2018届中考数学第5章四边形第17讲特殊的平行四边形(精讲)试题
2018中考数学专题复习——特殊平行四边形.doc
中考数学专题复习——特殊平行四边形一、选择题1.(08 山东省日照市)只用下列图形不能镶嵌的是()A.三角形 B .四边形 C .正五边形 D .正六边形2、 (2018 浙江义乌 ) 下列命题中,真命题是( )A.两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形3、( 2018 山东威海)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若 AB= 3,则 BC的长为()A. 1 B . 2C. 2 D . 3D C D F COA B A E B4.( 2018 年山东省临沂市)如图,菱形ABCD中,∠ B= 60°, AB=2, E、 F 分别是 BC、 CD 的中点,连接AE、 EF、 AF,则△ AEF的周长为()A. 2 3 B . 3 3C. 4 3 D . 3AB DE FC5. ( 2018 年山东省潍坊市)如图, 梯形 ABCD中 ,AD∥ BC,AD=AB,BC=BD,∠ A=100° , 则∠C=( )A.80 °B.70 °C.75 °D.60 °A DB C6.(2018年辽宁省十二市) 下列命题中正确的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且平分的四边形是正方形7.(2018年浙江省绍兴市) 如图,沿虚线EF 将ABCD 剪开,则得到的四边形ABFE 是()A.梯形B.平行四边形C.矩形D.菱形DCEAFB8.(2018 年天津市 ) 在平面直角坐标系中,已知点 A ( 0,2),B ( 2 3 ,0),C ( 0, 2 ), D ( 2 3 , 0),则以这四个点为顶点的四边形 ABCD 是()A .矩形B .菱形C .正方形D .梯形9(2018 年沈阳市 ) 如图所示,正方形ABCD 中,点 E 是 CD 边上一点,连接 AE ,交对角线 BD 于点 F ,连接 CF ,则图中全等三角形共有()A . 1 对B . 2 对C . 3 对D . 4 对ADFEBC10. ( 2018 年四川巴中市如图 2.在 ABCD 中,对角线 AC 和 BD 相交于点 O ,则下面条件能判定 ABCD 是矩形的是()A . ACBDB . AC BD C . AC BD 且 ACBDD . ABAD11. ( 2018 年江苏省南通市)下列命题正确的是()A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形12. ( 2018 年江苏省无锡市)如图, E , F , G ,H 分别为正方形 ABCD 的边 AB , BC ,CD , DA 上的点,且 AEBFCG DH1 AB ,则图中阴影部分的面积与正方形3ABCD 的面积之比为()A.2B.4C.1D.3592 513.( 2018 广州市)如图 2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A 3B 2C 5D 6图214.(2018 云南省 ) 菱形的两条对角线的长分别是 6 和 8 ,则这个菱形的周长是()A. 24 B . 20 C. 10 D. 515.(2018 宁夏 ) 平行四边形 ABCD中, AC, BD是两条对角线,如果添加一个条件,即可推出平行四边形 ABCD是矩形,那么这个条件是()A. AB=BC B. AC=BDC. AC⊥ BD D . AB⊥ BDDA CB16.( 2018 年江苏省连云港市)已知AC 为矩形 ABCD 的对角线,则图中 1 与 2 一定不相等的是()D C D C D C D C2 2 2 2A 11B A1 B A 1 B A 1 B A. B .C .D .17.. ( 2018 山东东营)如图 1,在矩形 ABCD y中,动点 P 从点 B 出发,沿 BC, CD,DA 运DCPA B O4 9 x图 1 图 2动至点 A 停止.设点 P 运动的路程为x,△ABP的面积y,如果y 关于x 的函数图象如图 2为所示,则△ ABC的面积是()A. 10B. 16C. 18D. 2018.. ( 2018 泰安)如图,下列条件之一能使平行四边形ABCD是菱形的为()① AC BD ②BAD 90 ③ AB BC ④ AC BDA.①③B.②③C.③④D.①②③A DB C19. ( 2018 年湖南省邵阳市)如图(二),将ABCD 沿 AE 翻折,使点 B 恰好落在 AD 上的点 F 处,则下列结论不一定成立的是().....A.AF EF B.AB EFC.AE AF D.AF BEA F DCBE图(二)20.( 2018 年上海市)如图 2,在平行四边形ABCD 中,如果AB a , AD b ,那么 a b 等于()A.BD B.AC C.DB D.CAD CAB图221.( 2018 年山东省威海市)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB= 3,则 BC的长为A. 1 B . 2 C. 2 D. 322.(2018广东深圳)下列命题中错误的是()..A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形23. ( 2018 湖北襄樊)顺次连接等腰梯形四边中点所得四边形是()A. 菱形B.正方形C.矩形D.等腰梯形24.(2018黑龙江哈尔滨) 如图,将边长为8cm的正方形纸片ABCD折叠,使点 D 落在 BC边中点 E 处,点 A 落在点 F 处,折痕为MN,则线段 CN的长是().(A) 3cm( B) 4cm( C) 5cm( D)6cm二、填空题1. ( 08 浙江温州)如图,菱形ABCD中,A 60 ,对角线 BD 8 ,则菱形 ABCD 的周长等于.DA CB2、 (2018 浙江义乌 ) 如图,直角梯形纸片 ABCD, AD⊥ AB,AB=8,AD=CD=4,点 E、 F 分别在线段 AB、 AD上,将△ AEF沿 EF 翻折,点 A 的落点记为P.( 1)当 AE=5,P 落在线段 CD上时, PD=▲;( 2)当 P 落在直角梯形ABCD内部时, PD的最小值等于▲.3、 (2018山东烟台)红丝带是关注艾滋病防治问题的国际性标志. 将宽为1cm的红丝带交叉成 60°角重叠在一起(如图),则重叠四边形的面积为_______ cm2.4.( 2018 年山东省临沂市)如图,矩形 ABCD中, AB=2, BC= 3,对角线 AC的垂直平分线分别交 AD, BC于点 E、 F,连接 CE,则 CE的长 ________.A E DOB F C5、( 2018 浙江杭州)如图,一个 4 2 的矩形可以用 3 种不同的方式分割成 2 或 5 或 8 个小正方形,那么一个 5 3 的矩形用不同的方式分割后,小正方形的个数可以是.或或?6( 2018浙江宁波)如图,菱形OABC 中,∠ A 120 , OA 1,将菱形 OABC 绕点 O 按顺时针方向旋转90 ,则图中由BB,B A ,A C,CB 围成的阴影部分的面积是.B BC AACO7.(2018 年天津市 ) 如图,在正方形ABCD中, E为 AB边的中点, G, F分别为 AD D,BC边上的点,若AG 1 ,BF 2 , GEF 90 ,则 GF的长为.G8 .(2018 年沈阳市 ) 如图所示,菱形ABCD 中,对角线 AC,BD 相交于点 A EO ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是(只填一个条件即可).A DOB C9.( 2018 年四川省南充市)如图,四边形A B C D中,E,F,G,H分别是边A B,B C,C,D D的A中点.请你添加一个条件,使四边形EFGH 为菱形,应添加的条件是.DHAEGBF CCFB10.(2018新疆乌鲁木齐市 ) 如图3,在四边形ABCD中,AD ∥ BC,D90,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是.(写出一种情况即可)ADBC图 311.(2018 黑龙江黑河 ) 如图,矩形 ABCD 中, AB 3 cm , AD 6 cm ,点 E 为 AB 边上的任意一点,四边形 EFGB 也是矩形,且 EF2BE, 则 S △ AFCADcm 2 .F EGB C12. ( 2018 桂林市)如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,A D= 6, BC= 8, 则梯形的高为。
中考数学复习《特殊的平行四边形》专题练习(含答案)
三、解答题
31. (2018·湘西州)如图,在矩形 中, 是 的中点,连接 .
(1)求证: ;
(2)若 ,求 的周长.
32. (2018连云港)如图,在矩形 中, 是 的中点,延长 交于点 ,连接 .
(1)求证:四边形 是平行四边形;
A. B. C. D.
二、填空题
13. (2018·株洲)如图,矩形 的对角线 与 相交点 , 分别为 的中点,则 的长度为.
14.(2018·成都)如图,在矩形 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 .若 ,则矩形的对角线 的长为.
38. (2018·乌鲁木齐)如图,在四边形 中, , 是 的中点, , , 于点 .
(1)求证:四边形 是菱形;
(2)若 ,求 的长.
39. (2018·广安)如图,四边形 是正方形, 为 上一点,连接 ,延长 至点 ,使得 ,过点 作 ,垂足为 ,求证: .
40. (2018·盐城)如图,在正方形 中,对角线 所在的直线上有两点 满足 ,连接 .
(2)在(1)的条件下,连接 ,求 的度数.
36.(2018·娄底)如图,在四边形 中,对角线 相交于点 ,且
,过点 作 ,分别交 于点 .
(1)求证: ;
(2)判断四边形 的形状,并说明理由.
37. (2018·南京)如图,在四边形 中, , . 是四边形 内一点,且 .求证:
(1) ;
(2)四边形 是菱形.
9. (2018·宿迁)如图,菱形 的对角线 相交于点 , 为边 的中点.若菱
数学中考备考:第五章 平行四边形
第五章平行四边形第一讲平行四边形与多边形【中考预知】1、了解多边形及正多边形的概念以及其内角和和外角和公式;2、会用多边形的内角和与外角和公式解决计算问题;3、掌握平行四边形及特殊平行四边形的概念、性质及判定,并且会用平行四边形及特殊平行四边形的性质和判定解决简单几何问题.【知识重点】考点1:多边形【典例精讲】1.下列图形中,属于多边形的是()A.线段B.角C.六边形D.圆2.多边形的每一个内角都等于150度,则从此多边形的一个顶点出发能引出______条对角线.3.每一个内角都相等的多边形,它的一个外角等于一个内角的九分之一,则这个多边形的是______边形.【变式训练】1.一个平行四边形的一边长为8,另一对角线长为6,另一对角线m的取值范围是______.2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.4.已知一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【中考荟萃】1.(2015南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角和等于()A.60°B.72°C.90°D.108°2.(2014柳州)正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.(2013北海)内角和和外角和相等的多边形是()A.四边形B.五边形C.六边形D.七边形考点2:平行四边形的性质平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,它的对称中心是两条对角线的交点。
2018年全国中考数学真题分类 平行四边形解析版(精品文档)
2018年全国中考数学真题分类平行四边形(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018安徽省,9,4分) □ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.BE=DFB.AE=CFC.AF//C ED.∠BAE =∠DCF【答案】B【思路分析】连接AC 与BD 相交于O ,根据平行四边形的对角线互相平分可得OA=OC ,OB=OD ,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF 即可,然后根据各选项的条件分析判断即可得解.【解题过程】解:如图,连接AC 与BD 相交于O , 在▱ABCD 中,OA=OC ,OB=OD ,要使四边形AECF 为平行四边形,只需证明得到OE=OF 即可; A 、若BE=DF ,则OB-BE=OD-DF ,即OE=OF ,故本选项不符合题意; B 、若AE=CF ,则无法判断OE=OE ,故本选项符合题意;DC 、AF ∥CE 能够利用“角角边”证明△AOF 和△COE 全等,从而得到OE=OF ,故本选项不符合题意;D 、∠BAE=∠DCF 能够利用“角角边”证明△ABE 和△CDF 全等,从而得到DF=BE ,然后同A ,故本选项不符合题意;故选:B .【知识点】平行四边形的判定与性质;全等三角形的判定与性质.3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A.12B.1 C.32D.3【答案】B【思路分析】1.由∠ACB=90°,∠A=30°,BC的长度,可求得AB的长度,2.利用直角三角形斜边的中线等于斜边第一半,求得CD的长度;3.利用中位线定理,即可求得EF的长.【解题过程】解:在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,,∴AB=4,CD=12AB,∴CD=12×4=2,∵E,F分别为AC,AD的中点,∴EF=12CD=12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理5. (2018四川省宜宾市,5,3分)在ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED 的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【解析】如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵AE和DE是角平分线,∴∠EAD=12∠BAD,∠ADE=12∠ADC,∴∠EAD+∠ADE=12(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选择B.【知识点】平行四边形的性质6.(2018宁波市,7题,4分)如图,在 ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE若∠ABC =60°∠BAC=80°,则∠1的度数为A.50°B.40°C.30°D.20°【答案】B【解析】解:∵∠ABC =60°∠BAC=80°∴∠ACB =40°又∵平行四边形ABCD∴AD∥BC;AO=CO∴∠ACB =∠CAD=40°又∵E是边CD的中点∴OE∥AD∴∠CAD=∠1=40°【知识点】平行四边形的性质、三角形内角和、中位线1. (2018内蒙古呼和浩特,8,3分)顺次连接平面上A、B、C、D四点得到一个四边形,从①AB//CD,②BC=AD,③∠A =∠C,④∠B =∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.四种C.3种D.1种【答案】C【解析】共有6种组合:①②,①③,①④,②③,②④,③④。
2018年中考数学第一轮复习---特殊的平行四边形
2018年中考数学第一轮复习--- 特殊平行四边形【中考目标】1、进一步熟悉矩形、菱形、正方形与平行四边形、四边形之间的联系;2、对矩形、菱形、正方形的性质和判定有进一步的掌握;3、能够熟练运用以上特殊平行四边形的性质和判定定理进行证明与计算.【中考知识清单】1、矩形的性质:矩形具有平行四边形的所有性质外还具有___________________________________ _____________的特殊性质. 2、菱形的性质:菱形具有平行四边形的所有性质外还具有___________________________________ _____________的特殊性质,菱形的面积公式 . 3、正方形的性质:正方形的边具有:____________________,角具有:___________________________, 对角线具有:___________________________的性质.4、特殊四边形的判定(请在箭头上完整、全面地填写适当的判定条件):5、四边形的对称性:平行四边形是________对称图形,矩形是__________________ , 菱形是__________________________,正方形是____________________________(三)、有关中点四边形问题1、顺次连接任意四边形的四边中点所得的四边形是 ;2、顺次连接对角线相等的四边中点所得的四边形是 ;3、顺次连接对角线垂直的四边中点所得的四边形是 ;4、顺次连接对角线垂直且相等的四边中点所得的四边形是 .【合作探究】考点一:矩形、菱形、正方形性质的应用正方形例1、在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B. 2个 C. 2个 D. 2个例2、如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()例3、如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).巩固练习1.如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.142.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④3.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B. C. D.2①②③考点二:矩形、菱形、正方形的判定例4、已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.例5、如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE 后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.巩固练习:线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD ,BD ,根据她的作图方法可知,四边形ADBC 一定是( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形6、如图,已知E 是▱ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F . (1)求证:△ABE≌△FCE.(2)连接AC .BF ,若∠AEC=2∠ABC,求证:四边形ABFC 为矩形.【测评】7、 如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 . 8、如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .9、如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是【作业】1.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形 B . 等腰梯形C .对角线相等的四边形D . 对角线互相垂直的四边形 2.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是 . 3.(2017年贵州省黔东南州第8题)如图,正方形ABCD 中,E 为AB 中点,FE ⊥AB ,AF=2AE ,FC 交BD 于O ,则∠DOC 的度数为( )B CDAPA .60°B .67.5°C .75°D .54°4.(2017年山东省东营市第10题)如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论: ①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PHPC 其中正确的是( )A .①②③④B .②③C .①②④D .①③④5.(2017年湖南省长沙市第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 206.(2017年湖北省十堰市第13题)如图,菱形ABCD 中,AC 交BD 于O ,OE ⊥BC 于E ,连接OE ,若∠ABC=140°,则∠OED= .7.(2017年四川省成都市第14题)如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若2,3DQ QC BC==,则平行四边形ABCD周长为.8.(2017年贵州省六盘水市第16题)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则AEB=∠度.9.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.10.如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.。
2018年全国中考数学 特殊的平行四边形压轴题专题复习
两条对角线互相平 分
直接识别
间接识别
矩 形 有三个角是直角
(1)是平行四边形,且有一个角是直角 (2)是平行四边形,且两条对角线相等
(1)是平行四边形,且有一组邻边相等
菱形
四条边相等
(2)是平行四边形,且两条对角线互相垂
直
(1)是矩形,且有一组邻边相等; 正方形
(2)是菱形,且有一个角是直角
(1)是梯形,且同一底边上的两个角相等; 等腰梯形
在△AEF 和△DEC 中, AEF DEC ,
AE DE
∴△AEF≌△DEC(AAS),∴AF=CD.∵AF=BD, ∴BD=CD.
(2)当△ABC 满足:AB=AC 时,四边形 AFBD 是矩形.
理由如下:
∵AF∥BD,AF=BD,∴四边形 AFBD 是平行四边形.
∵AB=AC,BD=CD, ∴∠ADB=90.
时安排(仅供参考).
课时数
内 容
1
多边形、平行四边形
特殊的平行四边形(矩形、菱形、正方 3 形)
1
梯形
2
四边形单元测试与评析
【知识回顾】
1.知识脉络
矩 形
平行四边形
正方形
四
菱 形
边
形 等腰梯形
梯 形
直角梯形
2.基础知识 (1)有关特殊四边形的一些概念和结论 ①两组对边分别平行的四边形叫做平行四边形. ②有一个角是直角的平行四边形叫做矩形. ③有一组邻边相等的平行四边形叫做菱形. ④有一个角是直角的菱形或有一组邻边相等的矩形叫做正方形. ⑤只有一组对边平行的四边形叫做梯形;两腰相等的梯形叫做等腰梯形;有一个角是直角
的梯形叫做直角梯形.
(2)几种特殊四边形的性质
2018中考数学真题分类汇编解析版-18.1.平行四边形
一、选择题1.(2018安徽,9,4分) □ABCD 中,E ,F 是对角线BD 上不同的两点,下列条件中,不能..得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF答案:B ,解析:如图,由□ABCD 得AB =CD ,AB ∥CD ,所以∠ABE =∠CDF ,结合选项A 和D 的条件可得到△ABE ≌△CDF ,进而得到AE =CF ,AE ∥CF ,判断出四边形AECF 一定为平行四边形;结合选项C 的条件可得到△ABF ≌△CDE ,所以AF =CE ,判断出四边形AECF 一定为平行四边形;只有选项B 不能判断出四边形AECF 一定为平行四边形.2.(2018·达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) .A .32B .2C .52D .3M DN EB A C第8题图答案:C ,解析:∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线,∴MN =12DE =52.故选C.3. (2018·达州市,9,3分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC ,连接DE 、DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADG BGHS S的值为( ).A .12 B .23 C .34D .1GH F ECAB D第9题图答案:C ,解析:如图,过点H 作HM ∥AB 交AD 于M ,连接MG .设S 平行四边形ABCD =1.∵AE =CF =14AC ,∴S △ADE =14S △ADC =18S 平行四边形ABCD =18,S △DEC =38.∴S △AEG =19S △DEC =124.∴S △ADG =S △ADE +S △AEG =18+124=16.∵CH AD =13,∴S △AMG =23S △ADG =19.∵AG CD =13,∴S △GBH =2 S △AMG =29.∴ADG BGH S S =1629=34.故选C.M GHFE C AB D4.(2018·泸州,7,3分) 如图2, □ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则□ABCD 的周长为( )E ODA CBA .20B .16C .12D .8答案:B ,解析:∵四边形ABCD 是平行四边形,∴AO =OC .∵E 是AB 的中点,∴AB =2AE ,OE 是△ABC 的中位线,∴BC =2OE .∵AE +EO =4,∴AB +BC =2×4=8.∴□ABCD 的周长为2×8=16.5.(2018·台州市,8,4) 如图,在▱ABCD 中,AB =2,BC =3,以C 为圆心,适当长为半径画弧, 交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于1/2PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A .1/2 B.1 C .56 D .23答案:B ,解析:∵由题意可知CE 是∠BCD 的平分线, ∴∠BCE =∠DCE .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠DCE =∠E . ∴∠BCE =∠E . ∴BE =BC . ∵AB =2,BC =3, ∴AE =3−2=1.6. 在ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定答案:B ,解析:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAD+∠ADC=180°,∵∠BAD 与∠CDA 的角平分线交于点E ,∴∠EAD 12∠BAD ,∠EDA=12∠CDA ,∴∠EAD+∠EDA=12(∠BAD+∠CDA )=12×180°=90°,∴∠AED=90°,故△AED 是直角三角形.7.(2018·湖州市,8,3分)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 是延长线上的点F 出,连接AD ,则下列结论不一定正确的是( )FEDC BA第8题图A .AE =EFB .AB =2DEC . △ADF 和△ADE 的面积相等D . △ADE 和△FDE 的面积相等答案.C 解析:连接CF.由折叠的性质可知CD =DF ,CD =EF ,∴DE 是CF 垂直平分线.又∵DC =DF =DB ,∴△BFC 是直角三角形,∴BF ⊥FC ,∴DE ∥BF.又∵点D 是BC 的中点,∴DE 是△ABC 的中位线,∴AE =EC =EF ,AB =2DE ,S △ADE =S △FDE ,故选项A 、B 、D 正确;由题意无法得出AD 与EF 平行,∴△ADF 与△ADE 的面积不一定相等,故不一定正确的是选项 C.FEDC BA二、填空题1. (2018·山东淄博,15,4分)在如图所示的□ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O ,则△ADE 的周长等于__________.DEOBCA答案:10 解析:由题意知AD =AE =3,DC =CE =2,所以△ADE 的周长=10.2.(2018·株洲市,18,3分) 如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠P AB ,则AP =______________.答案.6,解析:S △ABD =21AB ·DN =21BD ·AM ,∵BD =CD ,∴21AB ·DN =21CD ·AM ,∵四边形ABCD 是平行四边形,∴AB =CD ,∴DN =AM ,∵DN =32,∴AM =32.∵∠ABD =∠MAP +∠P AB ,∠ABD =∠MAP +∠P ,∴∠MAP =∠P ,∵AM ⊥BD ,∴∠P =45°,在Rt △APM 中,sinP =AP AM ,∴AP =P AM sin =2223=6.3.(2018·衡阳市,17题,3分) 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,△CDM 的周长为8,那么□ABCD 的周长是 .(第17题图)答案.16,解析:由平行四边形的性质可知点O 是AC 的中点,又因为OM ⊥AC ,所以OM 是AC 的垂直平分线,进而可知AM =CM ;根据△CDM 的周长为8,即CM +MD +CD =AM +MD +CD =8,而AM +DM =AD ,所以AD +CD =8,故□ABCD 的周长是16.4.(2018·临沂,17,3分)如图,在□ABCD 中,AB =10,AD =6,AC ⊥BC .则BD = .ODC BA第17题图答案.413,解析:过点D 作DE ⊥BC 于点E ,∵□ABCD ,∴AD =BC =6,∵AC ⊥BC ,∴AC=22610-=8=DE ,∵BE =BC +CE =6+6=12,∴BD =13481222=+.5.(2018·泰州市,13,3分)如图,□ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为 .13.答案:14,解析:□ABCD 中,BC =AD =6,∵OB =OD ,OA =OC ,AC +BD =16,∴OB +OC =8, ∴△BOC 的周长=OB +OC +BD =14.6.(2018·泰州市,14,3分)如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD =∠ABC =90°,E 、F 分别为AC 、CD 的中点,∠D =α,则∠BEF 的度数为 .(用含α的式子表示)14.答案,270°﹣3α.解析:∵∠ACD =90°,∠D =α,∴∠DAC =90°﹣α,∵AC 平分∠BAD ,∴∠BAC =∠DAC =90°﹣α,∵∠ABC =90°,AE =CE ,∴BE =AE =EC ,∴∠EBA =∠EAB =90°﹣α,∴∠CEB =∠EBA +∠EAB =180°﹣2α,∵AE =CE 、CF =DF ,∴EF ∥AD ,∴∠CEF =∠DAC =90°﹣α,∴∠BEF =∠CEB +∠CEF =180°﹣3α.7.(2018·南京,14,2) 如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC =10cm ,则DE =cm.答案:5,解析:根据垂直平分线的定义可知D 、E 分别是AB 、AC 的中点,所以DE 是△ABC 的中位线,∴DE =12BC =5.三、解答题 1.(2018·金华市,20,8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.思路分析:利用数形结合的思想,先确定底边长,在确定高的长即可画出题目要求图形. 解答过程:图1:以点A 为顶点的三角形图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形AA A2.(2018·重庆B 卷,24,10)如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH . (1)若BC =122,AB =13,求AF 的长; (2)求证:EB =EH .【思路分析】(1)在Rt △FBC 中,由sin ∠FCB =BFBC,求出BF =122×sin45°=122×22=12;在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)本题有两种证法,一是在BF 上取点M ,使AM =AG ,连接ME 、GE .通过证明四边形AMEG 是正方形,进而得到∠AMB =∠HCE =45°,BM =CE ,AM =CH ,于是△AMB ≌△CHE ,从而EH =AB ,进而EB =EH .第二种方法是连接EG ,GH .通过证明△GBE ≌△GHE (SAS )锁定答案. 【解题过程】 解:(1)∵BF ⊥AC ,∴∠BFC =∠AFB =90°.在Rt △FBC 中,sin ∠FCB =BFBC,而∠ACB =45°,BC =122, ∴sin45°=122BF. ∴BF =122×sin45°=122×22=12. 在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)方法一:如下图,在BF 上取点M ,使AM =AG ,连接ME 、GE .MABC DEF G H∵∠BFC =90°,∠ACB =45°,∴△FBC 是等腰直角三角形. ∴FB =FC .∵在□ABCD 中,AD ∥BC , ∴∠GAC =∠ACB =45°.24题图HG FEDC BA∴∠AGB =45°.∵AM =AG ,AF ⊥MG ,∴∠AMG =∠AGM =45°,MF =GF . ∴∠AMB =∠ECG =135°. ∵BA =BE ,BF ⊥AE , ∴AF =EF .∴四边形AMEG 是正方形. ∴FM =FE . ∴BM =CE . 又∵CH =AG , ∴CH =AM .∴△AMB ≌△CHE . ∴EH =AB . ∴EH =EB .方法二:如下图,连接EG ,GH .A BC DE FGH∵BF ⊥AC 于点F ,BA =BE , ∴∠ABF =∠EBF . ∵GB =GB ,∴△GBA ≌△GBE (SAS ). ∴∠AGB =∠EGB .在△FBC 中,∵∠BFC =90°,∠ACB =45°, ∴∠FBC =45°.∵在□ABCD 中,AD ∥BC ,∴∠GAC =∠ACB =45°,∠AGB =∠FBC =45°. ∴∠EGB =45°. ∵CH =AG ,∴四边形AGHC 是平行四边形. ∴∠BHG =∠GAC =45°. ∴∠BHG =∠GBH =45°. ∴GB =GH ,∠BGH =90°. ∴∠HGE =∠BGE =45°. ∵GE =GE ,∴△GBE ≌△GHE (SAS ). ∴EH =EB .【知识点】勾股定理 等腰三角形的性质 全等三角形 平行四边形 3.(2018·无锡市,21,8)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点, 求证:∠ABF =∠CDE .思路分析:先根据平行四边形性质以及中点的定义证明AF =CE ,再证△ABF ≌△CDE ,得到∠ABF =∠CDE .解答过程:证明:∵四边形 ABCD 为平行四边形 ,∴AB =CD ,AD =AB ,∠C =∠A , ∵E 、F 分别是边BC 、AD 的中点,∴CE =12BC , AF =12AD ,∴AF =CE , ∴△ABF ≌△CDE (SAS ),∴∠ABF =∠CDE .4.(2018江苏宿迁,22,8分)(本小题满分8分)如图,在□ABCD 中,点E ,F 分别在边CB 、AD 的延长线上,且BE=DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG=CH .HGFED BCA思路分析:由□ABCD 可知AD=BC ,AD ∥BC ,∠A=∠C ,再根据BE=DF ,可证得:AF=CE ,根据ASA 证明△AGF ≌△CHE 得证.解:证明:∵四边形ABCD 是平行四边形 ∴AD=BC ,AD ∥BC ,∠A=∠C , ∴∠F=∠E ∵BE=DF∴AD+DF=CB+BE ,即AF=CE在△AGF 和△CHE 中⎪⎩⎪⎨⎧∠=∠=∠=∠E F CE AF CA∴△AGF ≌△CHE (AAS ) ∴AG=CH5.(2018·连云港,22,10分)如图,矩形ABCD 中,E 是AD 的中点,延长CE 、BA 交于点F ,连接AC 、DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.思路分析:(1)因为四边形ACDF 已经具备AF ∥DC 或AE =ED ,根据平行四边形的判定条件,必须证明△F AE ≌△CDE 即可;(2)因为CF 平分∠BCD ,所以∠DCE =45°,可得△CDE 是等腰直角三角形,从而BC =BF =2AB =2CD .解答过程:(1)证明:因为四边形ABCD 是矩形,所以AB ∥CD ,所以∠F AE =∠CDE . 因为E 是AD 的中点,所以AE =DE .又因为∠FEA =∠CED ,所以△F AE ≌△CDE ,所以CD =F A . 又因为CD ∥F A ,所以四边形ACDF 是平行四边形. (2)BC =2CD .因为CF 平分∠BCD ,所以∠DCE =45°. 因为∠CDE =90°,所以△CDE 是等腰直角三角形, 所以CD =DE .因为E 是AD 的中点,所以AD =2CD . 因为AD =BC ,所以BC =2CD .6.(2018·黄冈市,20,8分)如图,在□ABCD 中,分别以BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE . (1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证:BF ⊥BC .GFADBCE思路分析:(1)要证△ABF ≌△EDA ,需具备三个条件,由条件易证AB =ED 、BF =DA 、∠ABF =∠EDA ,故运用“SAS ”证明即可;(2)要证BF ⊥BC ,只需证明∠FBC =90°,而AF ⊥AE ,则∠F AE =90°,问题转化为证∠FBC=∠F AE ,即证明∠CBG +∠GBF =∠EAD +∠DAB +∠BAF ,而∠CBG =∠DAB 可通过AD ∥BC 证出,最终只需证明∠GBF =∠EAD +∠BAF ,这个可以由(1)中的全等证出.解答过程:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ,AB =CD ,∠ABC =∠ADC ∵BC =BF ,CD =DE ∴AB =DE ,BF =AD又∠ABC =∠ADC ,∠CBF =∠CDE ∴∠ABF =∠ADE在△ABF 和△EDA 中,AB =DE ,∠ABF =∠ADE ,BF =AD ∴△ABF ≌△EDA ;(2)由(1)知∠EAD =∠AFB ,∠GBF =∠AFB +∠BAF 由平行四边形ABCD 可知:AD ∥BC ∴∠DAG =∠CBG∴∠FBC =∠FBG +∠CBG =∠EAD +∠F AB +∠DAG =∠EAF =90° ∴BF ⊥BC .7.(2018·永州市,22,10分)如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若AB =6,求平行四边形BCFD 的面积.思路分析:(1)利用同旁内角互补,两直线平行证明BC ∥AD ,利用内错角相等,两直线平行证明BD ∥CE ,于是可得四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,在Rt △BEG 中,利用∠BEG 的正弦可求得BG 的长,根据等边三角形的性质可求得BD 的长,再根据平行四边形的面积等于底乘以高计算即可.解答过程:证明:∵△ABD 是等边三角形,∴∠ABD =∠BAD =60°,又∠CAB =30°,∴∠CAD =∠CAB +∠BAD =30°+60°=90°,∵∠ACB =90°,∴∠CAD +∠ACB =90°+90°=180°,∴BC ∥AD .在Rt △ABC 中,∠ACB =90°,E 是线段AB 的中点,∴CE =AE ,∴∠ACE =∠CAB ,∵∠CAB =30°,∴∠ACE =∠CAB =30°,∴∠BEC =∠ACE +∠CAB =30°+30°=60°,∵∠ABD =60°,∴∠ABD =∠BEC ,∴BD ∥CE ,又BC ∥AD ,∴四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,∵AB =6,点E 是线段AB的中点,∴BE =3,在Rt △BEG中,∠BEG =60°,sin ∠BEG =BEBG,∴BG =BE ·sin ∠BEG =3×sin60°=3×23=233.∵△ABD 是等边三角形,∴BD =AB =6,∴平行四边形BCFD 的面积为BD ·BG =6×233=93.。
平行四边形(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题平行四边形(试题二)解析版一、选择题1. (2018海南省,13,3分) 如图,□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD =12,则△DOE 的周长为( )A .15B .18C .21D .24【答案】A【解析】∵□ABCD 的周长为36,∴BC +CD =12×36=18,OB =OD =12BD =12×12=6,又∵点E 是CD 的中点,∴OE =12BC ,DE =12CD ,∴△DOE 的周长=OD +OE +DE =6+12BC +12CD =6+12(BC +CD )=6+12×18=15,故选择A . 【知识点】平行四边形的性质,三角形的中位线定理2.2. (2018山东省东营市,7,3分)如图,在四边形ABCD 中,E 是BC 边中点,连接DE 并延长,交AB的延长线于F,AB=BF 。
添加一个条件,使四边形ABCD 是平行四边形,你认为下列四个条件可选择的是( )A. AD=BCB. CD=BFC. ∠A=∠CD. ∠F=∠CDF.【答案】D【解析】题干中有AB=BF,因此应证AB ∥CD,AB=CD 即可,而要证这两个条件应证△BEF ≌△CED.结合题干中条件:E 为BC 中点,又由对顶角,因此添加∠F=∠CDF 可证△BEF ≌△CED ,可得AB ∥CD,AB=CD.【知识点】平行四边形的判定方法。
3. (2018甘肃省兰州市,8,4分) 如图,矩形ABCD 中,AB =3,BC =4,BE //DF 且BE 与DF 之间的距离为3,则AE 的长度是 A. 7 B .83 C .87 D .85 【答案】C【解析】作EG ⊥DF 于G ,,因为BE ∥DF ,所以∠BEG =90°, 所以∠AEB +∠DEG =90°,又∠AEB +∠ABE =90°,所以∠DEG =∠ABE ,因为AB =EG =3,所以△ABE ≌△GED ,所以ED =BE ,在Rt △ABE中,AE 2+AB 2=BE 2=(4-AE )2,解得AE =78,故选C 。设AE =x ,则BE =29x +,由3×BE =3×DE ,所以BE =DE .即29x +=4-x ,解得x =87. 【知识点】平行四边形的性质 全等三角形的判定和性质 勾股定理4. (2018甘肃省兰州市,9,4分)如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠E 为A .102°B .112°C .122°D .92°【答案】B【解析】因为∠DFC =∠BFE =40°,由折叠的性质知△ABD ≌△CBD ≌△CDB ,所以∠FBD =∠FDB =20°,∠ABD =∠EBD =48°,所以∠EBF =28°,所以∠E =180°-∠EBF -∠EFB =180°-28°-40°=112°,故选B 。【知识点】平行四边形的性质 折叠的性质 全等三角形的判定和性质5. (2018黑龙江绥化,7,3分) 下列选项中,不能判定四边形ABCD 是平行四边形的是( )A BCD EF 第8题图 A E B DC F第9题图【解析】解:A选项,根据两组对边分别平行的四边形是平行四边形,可判断出四边形ABCD是平行四边形,故正确;B选项,根据一组对边平行且相等的四边形是平行四边形,可判断出四边形ABCD是平行四边形,故正确;C选项,一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,所以不能判断出四边形ABCD是平行四边形,故错误;D选项,根据两组对边分别相等的四边形是平行四边形,可判断出四边形ABCD是平行四边形,故正确.故选C.【知识点】平行四边形的判定6.(2018年黔三州,10,4)如图,在□ABCD中,已知AC=4cm,若△ACD的周长为13cm,则□ABCD的周长为()A.26cmB.24cmC. 20cmD.18cm【答案】D【解析】∵在□ABCD中,AD=BC,AB=CD, AC=4cm,AC+AD+CD=13cm,∴AD+DC=13-4=9cm.∴AB+BC+CD+AD=2AD+2CD=2(AD+CD)=18cm.【知识点】平行四边形性质,7.(2018贵州铜仁,8,4)在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离是()A.1cmB.3cmC.5cm或3cmD.1cm或3cm【答案】C,【解析】依据题意画出图形.当直线a,b,c的位置如图1所示时,结合平行线间的距离的知识,可得a与c的距离是4+1=5cm;当直线a,b,c的位置如图2所示时,结合平行线间的距离的知识,可得a与c的距离是4-1=3cm;综上可知,a与c的距离是5cm或3cm.图1 图28.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD (点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A .3B .4C .D .【答案】B【解析】 本题解答时要取AB 的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB 的中点M ,则ME ∥BC ,ME =12BC ,∵EF ∥CD ,∴M ,E ,F 三点共线,∵EF =2CD ,∴MF =BD ,∴四边形MBDF 是平行四边形,∴DF =BM =4,故选B .9.(2018内蒙古通辽,10,3分)如图,□ABCD 的对角线AC 、BD 交于点O ,DE 平分∠ADC 交AB 于点E ,∠BCD =60°,AD =12AB ,连接OE .下列结论:①S □ABCD =AD ·BD ;②DB 平分∠CDE ;③AO =DE ;④S △ADE =5S △OFE .其中正确的个数有A .1个B .2个C .3个D .4个【答案】B【解析】∵四边形ABCD 是平行四边形,∴∠BCD =∠DAB =60°,∵DE 平分∠ADC ,∴∠DAE =∠ADE =60°,∴△ADE 是等边三角形,∴AD =AE =DE ,∵AD =12AB ,∴AE =12AB ,即E 为AB 的中点, ∴∠ADB =90°,∴S □ABCD =AD ·DB ,故①正确;又∵DE 平分∠ADC 交AB 于点E ,∠ADC =120°,∴∠EDC =60°而∠AED =∠EDB +∠EBD ,AD =AE =DE =EB ,∴∠EDB =∠EBD =30°,所以∠DBC =∠EDC -∠EDB =60°-30°=30°∴DB 平分∠CDE ,故②正确;又AO =12AC ,DE =12AB ,AC >AB ,∴AO >DE ,故③错误; ∵AE =BE ,DO =BO ,∴OE =12AD ,且EO ∥AD ,B∴S△ADF=4S△OFE,又S△AFE≠S△OFE,∴S△ADF+S△AFE≠5S△OFE,即S△ADE≠5S△OFE故④错误.综上所述,故选B.10.(2018四川巴中,10,4分)如图,在□ABCD中,已知AC=4cm,若△ACD的周长为13cm,则□ABCD 的周长为A.26cmB.24cmC.20cmD.18cm【答案】D.【解析】根据平行四边形的两组对边分别相等,得□ABCD的AB=CD,BC=A D.由C△ACD=AD+AC+CD=13cm,AC=4cm,得AD+CD=9cm,∴C□ABCD=2(AD+CD)=2×9=18(cm),故选D.二、填空题1.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________,【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G 是EF 的中点,∴EG=.在Rt ΔDEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.2. (2018江苏常州,15,2)如图,在□ABCD 中,∠A =70°,DC=DB ,则∠CDB=_______.【答案】40°; 【解析】因是平行四边形,则∠C =∠A =70°,由DC =DB ,可知∠DBC =∠C =70°,根据三角形内角和180度,得∠CDB =40°3. (2018黑龙江哈尔滨,20,3)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF =45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN =10,则线段BC 的长为_________________.【答案】42,【解析】连接BE ,易证△BEC 是等腰直角三角形,EM 三线合一,EF 是中位线,可证得△EFN ≌△MBN ,可得到BN =FN =10,tan ∠NBM =21,就能求出BM =22,所以BC =424. (2018湖北十堰,13,3分) 如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则 OCD 的周长为 .【答案】14 【解析】,四边形ABCD 是平行四边形,,AB =CD =5,OA =OC =4,OB =OD =5,,,OCD 的周长=5+4+5=14,故答案为14.5. (2018湖南省株洲市,17,3)如图,O 为坐标原点,△OAB 是等腰直角三角形,∠OAB =90°,点B 的坐标为(0,22).将三角形沿x 轴向右平移得到Rt △O ´A ´B ´,此时点B ´的坐标为(22,22),则线段OA 在平移过程中扫过部分的图形面积为________.【答案】4【解题过程】过A ´作A ´C ⊥x 轴,垂足为C .由题意可知,点B ´平移了22,∴OO ´=22.∵AC =12OB =12×22=2.∴平行四边形OAA ´O ´的面积为:22×2=4.【知识点】平行四边形面积,图形的平移,等腰直角三角形的性质6.(2018湖南省株洲市,18,3) 如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠P AB ,则AP =_______. OC B DA y BOAy第17题图C B ´ xB O Ay第17题答图O ´ A ´【思路分析】∵∠ABD 是△ABP 的外角,∴∠ABD =∠P +∠P AB .又∵∠ABD =∠MAP +∠P AB ,∴∠P =∠MAP ,即△AMP 使等腰直角三角形.∴AP =2AM .∵AB =CD =BD ,∠AMB =∠DNB =90°,且∠ABD 为公共角,∴△ABM ≌△DBN .∴AM =DN =32.∴AP =2AM =2×32=6.故填6.【知识点】三角形全等.7. (2018云南曲靖,11,3分)如图:在△ABC 中,AB =13,BC =12,点D 、E 分别是AB 、BC 的中点,连接DE 、CD 如果DE =2.5,那么△ACD 的周长是___________【答案】18【解析】由于DE 是△ABC 的中位线,所以AC =5,由于AB =13,BC =12,22251213+=,因此△ABC 是直角三角形,∠ACB =90°,CD 是斜边AB 的中线,因此CD =AB ÷2=6.5,而AD =6.5,AC =5,所以△ACD 的周长是6.5+6.5+5=18.三、解答题1. (2018湖南省怀化市,19,10分)已知:如图,点A ,F ,E ,C 在同一直线上,AB//DC ,AB =CD ,D B ∠=∠(1)求证:∆ABE ≅∆CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG =5,求AB 的长.A D BCE第18题图 N BA PD CM【思路分析】(1)首先根据AB//DC可得CFDAEB∠=∠,再加上条件AB=CD,DB∠=∠可利用AAS定理证明三角形全等.(2)根据(1)中的全等,可知AB=CD,再根据三角形中位线定理可知已知量EG和未知量CD的等量关系,即可求出CD,继而求出AB的长度.【解题过程】(1)证明:∵AB//DC ∴CFDAEB∠=∠,又∵DB∠=∠,AB=CD,∴在∆ABE和∆CDF中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CDABDBCFDAED∴∆ABE≅∆CDF(AAS)(2)∵点E,G分别为线段FC,FD的中点,∴线段EG为CDF∆的中位线,根据三角形中位线的性质定理,可得:CDEG21=,又∵∆ABE≅∆CDF ∴AB=CD ∴52121===ABCDEG,∴521=AB,即10=AB.【知识点】全等三角形的判定方法三角形中位线定理2.(2018吉林长春,13,3分)如图,在ABCD中,AD=7,AB=32,∠B=60°.E是边BC上任意一点,沿AE剪开,将ΔABE沿BC方向平移到ΔDCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为 .(第13题)【答案】20【思路分析】由平移性质可知,四边形AEFD是平行四边形,且AD=7. 故当边AE值最小时,四边形AEFD周长有最小值.如图,作AE⊥BC,此时AE有最小值.【解题过程】解:如图,作AE⊥BC.此时四边形AEFD周长最小.在R tΔAEB中,∠AEB=90°,AB=32,∠B=60°∴AE=AB·sin60°=32×23=3由平移性质可知,四边形AEFD是平行四边形∴四边形AEFD周长为2(AD+AE)=2×(7+3)=20.【知识点】平行四边形,平移,最值3. (2018江苏常州,21,8)(本小题满分8分)如图,把△ABC 沿BC 翻折得△DBC(1)连接AD ,则BC 与AD 的位置关系是_______.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC 是平行四边形,写出添加的条件,并说明理由.【解答过程】(1)垂直(2)AB =AC∵ΔABC 沿BC 翻折到ΔDBC∴AB =BD ,AC =CD又AB =AC∴AB =CD ,AC =BD∴四边形ABDC 是平行四边形.4. (2018贵州贵阳,20,10分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称,(1)求证:△AEF 是等边三角形;(2)若AB =2,求△AFD 的面积.【思路分析】(1)根据直角三角形斜边上的中线等于斜边一半得AE =EF .再由对称性知AE =AF 即可解决问题;(2)运用勾股定理算出直角边AD 长,然后计算面积.【解析】(1)在平行四边形ABCD 中,AE 是BC 边上的高,∴∠DAE =∠AEB =90゜.∵点F 是DE 的中点,∴Rt △AED 中,FE =AF .∵AE 与AF 关于AG 对称,∴AE =AF .∴AE =AF =EF .所以△AEF 是等边三角形;(2)∵△AEF 是等边三角形,∴∠EAF =∠AEF =60゜.∴∠EAG =∠EDA =30゜.∵AB 与AG 关于AE 对称,∴∠BAE =∠EAG =30゜.在Rt △ABD 中,AB =2,∴BE =12AB =1,∴AE∴DE =3,∴AD =3. S △AFD =12S △ADE =12×12×AE ×AD =12×12×3×3=3435. (2018黑龙江大庆,24,7) 如图,在Rt ΔABC 中,∠ACB =90°,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD 交BC 的延长线于F 。
中考数学 真题精选 专题试卷 特殊的平行四边形(含答案解析) (含答案解析)
特殊的平行四边形一.选择题(共19小题)1.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.2.(•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.3.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.(•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.5.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.(•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.7.(•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.9.(•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.10.(•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.11.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.12.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.13.(•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.14.(•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.15.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.16.(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.17.(•台湾)坐标平面上,二次函数y=﹣x2+6x﹣9的图形的顶点为A,且此函数图形与y轴交于B 点.若在此函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点坐标为何?()A.(6,0)B.(9,0)C.(﹣6,0)D.(﹣9,0)考点:平行四边形的判定;二次函数的性质.分析:首先将二次函数配方求得顶点A的坐标,然后求得抛物线与y轴的交点坐标,根据电C和点B的纵坐标相同求得点C的坐标,从而求得线段BC的长,根据平行四边形的性质求得AD的长即可求得点D的坐标.解答:解:∵y=﹣x2+6x﹣9=﹣(x﹣3)2,∴顶点A的坐标为(3,0),令x=0得到y=﹣9,∴点B的坐标为(0,﹣9),令y=﹣x2+6x﹣9=﹣9,解得:x=0或x=6,∴点C的坐标为(6,﹣9),∴BC=AD=6,∴OD=OA+AD=3+6=9,∴点D的坐标为(9,0),故选B.点评:本题考查了平行四边形的判定、二次函数的性质等知识,主要利用了抛物线与坐标轴交点的求法,平行四边形的对边平行且相等的性质,综合题,但难度不大.18.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.19.(•泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10考点:三角形中位线定理;直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD 可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解答:解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.二.填空题(共11小题)20.(•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM 的中点.若AB=8,AD=12,则四边形ENFM的周长为20.考点:三角形中位线定理;勾股定理;矩形的性质.分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.点评:本题考查了三角形的中位线,勾股定理以及矩形的性质,是年中考常见的题型,难度不大,比较容易理解.21.(•巴中)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为1.考点:三角形中位线定理;等腰三角形的判定与性质.分析:首先证明△ACF是等腰三角形,则AF=AC=3,HF=CH,则DH是△BCF的中位线,利用三角形的中位线定理即可求解.解答:解:∵AE为△ABC的角平分线,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,∵AC=3,∴AF=AC=3,HF=CH,∵AD为△ABC的中线,∴DH是△BCF的中位线,∴DH=BF,∵AB=5,∴BF=AB﹣AF=5﹣3=2.∴DH=1,故答案为:1.点评:本题考查了等腰三角形的判定以及三角形的中位线定理,正确证明HF=CH是关键.22.(•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为5.考点:三角形中位线定理.分析:由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解答:解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.点评:本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.23.(•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.考点:三角形中位线定理;勾股定理.专题:计算题.分析:延长AD至F,使DF=AD,过点F作平行BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在直角三角形AGF中,利用勾股定理求出AG的长,利用SAS 证得△BDF≌△CDA,利用全等三角形对应角相等得到∠ACD=∠BFD,证得AG∥BF,从而证得四边形EBFG是平行四边形,得到FG=BE=6,利用AAS得到三角形BOD与三角形CHD全等,利用全等三角形对应边相等得到OD=DH=3,得出AH=9,然后根据△AHC∽△AFG,对应边成比例即可求得AC.解答:解:延长AD至F,使DF=AD,过点F作FG∥BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在Rt△AFG中,AF=2AD=12,FG=BE=6,根据勾股定理得:AG==6,在△BDF和△CDA中,∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD中,,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴=,即=,解得:AC=,故答案为:点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作出辅助线构建直角三角形和平行四边形是解题的关键.24.(•宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5.考点:三角形中位线定理;直角三角形斜边上的中线.分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.25.(•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.考点:三角形中位线定理;勾股定理.专题:动点型.分析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.26.(•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n 为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.27.(•珠海)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.考点:三角形中位线定理.专题:规律型.分析:由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.解答:解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1点评:本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.28.(•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 1.2米.考点:三角形中位线定理.专题:应用题.分析:先求出F为AC的中点,根据三角形的中位线求出BC=2EF,代入求出即可.解答:解:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,故答案为:1.2.点评:本题考查了三角形的中位线性质,平行线的性质和判定的应用,解此题的关键是求出BC=2EF,注意:垂直于同一直线的两直线平行.29.(•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=4.考点:三角形中位线定理.分析:根据三角形的中位线等于第三边的一半即可得出DE=AB=4.解答:解:∵在△ABC中,点D、E分别是BC、CA的中点,AB=8,∴DE是△ABC的中位线,∴DE=AB=×8=4.故答案为4.点评:本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.30.(•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.1.(•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F 作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.2.(•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8.考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.3.(•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是720米.考点:三角形中位线定理.专题:应用题.分析:首先根据D、E分别是CA,CB的中点,可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且DE=,再根据DE的长度为360米,求出A、B两地之间的距离是多少米即可.解答:解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且DE=,∵DE=360(米),∴AB=360×2=720(米).即A、B两地之间的距离是720米.故答案为:720.点评:此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.4.(•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.考点:平行四边形的性质.分析:根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.解答:解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.5.(•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.考点:平行四边形的性质;勾股定理.分析:由平行四边形的性质得出BC=AD=8cm,OA=OC=AC,由勾股定理求出AC,得出OC,再由勾股定理求出OB即可.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,OA=OC=AC,∵AC⊥BC,∴∠ACB=90°,∴AC===6,。
中考数学第1编知识梳理篇第5章四边形第17讲特殊的平行四边形(精讲)试题(new)
第十七讲特殊的平行四边形,考标完全解读)考点考试内容考试要求矩形矩形的定义理解矩形的性质掌握矩形的判定掌握菱形菱形的定义理解菱形的性质掌握菱形的判定掌握正方形正方形的定义理解正方形的性质掌握正方形的判定掌握,感受宜宾中考)1.(2017宜宾中考)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A 恰好落在对角线BD上F处,则DE的长是( C)A.3 B。
错误!C.5 D.错误!,(第1题图)) ,(第2题图))2.(2016宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(A)A.4.8 B.5 C.6 D.7.23.(2013宜宾中考)矩形具有而菱形不具有的性质是(B)A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.(2014宜宾中考)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,则较长的对角线长度是__5错误!__cm__.5.(2015宜宾中考)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E。
若PE=3,则点P到AD的距离为__3__.,(第5题图)),(第6题图))6.(2013宜宾中考)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连结BG,DF.若AG=13,CF=6,则四边形BDFG的周长为__20__.7.(2015宜宾中考)如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连结BD,DP,BD与CF相交于点H。
给出下列结论:①△ABE≌△DCF;②FPPH=错误!;③DP2=PH·PB;④错误!=错误!.其中正确的是__①③④__.(写出所有正确结论的序号),核心知识梳理)矩形的性质和判定1.矩形的性质(1)定义:有一个角是__直角__的平行四边形叫矩形;(2)边:矩形的对边__平行且相等__,邻边互相__垂直__;(3)角:矩形的四个角都是__直角__;(4)对角线:矩形的对角线__互相平分且相等__;(5)对称性:矩形既是__中心对称图形__又是__轴对称图形__,有__2__条对称轴,对称中心是对角线的__交点__.2.矩形的判定(1)角:有__一个__角是直角的平行四边形是矩形;__三__个角都是直角的四边形是矩形;(2)对角线:对角线相等的__平行四边形__是矩形;对角线__互相平分且相等__的四边形是矩形.【温馨提示】矩形是一种特殊的平行四边形,具有平行四边形所有的性质,除此以外还具有四个角都是直角、对角线互相平分且相等等性质.菱形的性质和判定3.菱形的性质(1)定义:有一组邻边__相等__的平行四边形叫菱形;(2)边:菱形的四条边都__相等__;(3)对角线:菱形的对角线__互相垂直平分__且每一条对角线都__平分__一组对角;(4)对称性:菱形既是__中心对称__图形又是__轴对称__图形,有__2__条对称轴,对称中心是对角线的__交点__.4.菱形的判定(1)边:有一组邻边__相等__的平行四边形是菱形;四条边都相等的__四边形__是菱形;(2)对角线:对角线__互相垂直__的平行四边形是菱形;对角线互相平分且相等的__四边形__是菱形;(3)对称性:菱形既是__中心对称图形__又是__轴对称图形__,有__2__条对称轴,对称中心是对角线的__交点__.【温馨提示】菱形是一种特殊的平行四边形,具有平行四边形所有的性质,除此以外还具有四条边都相等、对角线互相垂直平分且每一条对角线都平分一组对角等性质.正方形的性质和判定5.正方形的性质(1)定义:有一组邻边__相等__,并且有一个角是__直角__的平行四边形是正方形;(2)边:正方形的对边__平行__,四边都__相等__;(3)角:正方形的四个角都是__直角__;(4)对角线:正方形的对角线__互相垂直平分且相等__,每一条对角线都__平分__一组对角;(5)对称性:正方形既是__中心对称图形__又是__轴对称图形__,有__4__条对称轴,对称中心是对角线的__交点__.6.正方形的判定(1)边:有一组邻边__相等__的矩形是正方形;(2)角:有一角是__直角__的菱形是正方形;(3)对角线:对角线__互相垂直__的矩形是正方形;对角线互相平分的__菱形__是正方形.【温馨提示】正方形具有矩形和菱形所具有的所有性质,因此正方形既是特殊的矩形,又是特殊的菱形.平行四边形、菱形、矩形、正方形的关系,重点难点解析)矩形、菱形、正方形的性质和判定【例1】下列性质中,菱形具有而平行四边形不具有的性质是( )A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【解析】根据平行四边形的性质和菱形的性质对各选项进行判断.【答案】C【针对训练】1.(2017益阳中考)下列性质中菱形不一定具有的性质是( C)A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形2.下列命题中,真命题是( A)A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形【例2】菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连结EF。
5.8特殊的平行四边形-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)
第五部分 图形的性质5.8 特殊的平行四边形【一】知识点清单1、特殊的平行四边形矩形的定义;矩形的性质;直角三角形斜边上的中线;矩形的判定;矩形的判定与性质;菱形的定义;菱形的性质;菱形的判定;菱形的判定与性质;正方形的性质;正方形的判定;正方形的判定与性质;中点四边形;四边形综合题;平行四边形与矩形、菱形、正方形概念之间的联系与区别;梯形(删);直角梯形(删);等腰梯形的性质(删);等腰梯形的判定(删);梯形中位线定理(删);*平面向量(删)【二】分类试题汇编一、选择题1.(1999年-9题-3分)若菱形的周长为16,两邻角度数之比为1:2,则该菱形的面积为( )A .B .C .D .2.(2000年-4题-2分)已知矩形的对角线长为10cm ,那么,顺次连接矩形四边中点所得的四边形周长为( )A .40cmB .10cmC .5cmD .20cm3.(2001年-19题-2分)如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是( )A .bc ﹣ab+ac+c 2B .ab ﹣bc ﹣ac+c 2C .a 2+ab+bc ﹣acD .b 2﹣bc+a 2﹣ab4.(2003年-9题-2分)如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A B .12 C D .235.(2005年大纲卷-6题-2分)已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.86.(2009年-3题-2分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.57.(2013年-12题-3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对8.(2014年-8题-3分)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D.59.(2016年-6题-3分)关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形10.(2017年-9题-3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②二、填空题1.(2010年-14题-3分)如图,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为﹣1,则点B所对应的数为.2.(2011年-14题-3分)如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=.三、解答题1.(1997年-24题-10分)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.对上述命题证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.又∵AG⊥EB,∴∠1+∠3=90°=∠2+∠3.∴∠1=∠2∴Rt△BOE≌Rt△AOF.∴OE=OF问题:对上述命题,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变(如图2),则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明现由.2.(2004年大纲卷-22题-8分)如图所示,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF,求证:DE=BF.3.(2004年课标卷-23题-8分)用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.4.(2005年大纲卷-26题-12分)操作示例:对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.从拼接的过程容易得到结论:①四边形BNED是正方形;②S正方形ABCD+S正方形EFGH=S正方形BNED.实践与探究:(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.5.(2005年课标卷-23题-8分)如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1所示,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两个猜想;(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.6.(2006年课标卷-23题-8分)如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.7.(2007年-23题-10分)在图1﹣5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.操作示例:当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH 与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB 绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究:(1)正方形FGCH的面积是;(用含a,b的式子表示)(2)类比图1的剪拼方法,请你就图2﹣图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展:小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移;当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.8.(2007年-24题-10分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F 与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).9.(2009年-24题-10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)10.(2011年-23题-9分)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG .(1)求证:①DE=DG ; ②DE ⊥DG(2)尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想:(4)当1CE CB n时,请直接写出ABCD DEFG S S 正方形正方形的值.11.(2014年-23题-11分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.【三】参考答案与解析一、选择题1.(1999年-9题-3分)若菱形的周长为16,两邻角度数之比为1:2,则该菱形的面积为( )A. B. C. D.【分类目录】5.8特殊的平行四边形【知识考点】菱形的性质.【思路分析】根据“两邻角度数之比为1:2”求出菱形的内角,再根据周长求出边长,所以两对角线的长度可求,利用菱形的面积等于对角线乘积的一半即可求解.【解答过程】解:如图,。
2018年中考数学特殊平行四边形中的综合性问题
2018年中考数学特殊平行四边形中的综合性问题一、特殊平行四边形中的最值问题:例题1、如图、在△ABC中,AB = 6, AC = 8 ,BC = 10 ,P 为边BC 上一动点(且点P 不与点B,C 重合),PE⊥AB 于 E ,PF⊥AC 于F,则EF 的最小值为(B)。
A、4B、4.8C、5.2D、6图(1)解析:图(2)例题2、如图、正方形ABCD 的面积为12 ,△ABE是等边三角形,点 E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD + PE 最小,则这个最小值为(B)。
A、√3B、2√3C、2√6D、√6图(3)解析:图(4)例题3、如图、棱形ABCD 的边长为 4 ,∠BAD = 120°,点 E 是AB 的中点,点 F 是AC 上一动点,则EF + BF 的最小值是多少?图(5)解析:图(6)二、特殊平行四边形中的动态问题:1、动点问题:例题4、如图、在棱形ABCD 中,AB = 2 ,∠DAB = 60°,点 E 是AD 边的中点,点M 是AB 边上一动点(不与点 A 重合),连接ME 并延长交CD 的延长线于点N ,连接MD ,AN ,当AM 为何值时,四边形AMDN 是矩形?图(7)解析:图(8)例题5、如图、在矩形ABCD 中,AB = 3 ,AD = 4 ,P 是AD 上的动点,PE⊥AC 于 E ,PF⊥BD 于F,则PE + PF 的值为(A)。
A、12/5B、2C、5/2D、1图(9)解析:图(10)2、图形的变化问题:例题6、如图、正方形ABCD 的对角线相交于点O ,正方形EFGO 绕点O 旋转,若两正方形的边长相等,则两正方形的重合部分的面积(C)。
A、由小变大B、由大变小C、始终不变D、先由大变小,后由小变大图(11)解析:图(12)三、四边形间的综合性问题:例题7、如图、以△ABC的三边为边,在BC边的同侧作等边△DBA ,△EBC ,△FAC 。
2018年中考一轮基础复习试卷专题十九:特殊的平行四边形(有答案)
备考2018年中考数学一轮基础复习:专题十九特殊的平行四边形一、单选题(共15题;共30分)1.(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. 3B. 10C. 9D. 92.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A. 30B. 34C. 36D. 403.(2017•河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A. ③→②→①→④B. ③→④→①→②C. ①→②→④→③D. ①→④→③→②4.下列命题中,真命题是().A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形5.(2017•内江)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A. (,)B. (2,)C. (,)D. (,3﹣)6.(2017•泸州)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B. C. D.7.(2017•苏州)如图,在菱形中,∠,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到′′.设、′分别是、′的中点,当点′与点重合时,四边形′的面积为()A. B. C. D.8.(2017•枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为()A. ﹣12B. ﹣27C. ﹣32D. ﹣369.(2017•广元)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= ;③DF=DC;④CF=2AF,正确的是()A. ①②③B. ②③④C. ①③④D. ①②④10.(2017•莱芜)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B. C. D.11.(2017•佳木斯)如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()A. 2B. 2C. 4D.12.(2017•兰州)如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A. B. C. D.13.(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M 在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A. 2B. 3C. 4D. 514.(2017•宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A. 3B.C.D. 415.(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A. B. 2 C. D. 4二、填空题(共6题;共6分)16.(2017•宜宾)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.17.(2017•常德)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为________.18.(2017•内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E 在DC上,点F在DP上,且∠DFE=45°.若PF= ,则CE=________.19.(2017•东营)如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为________.20.(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=________cm.21.(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为________.三、综合题(共4题;共41分)22.(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与B D′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.23.(2017·丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.24.(2017•吉林)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为________;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.25.(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC= ,求CB'的长.答案解析部分一、单选题1.【答案】A2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】A7.【答案】A8.【答案】C9.【答案】C10.【答案】A11.【答案】B12.【答案】A13.【答案】D14.【答案】C15.【答案】A二、填空题16.【答案】2417.【答案】y=2x2﹣4x+418.【答案】19.【答案】220.【答案】21.【答案】三、综合题22.【答案】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′= AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB= OA,OD= OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′= OC′,∠AOC′=∠BOD′,∴= ,∴△AOC′∽△BOD′,∴= = ,∠OAC′=∠OBD′,∴BD′= AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.23.【答案】(1)证明:由对称得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF.∴AE=EG.(2)解:设AE=a,则AD=na,当点F落在AC上时(如图1),由对称得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC ,∴∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB= .∴.(3)解:设AE=a,则AD=na,由AD=4AB,则AB= .当点F落在线段BC上时(如图2),EF=AE=AB=a,此时,∴n=4.∴当点F落在矩形外部时,n>4.∵点F落在矩形的内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,则点F落在AC上,由(2)得,∴n=16.若∠CGF=90°(如图3),则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即()2=(n-2)a·a.解得或(不合题意,舍去),∴当n=16或时,以点F,C,G为顶点的三角形是直角三角形.24.【答案】(1)解:∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'= BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)4(3)解:将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+ 或2 +3.25.【答案】(1)解:四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)解:∵在△ABC中,∠B=90°,A B=24,cos∠BAC= ,∴cos∠BAC= = ,即= ,∴AC=26.∴由勾股定理知:BC= = =7 .又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣7 .。
广东省2018中考数学总复习第五章四边形第2课时特殊平行四边形1备考演练(含答案)
第五章四边形第2课时特别的平行四边形〔1〕【备考操练】备考操练一、选择题1.以下判断错误的选项是 ( )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且均分的四边形是正方形2.(2021·临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,以下说法正确的选项是(A.假定AD⊥BC,那么四边形AEDF是矩形B.假定AD垂直均分BC,那么四边形AEDF是矩形C.假定BD=CD,那么四边形AEDF是菱形D.假定AD均分∠BAC,那么四边形AEDF是菱形)第2题图第3题图3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,假定P为对角线A.1B.2C.3D.4BD上一动点,那么EP+FP的最小值为()4.:菱形A.6cm ABCD中,对角线AC与B.4cm C.3cmBD订交于点D.2cmO,OE∥DC交BC于点E,AD=6cm,那么OE的长为()第4题图第5题图5.如图,矩形ABCD中,点E在边AB上,将矩形=5,BF=3,那么CD的长是()A.7B.8C.9D.10ABCD沿直线DE折叠,点A恰巧落在边BC的点F处.假定AE二、填空题1.如图,ABCD是对角线相互垂直的四边形,且为菱形.(只要增添一个即可)OB=OD,请你增添一个适合的条件____________,使ABCD成第1题图第2题图2cm ,2.如图,将菱形纸片ABCD 折叠,使点A 恰巧落在菱形的对称中心O 处,折痕为EF.假定菱形ABCD 的边长为A =120°,那么EF =________cm .3.(2021·宜宾)在菱形ABCD 中,假定AC =6,BD =8,那么菱形 ABCD 的面积是__________.4.如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,那么CD 的长为________cm .第4题图 第5题图5.如图,O 为矩形ABCD 的中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,假定AB =6,AD =4,设OM =x , ON =y ,那么y 与x 的函数关系式为 ____________________. 6.(2021·衢州)如图,从边长为 (a +3)的正方形纸片中剪去一个边长为 3的正方形,节余局部沿虚线又剪拼 成一个以下列图的长方形 (不重叠无空隙),那么拼成的长方形的另一边长是 __________.三、解答题1.(2021·徐州)如图,在?ABCD 中,点O 是边BC 的中点,连结 DO 并延伸,交 AB 延伸线于点 E ,连结BD ,EC.求证:四边形BECD 是平行四边形;(2)假定∠A =50°,那么当∠BOD =__________°时,四边形 BECD 是矩形.(2021·宁夏)在△ABC中,M是AC边上的一点,连结BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.3.如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD求.证:AO=OB.)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E4.(2021·衢州中考改编题处,CE交AD于点F,求DF的长.如图,在矩形ABCD中,对角线BD的垂直均分线MN与AD订交于点M,与BC订交于点N,连结BM,DN.求证:四边形BMDN是菱形;假定AB=4,AD=8,求MD的长.6.如图,将等腰△ABC绕极点B逆时针方向旋转α度到△A1BC1的地点,AB与A1C1订交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.ABCE的形状并说明原因.(2)当∠C=α度时,判断四边形1(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)7.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连结AD、CE.(25)求证:△ACD≌△EDC;(26)假定点D是BC中点,说明四边形ADCE是矩形.四、能力提高1.(2021·哈尔滨)如图,在矩形ABCD中,M为BC边上一点,连结AM,过点D作DE⊥AM,垂足为E.假定DE=DC=1,AE=2EM,那么BM的长为__________.第1题图第2题图2.(2021安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P知足S=1,那么点P到A、B两点距离之和PA+PB的最小值为() 3S△PAB矩形ABCD A.29C.5答案:一、二、=OC或AD=BC或AD∥BC或AB=BC等22.3=3x+6三、1.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,∠OEB=∠ODC又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,∠BOE=∠COD,∴△BOE≌△COD(AAS);∴OE=BO=COOD,∴四边形BECD是平行四边形;(2)解:假定∠A=50°,那么当∠BOD=100°时,四边形BECD是矩形.原因以下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°-50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.2.证明:∵AB∥DM,∴∠BAM=∠AMD,∵△ADC是由△ABC翻折获得,∴∠CAB=∠CAD,AB=AD,BM=DM,∴∠DAM=∠AMD,∴DA=DM=AB=BM,∴四边形ABMD是菱形.3.证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-A=∠BDOC,∴∠AOD=∠BOC,在△AOD和△BOC中,∠AOD=∠BOC,∴△AOD≌△BOC,∴AO=OB.AD=BC4.解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的地点,∴AE=AB,∠E=∠B=90°,又∵四边∠AFE=∠CFD 形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,∠E=∠D,∴△AE=CD AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA22222213=x,那么FC=x,FD=6-x,在Rt△CDF中,CF=CD+DF,即x=4+(6-x),解得x=,那么FD=6-x3 5=3.5.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠MDO=∠NBO.∵MN是BD的垂直均分线,∴OB=OD,又∵∠MOD=∠BON,∴△MOD≌△NOB,∴MD=BN.又∵MD∥BN,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形222BMDN是菱形,∴MB=MD,设MD长为x,那么MB=DM=x,在Rt△AMB中,BM=AM+AB即x2=(8-x)2+42,解得:x=5.答:MD长为5.6.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕极点B逆时针方向旋转α度到△A1BC1的地点,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,∠A1=∠C1A1B=BC,在△BCF与△BAD中,A1BD=∠CBF∴△BCF≌△BA1D;解:四边形A1BCE是菱形,∵将等腰△ABC绕极点B逆时针方向旋转α度到△A1BC1的地点,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°-α,∵∠C=α,∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形,又A1B=BC,∴四边形A1BCE是菱形.7.证明:(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE.∠B=∠EDC.又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD.∵在△ADC和△ECD中,AC=EDACD=∠EDC,∴△ADC≌△ECD(SAS);DC=CD∵四边形ABDE是平行四边形,∴BD∥AE,BD=AE,∴AE∥CD,∵点D是BC中点,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形;在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCE是矩形.25≌四、1.5(提示)由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连结DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,所以BC=3CM,设EM=CM=x,那么BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.2.D解:设△ABP中AB边上的高是h.1112∵S△PAB=3S矩形ABCD,∴2AB·h=3AB·AD,∴h=3AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A对于直线l的对称点E,连结AE,连结BE,那么BE就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=2222AB+AE=5+4=41,即PA+PB的最小值为41.应选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七讲特殊的平行四边形,考标完全解读),感受宜宾中考)1.(2017宜宾中考)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是( C)A.3 B.245C.5 D.8916,(第1题图)) ,(第2题图)) 2.(2016宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A)A.4.8 B.5 C.6 D.7.23.(2013宜宾中考)矩形具有而菱形不具有的性质是( B)A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.(2014宜宾中考)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,则较长的对角线长度是3__cm__.5.(2015宜宾中考)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为__3__.,(第5题图)) ,(第6题图))6.(2013宜宾中考)如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连结BG ,DF.若AG =13,CF =6,则四边形BDFG 的周长为__20__.7.(2015宜宾中考)如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连结BD ,DP ,BD 与CF 相交于点H.给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH·PB;④S △BPD S 正方形ABCD =3-14.其中正确的是__①③④__.(写出所有正确结论的序号),核心知识梳理)矩形的性质和判定1.矩形的性质(1)定义:有一个角是__直角__的平行四边形叫矩形; (2)边:矩形的对边__平行且相等__,邻边互相__垂直__; (3)角:矩形的四个角都是__直角__;(4)对角线:矩形的对角线__互相平分且相等__;(5)对称性:矩形既是__中心对称图形__又是__轴对称图形__,有__2__条对称轴,对称中心是对角线的__交点__.2.矩形的判定(1)角:有__一个__角是直角的平行四边形是矩形;__三__个角都是直角的四边形是矩形; (2)对角线:对角线相等的__平行四边形__是矩形;对角线__互相平分且相等__的四边形是矩形.【温馨提示】矩形是一种特殊的平行四边形,具有平行四边形所有的性质,除此以外还具有四个角都是直角、对角线互相平分且相等等性质.菱形的性质和判定3.菱形的性质(1)定义:有一组邻边__相等__的平行四边形叫菱形; (2)边:菱形的四条边都__相等__;(3)对角线:菱形的对角线__互相垂直平分__且每一条对角线都__平分__一组对角;(4)对称性:菱形既是__中心对称__图形又是__轴对称__图形,有__2__条对称轴,对称中心是对角线的__交点__.4.菱形的判定(1)边:有一组邻边__相等__的平行四边形是菱形;四条边都相等的__四边形__是菱形;(2)对角线:对角线__互相垂直__的平行四边形是菱形;对角线互相平分且相等的__四边形__是菱形;(3)对称性:菱形既是__中心对称图形__又是__轴对称图形__,有__2__条对称轴,对称中心是对角线的__交点__.【温馨提示】菱形是一种特殊的平行四边形,具有平行四边形所有的性质,除此以外还具有四条边都相等、对角线互相垂直平分且每一条对角线都平分一组对角等性质.正方形的性质和判定5.正方形的性质(1)定义:有一组邻边__相等__,并且有一个角是__直角__的平行四边形是正方形;(2)边:正方形的对边__平行__,四边都__相等__;(3)角:正方形的四个角都是__直角__;(4)对角线:正方形的对角线__互相垂直平分且相等__,每一条对角线都__平分__一组对角;(5)对称性:正方形既是__中心对称图形__又是__轴对称图形__,有__4__条对称轴,对称中心是对角线的__交点__.6.正方形的判定(1)边:有一组邻边__相等__的矩形是正方形;(2)角:有一角是__直角__的菱形是正方形;(3)对角线:对角线__互相垂直__的矩形是正方形;对角线互相平分的__菱形__是正方形.【温馨提示】正方形具有矩形和菱形所具有的所有性质,因此正方形既是特殊的矩形,又是特殊的菱形.平行四边形、菱形、矩形、正方形的关系,重点难点解析)矩形、菱形、正方形的性质和判定【例1】下列性质中,菱形具有而平行四边形不具有的性质是( )A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【解析】根据平行四边形的性质和菱形的性质对各选项进行判断.【答案】C【针对训练】1.(2017益阳中考)下列性质中菱形不一定具有的性质是( C)A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形2.下列命题中,真命题是( A)A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形【例2】菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连结EF.若EF=2,BD=2,则菱形ABCD的面积为________.【解析】根据EF是△ACD的中位线,根据三角形中位线定理求出AC的长,然后根据菱形的面积公式求解.【答案】2 2【针对训练】3.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥A C.若AC=4,则四边形CODE的周长是__8__.,(第3题图)) ,(第4题图)) 4.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是__正方形__(填写图形的形状)(如图),它的一边长是2__cm__.矩形、菱形、正方形的应用【例3】如图①,菱形ABCD中,点E,F分别为AB,AD的中点,连接CE,CF.(1)求证:CE=CF;(2)如图②,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.【解析】(1)由菱形ABCD中,点E,F分别为AB,AD的中点,易证得△BCE≌△DCF(S.A.S.),则可得CE=CF ;(2)由平行线的性质,可得AG =AB ,∠G =∠FCD,由全等三角形的对应角相等,可得∠BCE=∠DCF,然后由∠CHB=2∠ECB,易证得∠G=∠HCG,则可得CH =GH ,则可证得结果.【答案】证明:(1)∵四边形ABCD 是菱形, ∴∠B =∠D,AB =BC =CD =AD. ∵点E ,F 分别为AB ,AD 的中点, ∴BE =12AB ,DF =12AD.∴BE =DF.在△BCE 和△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠B =∠C,BE =DF ,∴△BCE ≌△DCF(S .A .S .),∴CE =CF ; (2)延长BA 与CF ,交于点G. ∵四边形ABCD 是菱形,∴∠B =∠D,AB =BC =CD =AD ,AF ∥BC ,AB ∥CD , ∴∠G =∠FCD.∵点F 分别为AD 的中点,且AG∥CD, ∴AG =DC =AB.∵△BCE ≌△DCF ,∴∠ECB =∠DCF. ∵∠CHB =2∠ECB,∴∠CHB =2∠G. ∵∠CHB =∠G+∠HCG,∴∠G =∠HCG, ∴GH =CH ,∴CH =AH +AG =AH +AB.【点评】此题考查了菱形的性质、全等三角形的判定与性质、等腰三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.【针对训练】5.(2017贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC,AC ⊥BD ,垂足为点O.(1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积. 解:(1)∵AB=AD , ∴∠ABD =∠ADB.∵BD 平分∠ABC,∴∠ABD =∠CBD, ∴∠ADB =∠CBD.∵AC ⊥BD ,AB =AD ,∴BO =DO , 在△AOD 与△COB 中,⎩⎪⎨⎪⎧∠AOD =∠COB,OD =OB ,∠ADB =∠CBD,∴△AOD ≌△COB ,∴AO =OC. ∴四边形ABCD 是平行四边形.∵AC ⊥BD ,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,∴OD =12BD =5,∴OC =CD 2-OD 2=2,∴AC =4, ∴S 菱形ABCD =12AC ·BD =4 5.6.(2017陕西中考)如图,在正方形ABCD 中,E ,F 分别为边AD 和CD 上的点,且AE =CF ,连结AF ,CE 交于点G.求证:AG =CG.证明:∵四边形ABCD 是正方形, ∴AD =CD.∵AE =CF ,∴DE =DF.在△ADF 和△CDE 中,⎩⎪⎨⎪⎧AD =CD ,∠D =∠D,DF =DE ,∴△ADF ≌△CDE(S .A .S .), ∴∠DAF =∠DCE.在△AGE 和△CGF 中,⎩⎪⎨⎪⎧∠GAE =∠GCF,∠AGE =∠CGF,AE =CF ,∴△AGE ≌△CGF(A .A .S .), ∴AG =CG.矩形、菱形、正方形的探究【例4】(2017常州中考)如图①,在四边形ABCD 中,如果对角线AC 和BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,________(填写图形名称)一定是等角线四边形;②若M ,N ,P ,Q 分别是等角线四边形ABCD 四边AB ,BC ,CD ,DA 的中点,当对角线AC ,BD 还要满足__________时,四边形MNPQ 是正方形.(2)如图②,已知△ABC 中,∠ABC =90°,AB =4,BC =3,D 为平面内一点.①若四边形ABCD 是等角线四边形,且AD =BD ,则四边形ABCD 的面积是;②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.【解析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC⊥BD 时,四边形MNPQ 是正方形,首先证明四边形MNPQ 是菱形,再证明有一个角是直角即可;(2)①作DE⊥AB 于E.根据S 四边形ABCD =S △ADE +S 梯形DEBC 计算,求出相关线段即可;②如图,设AE 与BD 相交于点Q ,连接CE ,只要证明当AC⊥BD 且A ,C ,E 共线时,四边形ABED 的面积最大即可.【答案】解:(1)①矩形;②AC⊥BD;(2)①3+221;②如答图中,设AE 与BD 相交于点Q ,连结CE ,作DH⊥AE 于H ,BG ⊥AE 于G.则DH≤DQ,BG ≤BQ. ∵四边形ABED 是等角线四边形, ∴AE =BD ,∵S 四边形ABED =S △ABE +S △ADE =12·AE ·DH +12·AE ·BG =12·AE ·(GB +DH)≤12·AE ·(BQ +QD),即S 四边形ABED ≤12AE ·BD ,∴当G ,H 重合时,即BD⊥AE 时,等号成立. ∵AE =BD , ∴S 四边形ABED ≤12AE 2,即线段AE 最大时,四边形ABED 的面积最大, ∵AE ≤AC +CE , ∴AE ≤5+1, ∴AE ≤6,∴AE 的最大值为6,∴当A ,C ,E 共线时,取等号,∴四边形ABED 的面积的最大值为12×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.【针对训练】7.(2017衢州中考)在直角坐标系中,过原点O 及点A(8,0),C(0,6)作矩形OABC ,连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF⊥DE,交OA 于点F ,连结EF.已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t s .(1)如图①,当t =3时,求DF 的长;(2)如图②,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值;(3)连结AD ,当AD 将△DEF 分成的两部分的面积之比为1∶2时,求相应的t 的值. 解:(1)当t =3时,点E 为AB 的中点. ∵A(8,0),C(0,6), ∴OA =8,OC =6. ∵点D 为OB 的中点, ∴DE ∥OA ,DE =12OA =4.∵四边形OABC 是矩形, ∴OA ⊥AB , ∴DE ⊥AB ,∴∠OAB =∠DEA=90°. 又∵DF⊥DE, ∴∠EDF =90°, ∴四边形DFAE 是矩形, ∴DF =AE =3;(2)∠DEF 的大小不变.理由如下: 作DM⊥OA 于M ,DN ⊥AB 于N ,如答图①: ∵四边形OABC 是矩形,∴OA ⊥AB , ∴四边形DMAN 是矩形,∴∠MDN =90°,DM ∥AB ,DN ∥OA , ∴BD DO =BN NA ,DO BD =OM MA. ∵点D 为OB 的中点,∴M ,N 分别是OA ,AB 的中点, ∴DM =12AB =3,DN =12OA =4.∵∠EDF =90°,∴∠FDM =∠EDN. 又∵∠DMF=∠DNE=90°, ∴△DMF ∽△DNE ,∴DF DE =DM DN =34.∵∠EDF =90°,∴tan ∠DEF =DF DE =34;(3)作DM⊥OA 于M ,DN ⊥AB 于N ,若AD 将△DEF 的面积分成1∶2的两部分, 设AD 交EF 于点G ,则点G 为EF 的三等分点; ①当点E 到达中点之前时,如答图②,NE =3-t , 由△DMF∽△DNE,得MF =34(3-t),∴AF =4+MF =-34t +254.∵点G 为EF 的三等分点, ∴G ⎝⎛⎭⎪⎫3t +7112,23t , 设直线AD 的表达式为y =kx +b ,把A(8,0),D(4,3)代入得⎩⎪⎨⎪⎧8k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =-34,b =6,∴直线AD 的表达式为y =-34x +6,把G ⎝⎛⎭⎪⎫3t +7112,23t 代入,得t =7541;②当点E 越过中点之后,如答图③,NE =t -3, 由△DMF∽△DNE,得MF =34(t -3),∴AF =4-MF =-34t +254.∵点G 为EF 的三等分点,∴G ⎝⎛⎭⎪⎫3t +236,13t ,代入直线AD 的表达式y =-34x +6,得t =7517;综上所述,当AD 将△DEF 分成的两部分的面积之比为1∶2时,t 的值为7541或7517.,当堂过关检测)1.下列四边形中不一定为菱形的是( A )A .对角线相等的平行四边形B .每条对角线平分一组对角的四边形C .对角线互相垂直的平行四边形D .用两个全等的等边三角形拼成的四边形2.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD 的面积为.,(第2题图)),(第3题图))3.(2017辽阳中考)如图,在矩形ABCD 中,∠ABC 的平分线交AD 于点E ,连结CE.若BC =7,AE =4,则CE =__5__.4.(2017青岛中考)已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连结CE ,CF ,OE ,OF.(1)求证:△BCE≌△DCF;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由. 解:(1)∵四边形ABCD 是菱形, ∴∠B =∠D,AB =BC =DC =AD.∵点E ,O ,F 分别为AB ,AC ,AD 的中点, ∴AE =BE =DF =AF , OF =12DC ,OE =12BC ,OE ∥BC.在△B CE 和△DCF 中,⎩⎪⎨⎪⎧BE =DF ,∠B =∠D,BC =DC ,∴△BCE ≌△DCF(S .A .S .);(2)当AB⊥BC 时,四边形AEOF 是正方形,理由如下: 由(1)得:AE =OE =OF =A F , ∴四边形AEOF 是菱形. ∵AB ⊥BC ,OE ∥BC , ∴OE ⊥AB ,∴∠AEO =90°, ∴四边形AEOF 是正方形.。