+∞)解析由f(1-x)+f(1+x)=0可知,函数f(x)的图象关于点(1,0)中心对称.解法一易得f'(x)=3x2+2bx+c的图象的对称轴为直线x=1,所以函数f'(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,则由f'(2x+3)<f'(x-1),得|2x+3-1|<|x-1-1|,解得-4<x<0,故选C.解法二函数f(x)=ax3+bx2+cx+d的图象的对称中心为点(-3,f(-3)),由-3=1,a=1,得b=-3,所以f'(x)=3x2-6x+c,由f'(2x+3)<f'(x-1),得3(2x+3)2-6(2x+3)+c﹤3(x-1)2-6(x-1)+c,解得-4<x<0,故选C. 7.[2024福州市一检]已知定义域为R的函数f(x)同时具有下列三个性质,则f(x)=-x(答案不唯一).(写出一个满足条件的函数即可)①f(x+y)=f(x)+f(y);②f(x)是奇函数;③当x+y>0时,f(x)+f(y)<0.解析因为f(x)是奇函数,且当x+y>0时,f(x)+f(y)<0,即x>-y时,f(x)<-f(y)=f(-y),所以f(x)是单调递减函数,再考虑到f(x+y)=f(x)+f(y),所以f(x)=kx(k<0)都符合题意.8.已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,则f(x)的解析式为f(x解析当x<0时,-x>0,则f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是R上的奇函数,故f(x)=-f(-x),所以当x<0时,f(x)=2x2+3x-1.因为f(x)为R上的奇函数,所以f(0)=0.综上,f(x)的解析式为f(x)=-22+3+1,>0,0,=0,22+3-1,<0.9.[2024安徽六校联考]已知函数f(x)=ln(2+1+x)-2+1,则不等式f(x)+f(2x-1)>-2的解集是(A)A.(13,+∞)B.(1,+∞)C.(-∞,13)D.(-∞,1)解析因为2+1>|x|≥-x,所以2+1+x>0在R上恒成立,所以函数f(x)的定义域为R,f(x)=ln(2+1+x)+(e-1)-(e+1)e+1=ln(2+1+x)+e-1e+1-1,令h(x)=f(x)+1=ln(2+1+x)+e-1e+1,则h(x)+h(-x)=[ln(2+1+x)+e-1e+1]+[ln(2+1-x)+e--1e-+1]=ln(2+1+x)+ln(2+1-x)+e-1e+1+1-e1+e=ln1+0=0,所以h(x)是奇函数.设g(x)=ln(2+1+x),则g(x)为奇函数.当x≥0时,y=2+1,y=x均单调递增,则y=2+1+x在[0,+∞)上单调递增.所以g(x)=ln(2+1+x)在[0,+∞)上单调递增.又g(x)为奇函数且g(0)=0,所以g(x)在R上单调递增.又y=e x+1在R上单调递增,所以y=2e+1在R上单调递减,所以y=-2e+1在R上单调递增,所以h(x)=g(x)-2e+1+1在R上单调递增.不等式f(x)+f(2x-1)>-2,即f(x)+1>-[f(2x-1)+1],也即h(x)>-h(2x-1)=h(1-2x),所以x>1-2x,解得x>13.故选A.10.[2024黄冈模拟]已知函数f(x)及其导函数f'(x)的定义域均为R,记g(x)=f'(x+1),且f(2+x)-f(2-x)=4x,g(3+x)为偶函数,则g'(7)+g(17)=(C)A.0B.1C.2D.3解析因为g(3+x)为偶函数,g(x)=f'(x+1),所以f'(x+4)=f'(-x+4),对f(2+x)-f(2-x)=4x两边同时求导,得f'(2+x)+f'(2-x)=4,所以有f'(4+x)+f'(-x)=4⇒f'(4-x)+f'(-x)=4⇒f'(4+x)+f'(x)=4⇒f'(8+x)=f'(x),所以函数f'(x)的周期为8,在f'(2+x)+f'(2-x)=4中,令x=0,得f'(2)=2,因此g(17)=f'(18)=f'(2)=2.因为g(3+x)为偶函数,所以有g(3+x)=g(3-x)⇒g'(3+x)=-g'(3-x)⇒g'(7)=-g'(-1)①,f'(8+x)=f'(x)⇒g(7+x)=g(x-1)⇒g'(7+x)=g'(x-1)⇒g'(7)=g'(-1)②,由①②可得:g'(7)=0,所以g'(7)+g(17)=2,故选C.11.[多选/2024辽宁开学考试]已知函数y =xf (x )是R 上的偶函数,f (x -1)+f (x +3)=0,当x ∈[-2,0]时,f (x )=2x -2-x +x ,则(ACD )A.f (x )的图象关于直线x =2对称B.4是f (x )的一个周期C.f (x )在(0,2]上单调递增D.f (2024)<f (12)<f (0.50.2)解析由函数y =xf (x )是R 上的偶函数可知,f (x )为奇函数,则f (-x )=-f (x ).又f (x -1)+f (x +3)=0,得f (x )+f (x +4)=0,则f (x +4)=-f (x )=f (-x ),所以f (x +2)=f (2-x ),则f (x )的图象关于直线x =2对称,A 项正确.由f (8+x )=-f (4+x )=f (x )可知,8是f (x )的一个周期,由f (x )=-f (x +4)可知,4不是f (x )的一个周期,B 项错误.当x ∈[-2,0]时,易知f (x )=2x -2-x +x 为增函数,又f (x )为奇函数,所以f (x )在(0,2]上单调递增,C 项正确;又f (2024)=f (8×253)=f (0),0<0.5<0.50.2,且f (x )在[-2,2]上单调递增,所以f (0)<f (12)<f (0.50.2),即f (2024)<f (12)<f (0.50.2),D 项正确.故选ACD.12.[多选/2024江西分宜中学、临川一中等校联考]已知函数y =f (x )对任意实数x ,y 都满足2f (x )f (y )=f (x +y )+f (x -y ),且f (1)=-1,则(AC )A.f (x )是偶函数B.f (x )是奇函数C.f (x )+f (1-x )=0D.∑J12025f (k )=1解析在2f (x )f (y )=f (x +y )+f (x -y )中,令x =1,y =0,可得2f (1)f (0)=2f (1),即-2f (0)=-2,解得f (0)=1≠0,故f (x )不是奇函数,B 错误;令x =0可得2f (0)f (y )=f (y )+f (-y ),即f (y )=f (-y ),故函数f (y )是偶函数,即f (x )是偶函数,故A 正确;令x =y =12,则2f 2(12)=f (1)+f (0)=0,故f (12)=0,令x =12,可得2f (12)f (y )=f (12+y )+f (12-y )=0,故f (x )+f (1-x )=0,故C 正确;因为f (x )是偶函数,所以f (x )=f (-x ),故f (-x )+f (1-x )=0,即f (x )+f (1+x )=0,所以f (x +1)+f (2+x )=0,所以f (x +2)=f (x ),故函数f (x )的周期为2,因为f (1)+f (0)=0,f (1)=-1,所以f (1)+f (2)=f (1)+f (0)=0,f (2025)=f (1)=-1,所以∑J12025f (k )=f (1)+f (2)+…+f (2025)=f (2025)=f (1)=-1,故D 错误.故选AC.13.[多选/2024南昌市模拟]f (x )是定义在R 上的连续可导函数,其导函数为f'(x ),下列说法中正确的是(ACD )A.若f (x )=f (-x ),则f'(x )=-f'(-x )B.若f'(x )=f'(x +T )(T ≠0),则f (x )=f (x +T )C.若f (x )的图象关于点(a ,b )中心对称,则f'(x )的图象关于直线x =a 轴对称D.若f (-1+x )+f (-1-x )=2,f'(x +2)的图象关于原点对称,则f (-1)+f'(2)=1解析对于A :f (x )=f (-x )两边对x 求导,得f'(x )=-f'(-x ),故A 正确.对于B :f (x )=f (x +T )+C (C 为常数)⇔f'(x )=f'(x +T ),则C ≠0时,B 错误.对于C :f (x )的图象有对称中心(a ,b )⇒f (a -x )+f (a +x )=2b ,两边对x 求导,得-f'(a -x )+f'(a +x )=0,即f'(a -x )=f'(a +x )⇒f'(x )的图象关于直线x =a 对称,C 正确.对于D :f (-1+x )+f (-1-x )=2⇒f (x )的图象有对称中心(-1,1),则f (-1)=1.f'(x +2)的图象向右平移2个单位长度 f'(x )的图象⇒f'(x )的图象有对称中心(2,0),则f'(2)=0.所以f (-1)+f'(2)=1+0=1,故D 正确.故选ACD.14.[2022全国卷乙]若f (x )=ln |a +11-|+b 是奇函数,则a =-12,b =ln2.解析解法一f (x )=ln |a +11-|+b =ln |a +11-|+ln e b =ln |(r1)e -x 1-|.∵f (x )为奇函数,∴f (-x )+f (x )=ln |(r1)2e 2-2e 221-2|=0,∴|(a +1)2e 2b -a 2e 2b x 2|=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,(+1)2e 2=1,2e 2=1,解得=-12,=ln2.当(a +1)2e 2b -a 2e 2b x 2=-1+x 2时,(+1)2e 2=-1,2e 2=-1,无解.综上,a =-12,b =ln 2.解法二易知x≠1.∵函数f(x)为奇函数,∴由奇函数定义域关于原点对称可得x≠-1,∴当x=-1时,|a+11-|≤0.又∵|a+11-|≥0恒成立,∴当x=-1时,|a+11-|=0,∴a=-12.又由f(0)=0可得b=ln2.经检验符合题意,∴a=-12,b=ln2.15.[探索创新/2023广西联考]若定义在D上的函数f(x)满足下列条件:①∀x∈D,f(x-2)+f(2-x)=0恒成立;②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立;③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立.则称该函数为“χ函数”,下列函数可以称为“χ函数”的是(D)A.f(x)=1-33r1+3B.f(x)=2+sin xC.f(x)=x4-x2+1D.f(x)=ln(2+1+x)解析由①∀x∈D,f(x-2)+f(2-x)=0恒成立可知,y=f(x)的图象关于原点对称,“χ函数”为奇函数.②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,整理可得(x1-x2)[f(x1)-f(x2)]>0,所以函数y=f(x)在D上单调递增.③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立,整理可得f(x2)=(12)1,因为∀x1∈R,y=(12)1>0,所以(0,+∞)是f(x)的值域的子集.对于选项B,C,均不满足①,对于选项A,f(x)=1-33r1+3=2-(3+1)3(3+1)=23(3+1)-13,在定义域内单调递减,不满足②,f(x)=ln(2+1+x)满足①②③,故选D.。
第二章 第三节 函数的奇偶性与周期性
(3)周期不唯一:若T是函数y=f(x)(x∈R)的一个周期,则 最小的正数 最小的正数
nT(n∈Z,且n≠0)也是f(x)的周期.
判断下面结论是否正确(请在括号中打“√”或“×”).
(1)偶函数图像不一定过原点,奇函数的图像一定过原
点.( )
(2)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(
(A)-1
【解析】选B.≧f(x+4)=f(x), ≨f(x)是以4为周期的周期函数,≨f(8)=f(0). 又函数f(x)是定义在R上的奇函数, ≨f(8)=f(0)=0,故选B.
4.已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0)上是减 少的,若f(a)≥f(2),则实数a的取值范围是( (A)a≤2 (C)a≥-2 (B)a≤-2或a≥2 (D)-2≤a≤2 )
又f(-x)=-f(x),
≨x>0时,f(x)=-f(-x)=-x2+x=ax2+bx, ≨a=-1,b=1,≨a+b=0. 答案:0
考向 3 函数的周期性及其应用
【典例3】(1)(2012·江苏高考)设f(x)是定义在R上且周期为
ax 1, 1 x<0, f x bx 2 其中a,b∈R,若 则a+3b的值为______. x 1, x 1 ,0 1 3 f ( ) f ( ), (2)(2013·宝鸡模拟)定义在R上的偶函数f(x)满足 2 2
图像与原 若奇函数f(x)在原点有
0 点的关系 意义,则f(0)=__
2.周期性 (1)周期函数:若T为函数f(x)的一个周期,则需满足的条件: ①T≠0; ②____________对定义域内的任意x都成立. f(x+T)=f(x) (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 ___________,那么这个___________就叫做它的最小正周期.
高考数学一轮复习第二章函数3函数的奇偶性与周期性课件新人教A版22
∴f(2 019)+f(2 020)=f(3)+f(0)=-1+0=-1.
-21考点1
考点2
考点3
考点4
(2)∵f(x)是偶函数,∴f(-1)=f(1).
√+1+1
,
又 f(-1)=-ln(-1+√ + 1)=ln
f(1)=ln(1+√ + 1),
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
f(-x)g(-x)=-f(x)g(x)=-[f(x)g(x)],
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
因此f(x)g(x)是奇函数,故A错;
思考判断函数的奇偶性要注意什么?
|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),
对称
奇函数
-3知识梳理
双基自测
1
2
3
4
2.奇(偶)函数的性质
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在关于原点对称的区间上具有相同的单调性;偶函数在
关于原点对称的区间上具有相反的单调性.
(3)在公共定义域内有:奇函数±奇函数=奇函数,偶函数±偶函数
=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函
因为函数定义域不关于原点对称,所以函数为非奇非偶函数.
(3)函数的定义域为{x|x≠0},关于原点对称.
当x>0时,-x<0,此时f(x)=-x2+x,f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);
高考数学一轮总复习教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性
5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数
f(x)的解析式为
+ -, > 0,
f(x)= , = ,
- + + , < 0
.
解析:设x<0,则-x>0,由题意可知f(-x)=(-x)2-x-1=x2-x-1,
因为f(x)是R上的奇函数,
√
D.1
)
-
f(-x).若 f(- )= ,则 f( )等于(
ቤተ መጻሕፍቲ ባይዱ
A.
B.
C.
√
D.
)
解析:因为 f(x)是定义在 R 上的奇函数,所以 f(-x)=-f(x).
又 f(1+x)=f(-x),
所以 f(2+x)=f[1+(1+x)]=f[-(1+x)]=-f(1+x)=-f(-x)=f(x),
所以f(x)=-f(-x)=-x2+x+1,且f(0)=0.
+ -, > 0,
综上所述,f(x)= , = ,
- + + , < 0.
提升·关键能力
类分考点,落实四翼
考点一
函数奇偶性的判断
[例1] (多选题)(2024·山东临沂统考一模)已知f(x)=x3g(x)为
==-f(x),
-
所以函数 f(x)为奇函数.
③显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.
因为当x<0时,-x>0,
2015届高考数学总复习第二章 第三节函数的奇偶性与周期性精讲课件 文
3|).又|x|,|2x-3|∈[0,+∞),且函数f(x )在[0,+∞)上是增
函数,所以|x|=|2x-3|,即x=2x-3或x=-(2x-3),解得x=3 或x=1.所以方程f(x)=f(2x-3)的所有实数根的和为3+1=4.
第二章
第三节 函数的奇偶性与周期性
函数奇偶性的判定 【例1】 判断下列各函数的奇偶性: (1)f(x)=(x-1) ;
(2)f(x)=
;
(3)f(x)=
思路点拨:确定函数的奇偶性时,必须先判定函数定义 域是否关于原点对称,若对称,再验证f(-x)= ±f(x)或其等 价形式f(-x)∓f(x)=0是否成立. 自主解答: 解析:(1)由
点评:判断函数的奇偶性,一般有以下几种方法: (1)定义法:若函数的定义域不是关于原点对称的区间,则 立即可判断该函数既不是奇函数也不是偶函数;若函数的定义
域是关于原点对称的区间,再判断f(-x)是否等于±f(x).
(2)图象法:奇函数的图象关于原点对称,偶函数的图象关 于y轴对称. (3) 性质法:在公共定义域内,偶函数的和、差、积、商 (分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)
∴f(-a)≠f(a),且f(-a)≠-f(a).
∴函数f(x)是非奇非偶函数.
(2)①当x≤a时,函数f(x)=x2-x+a+1=
若a≤
+a+
,
,则函数f(x)在(-∞,a]上单调递减.
∴函数f(x)在(-∞,a]上的最小值为f(a)=a2+1. 若a> ,函数f(x)在(-∞,a]上的最小值为
函数的奇偶性与周期性
函数的奇偶性与周期性函数是数学中的重要概念,用于描述数值之间的关系。
函数的奇偶性与周期性是函数特性的一种表现形式。
在本文中,我们将探讨函数的奇偶性与周期性,并分析其在数学中的应用意义。
一、函数的奇偶性奇偶性是指函数在平面直角坐标系中关于原点的对称性质。
对于函数 f(x),若对于任意 x,都有 f(-x) = f(x),则称该函数为偶函数;若对于任意 x,都有 f(-x) = -f(x),则称该函数为奇函数。
1.1 奇函数的特点奇函数具有以下特点:- 在原点处对称,即图像关于原点对称;- 若 f(x) 是奇函数,那么其图像关于 y 轴的负半轴和正半轴对称。
1.2 偶函数的特点偶函数具有以下特点:- 在 y 轴上的值相等,即图像关于 y 轴对称;- 若 f(x) 是偶函数,那么其图像关于 x 轴对称。
二、函数的周期性周期性是指函数在一定区间内以某个常数为周期重复出现的性质,常用于描述周期性现象。
对于函数 f(x),若存在正数 T,使得对于任意x,都有 f(x+T) = f(x),则称 T 为函数 f(x) 的周期。
2.1 周期函数的特点周期函数具有以下特点:- 在每个周期内,函数的取值和性质相同;- 周期函数的图像在每个周期内重复出现。
三、奇偶函数的周期性奇偶函数的周期性与其奇偶性质有一定的联系,具体如下:3.1 偶函数的周期性若 f(x) 是一个周期为 T 的偶函数,则其满足以下性质:- 在一个周期内,函数的取值和性质相同;- 函数图像在每个周期内关于 y 轴对称。
3.2 奇函数的周期性若 f(x) 是一个周期为 T 的奇函数,则其满足以下性质:- 在一个周期内,函数的取值和性质相同;- 函数图像在每个周期内关于原点对称。
四、函数奇偶性与周期性的应用函数的奇偶性与周期性在数学中有广泛的应用,特别是在函数图像的分析和计算中。
4.1 奇偶性在函数图像中的应用通过判断一个函数的奇偶性,可以有效简化函数图像的分析过程。
第二章 第3讲 函数的奇偶性与周期性
奇函数 .
(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.
基础诊断 考点突破 课堂总结
3.周期性 (1) 周期函数:对于函数 y =f(x) ,如果存在一个
非零常数T,使得当x取定义域内的任何值时,
都有f(x+T)= f(x) ,那么就称函数y=f(x)为周 期函数,称T为这个函数的周期. (2) 最小正周期:如果在周期函数 f(x) 的所有周 期中 存在一个最小 的正数,那么这个最小正
基础诊断
考点突破
课堂总结
解析 (1)法一
2-x+1 2x+1 f(-x)= -x = , 2 -a 1-a2x
2x+1 2x+1 由 f(-x)=-f(x),得 =- x , 1-a2x 2 -a 即 1-a2x=-2x+a,化简得 a(1+2x)=1+2x,所以 a=1, 2x+1 f(x)= x ,由 f(x)>3,得 0<x<1,故选 C. 2 -1 2x+1 法二 因为 f(x)= x 是奇函数,所以 f(1)+f(-1)=0, 2 -a
-x
既不是偶函数也不是奇函数,故选 D.
答案 D
基础诊断 考点突破 课堂总结
3. (2015· 威海调研)已知 f(x)=ax2+bx 是定义在[a-1,2a]上的 偶函数,那么 a+b 的值是( 1 A.-3 1 B.3 1 C.2 ) 1 D.-2
1 1 解析 依题意 b=0,且 2a=-(a-1),∴a=3,则 a+b=3.
答案 (1)D (2)C
基础诊断 考点突破 课堂总结
考点二
函数奇偶性的应用
2x+1 【例 2】 (1)(2015· 山东卷)若函数 f(x)= x 是奇函数,则使 2 -a f(x)>3 成立的 x 的取值范围为( A.(-∞,-1) C.(0,1) )
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
函数的奇偶性与周期性
函数的奇偶性与周期性函数是数学中一种重要的工具,用来描述变量之间的关系。
在实际应用中,我们经常遇到一些特殊性质的函数,比如奇偶性与周期性。
本文将探讨函数的奇偶性与周期性的概念、特征以及在数学和实际问题中的应用。
一、函数的奇偶性函数的奇偶性是指函数的图像关于坐标轴的对称性。
具体来说,若对于函数中的任意一个元素x,有f(-x) = f(x),则称该函数为偶函数;若对于函数中的任意一个元素x,有f(-x) = -f(x),则称该函数为奇函数。
若函数既不满足偶函数的条件,也不满足奇函数的条件,则称该函数为既非偶函数又非奇函数的函数。
以数学表达式为例,对于偶函数来说,f(x) = f(-x);对于奇函数来说,f(x) = -f(-x)。
若一个函数既不满足偶函数的条件,也不满足奇函数的条件,可以通过将f(x)拆分为偶函数和奇函数的和的形式来表示。
函数的奇偶性具有以下特点:1. 若一个函数是奇函数,则它的图像关于原点对称;2. 若一个函数是偶函数,则它的图像关于y轴对称;3. 若一个函数既不是奇函数也不是偶函数,则其图像对于原点和y轴都没有对称性。
函数的奇偶性在数学推导和计算中有重要的作用。
在一些题目中,我们可以通过函数的奇偶性来简化计算,减少工作量。
二、函数的周期性函数的周期性是指函数在一定区间内以相同的规律重复出现。
具体来说,若对于函数中的任意一个元素x,有f(x + T) = f(x),其中T为一个正常数,则称该函数为周期函数。
周期函数具有以下特点:1. 函数在一个周期内的变化规律是相同的;2. 函数的周期可以大于一个周期;3. 若函数的周期为T,则f(x + T) = f(x),且对于一切正整数n,f(x+ nT) = f(x)。
周期函数在数学分析、物理学、信号处理等领域中具有广泛的应用。
很多实际问题中的变量可以通过周期函数来进行建模和分析,例如交流电信号和天体运动等。
三、函数的奇偶性与周期性的关系函数的奇偶性和周期性是两种不同的概念,但它们之间存在一定的联系。
高中复习文数:第二章 第三节 函数的奇偶性及周期性
1 B.2
C.2
D.-2
解析:因为函数 f(x)是偶函数,所以 f(- 2)=f( 2)=log2 2=12.
答案:B
3.[考点二](2018·南阳模拟)函数 f(x)是周期为 4 的偶函数,当 x∈[0,2]
时,f(x)=x-1,则不等式 xf(x)>0 在[-1,3]上的解集为( )
A.(1,3)
函数,∴f(-x)=-f(x),g(-x)=g(x),∴h(-x)=f(-x)·g(-
x)=-f(x)·g(x)=-h(x),∴h(x)=f(x)·g(x)是奇函数,故选 C. 答案:C
2.[考点二]设函数 f(x)为偶函数,当 x∈(0,+∞)时,f(x)=log2x,
则 f(- 2)=
()
A.-12
[方法技巧]
函数周期性的判定与应用 (1)判定:判断函数的周期性只需证明 f(x+T)=f(x)(T≠0) 即可. (2)应用:根据函数的周期性,可以由函数的局部性质得到 函数的整体性质,在解决具体问题时,要注意结论:若 T 是函 数的周期,则 kT(k∈Z 且 k≠0)也是函数的周期.
[全练题点]
(4)f(x)=|x+4-3|-x23.
[解] (1)∵ x2+1>|x|≥0,∴函数 f(x)的定义域为 R ,关于原
点对称,又 f(-x)=(-x)lg(-x+ -x2+1)=-xlg( x2+1-x) =xlg( x2+1+x)=f(x),即 f(-x)=f(x),∴f(x)是偶函数.
(2)当且仅当11+ -xx≥0 时函数有意义,∴-1≤x<1,由于定义域 关于原点不对称,∴函数 f(x)是非奇非偶函数.
F -52=f -2-12=f -12=-12+a, F 92=f 4+12=f 12=25-12=110. 由 f -52=f 92,得-12+a=110,解得 a=35. 所以 f(5a)=f(3)=f(4-1)=f(-1)=-1+35=-25. [答案] -25
2020届高考数学(理)复习课件:第二单元§2.3函数的奇偶性与周期性
二、函数奇偶性的常用结论
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在关于原点对称的区间上单调性相同,偶函数在关于y轴对
称的区间上单调性相反.
答案
(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,
奇×偶=奇.
三、函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何 值时,都有 f(x+T)=f(x) , 那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 最小 的正数,
答案 解析
(2)已知函数 f(x)=x2(2x-2-x),则不等式 f(2x+1)+f(1)≥0 的解集是 [-1,+∞) .
【解析】(2)∵f(-x)=(-x)2(2-x-2x)=-x2(2x-2-x)=-f(x), ∴函数 f(x)是奇函数. 不等式 f(2x+1)+f(1)≥0 等价于 f(2x+1)≥f(-1). 易知,当 x>0 时,函数 f(x)为增函数,∴函数 f(x)在 R 上为增函数, ∴f(2x+1)≥f(-1)等价于 2x+1≥-1,解得 x≥-1.
答案 解析
题型三 函数周期性的应用 【例 3】已知定义在 R 上的函数 f(x)满足 f(x+2)=-������(1������),当 x∈(0,2]时,f(x)=2x-1,
则 f(1)+f(2)+f(3)+…+f(2019)的值为 1347 .
【解析】∵f(x+2)=-������(1������),∴f(x+4)=-������(������1+2)=f(x),∴函数 y=f(x)的周期 T=4.
高中数学第二章 第三节 函数的奇偶性与周期性
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理]
重温教材 自查自纠
解析:法一:依题意,对于选项 A,当 x=-1 时,f(-1)=2;
当 x=1 时,f(1)=4,f(-1)≠-f(1),因此函数 f(x)=x3+3x2
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理]
重温教材 自查自纠
【知识拓展】 定义式 f(x+T)=f(x)对定义域内的 x 是恒成立的.若 f(x+a)= f(x+b),则函数 f(x)的周期为 T=|a-b|. 若在定义域内满足 f(x+a)=-f(x),f(x+a)=f1x,f(x+a)=- f1x(a>0),则 f(x)为周期函数,且 T=2a 为它的一个周期.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理]
重温教材 自查自纠
1.判断函数的奇偶性时,易忽视判断函数定义域是否关于原 点对称.定义域关于原点对称是函数具有奇偶性的一个必要条 件. 2.判断函数 f(x)的奇偶性时,必须对定义域内的每一个 x,均 有 f(-x)=-f(x)或 f(-x)=f(x),而不能说存在 x0 使 f(-x0)= -f(x0)或 f(-x0)=f(x0). 3.分段函数奇偶性判定时,误用函数在定义域某一区间上不 是奇偶函数去否定函数在整个定义域上的奇偶性.
答案:D
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)
的解析式.
(3)求函数解析式中参数的值 常常利用待定系数法:利用f(x)±f(-x)=0得到关于待求参数的 恒等式,由系数的对等性得参数的值或方程求解.
(4)已知奇偶性判断单调性
利用奇偶性可画出另一对称区间上的图象及判断另一区间上的
1 x
x 2 x, x 0 (3)f(x)= 2 x x, x 0.
【解题指南】由奇偶性的定义,先看函数的定义域是否关于原 点对称,再计算f(-x),并判断其与f(x)的关系,从而得出函数 的奇偶性.
【规范解答】(1)显然函数f(x)的定义域为R,关于原点对称, 又≧f(-x)=(-x)3-(-x)=-(x3-x)=-f(x), ≨f(x)为奇函数. (2)使f(x)= x 1 1 x 有意义, 则有 1 x ≥0且1+x≠0,
又≧f(-x)=
4 x x
2
4 x 2 =-f(x), x
≨函数f(x)为奇函数.
热点考向 2
函数奇偶性的应用
【方法点睛】
应用函数奇偶性可解决的问题及方法
(1)已知函数的奇偶性,求函数值
将待求值利用奇偶性转化为已知区间上的函数值求解.
(2)已知函数的奇偶性求解析式
将待求区间上的解析式,转化到已知区间上,再利用奇偶性求
【反思·感悟】利用函数的奇偶性可将未知区间上的求函数值、 求解析式、作图象、判定单调性问题转化为已知区间上的函数 值、解析式、图象、单调性问题求解,充分体现了数学的转化 与化归思想.
【变式备选】奇函数f(x)的定义 域为[-5,5].若当x∈[0,5]时, f(x)的图象如图所示,则不等式 f(x)<0的解集是_________. 【解析】由奇函数图象对称性补出其在[-5,0)上的图象,由图
f (x)
期;
③f(x+a)=- 1 ,则函数f(x)必为周期函数,2|a|是它的一个
f (x)
周期; (2)如果T是函数y=f(x)的周期,则 ①kT(k∈Z,k≠0)也是函数y=f(x)的周期, 即f(x+kT)=f(x); ②若已知区间[m,n](m<n)上的图象,则可画出区间 [m+kT,n+kT](k∈Z,k≠0)上的图象.
2 4 x (3)f(x)= . x 3 3
1 x2 0 【解析】(1)由 2 ,得x=-1或x=1. x 1 0
≨函数f(x)的定义域为{-1,1}.
又对于定义域内的任意x,f(-x)=0=〒f(x), ≨函数f(x)既是奇函数,又是偶函数.
(2)显然函数的定义域为R, 又≧f(-x)= ln( x x 2 1)
又≧f(-x)=
x
=-f(x),
≨函数f(x)为奇函数.
【反思·感悟】利用定义法判断函数奇偶性时,先要求定义域,
当解析式较复杂时,要在定义域内先化简,再计算 f(-x),否则
可能得到错误结论.
【变式备选】判断下列函数的奇偶性. (1)f(x)= 1 x 2 x 2 1;
(2)f(x)= ln(x x 2 1);
2.奇偶函数的图象性质
y轴 对称;奇函数的图象关于_____ 原点 对称. 偶函数的图象关于____
【即时应用】 (1)函数f(x)=x1 的图象关于_______对称. x
(2)已知y=f(x)是偶函数,且其图象与x轴有5个交点,则方程 f(x)=0的所有实根之和是_______. 【解析】(1)因为f(x)=x- 1 为奇函数,所以其图象关于原点对
【互动探究】在本例(1)中的条件下求f(x)在R上的解析式. 【解析】当x>0时,-x<0, 又x≤0时,f(x)=2x2-x, ≨f(-x)=2(-x)2-(-x)=2x2+x, 又f(-x)=-f(x), 即:-f(x)=2x2+x,≨f(x)=-2x2-x.
2 2x x, x 0 . 综上,f(x)= 2 2x x, x 0
x
称. (2)由于偶函数的图象关于y轴对称,故其与x轴的5个交点亦关 于y轴对称,或在y轴上,故其和为0. 答案:(1)原点 (2)0
3.周期性 (1)周期函数 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域 f(x+T)=f(x),那么就称函数y=f(x)为周期 内的任何值时,都有____________ 函数,T为这个函数的周期. (2)最小正周期 最小的正数 ,那么 如果在周期函数f(x)的所有周期中存在一个___________ 最小的正数 就叫做它的最小正周期. 这个___________
=x2-x=-f(x);
综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,
≨函数f(x)为奇函数.
2 lg(1 x ) 其奇偶 【互动探究】若将本例(2)的函数改为f(x)= , x2 2
性又如何呢?
【解析】易知函数f(x)的定义域为(-1,0)∪(0,1),关于原点对
称,
2 lg 1 x , ≨f(x)= x lg 1 x 2
f(5)=f(-1)=-1,f(6)=f(0)=0. ≨f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1. 2 012=335〓6+2. f(1)+f(2)+f(3)+„+f(2 012)=335+f(1)+f(2)=338.
【变式训练】设f(x)是定义在R上的奇函数,且对任意实数x,
【即时应用】 (1)已知函数f(x),对 x∈R,都有f(x+4)=f(x),且x∈(0,2)时, f(x)=2 012x2,则f(2 013)=_________. (2)函数f(x)对于任意实数x满足条件f(x+1)=-f(x),则f(x)的最 小正周期为__________.
【解析】(1)≧f(x+4)=f(x), ≨f(x)的最小正周期为4, ≨f(2 013)=f(503〓4+1)=f(1)=2 012〓12=2 012. (2)≧f(x+1)=-f(x), ≨f(x+2)=f((x+1)+1)=-f(x+1)=-[-f(x)]=f(x). ≨最小正周期为2. 答案:(1)2 012 (2)2
2
(C) 3
4
(D)1
(3)已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函
数,若f(a)≥f(2),则实数a的取值范围是________.
【解题指南】解答本题需利用函数的奇偶性: (1)将求f(1)的值转化为求f(-1)的值的问题求解; (2)由题意可知f(-x)+f(x)=0,从而得到关于x的恒等式,再构 建a的方程求解; (3)得到f(x)在[0,+≦)上的单调性,即将原不等式转化为 f(|a|)≥f(2),从而求解.
【解析】(1)由奇函数、偶函数定义知,函数①,⑤为偶函数, ②,③,④为奇函数,⑥是非奇非偶函数. (2)由已知得a-1=-2a,解得a= 1 ,
3
≨f(x)= 1 x2+bx,又f(-x)=f(x),
3
即 1 x2-bx= 1 x2+bx⇒bx=0,
3 3 1 又x∈[- 2 , 2 ],≨b=0,故a+b= +0= 1 . 3 3 3 3
象知解集为(-2,0)∪(2,5].
答案:(-2,0)∪(2,5]
热点考向 3 【方法点睛】
函数周期性的应用
关于函数周期性的几个常用结论 (1)若对于函数f(x)定义域内的任意一个x都有: ①f(x+a)=-f(x),则函数f(x)必为周期函数,2|a|是它的一个 周期; ②f(x+a)= 1 ,则函数f(x)必为周期函数,2|a|是它的一个周
(3)由题意知f(0)=0,当x<0时,-x>0,
≨f(-x)=(-x)2=x2,
又f(-x)=-f(x),≨f(x)=-x2,
x 2 , x 0 综上,f(x)= 0,x 0 . x 2 , x 0
答案:(1)①否
②是
③是
④是
⑤否
⑥否
1 x 2 , x 0 (2) (3) 2 3 x , x 0
单调性.
奇函数在关于原点对称区间上的单调性相同;偶函数在关于原
点对称区间上的单调性相反.
【例2】(1)设f(x)是定义在R上的奇函数,当x≤0时,f(x)= 2x2-x,则f(1)=( (A)-3 (B)-1 ) (C)1 (D)3 )
(2)若函数f(x)= (A) 1 (B) 2
3
x 为奇函数,则a=( 2x 1 (x a)
【规范解答】(1)选A.由奇函数的定义有f(-x)=-f(x),所以 f(1)=-f(-1)=-[2〓(-1)2+1]=-3. (2)选A.≧函数f(x)为奇函数,≨f(x)+f(-x)=0恒成立, 即
x x 0 恒成立. 2x 1 x a 2x 1 x a
1 x
1 x
解得函数的定义域为(-1,1],不关于原点对称,因此函数f(x) 既不是奇函数,也不是偶函数.
(3)显然函数f(x)的定义域为:
(-≦,0)∪(0,+≦),关于原点对称,
≧当x<0时,-x>0,则f(-x)=-(-x)2-x
=-x2-x=-f(x);
当x>0时,-x<0,则f(-x)=(-x)2-x
【例3】(2012·山东高考)定义在R上的函数f(x)满足 f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,