(新编)五年级奥数分册第28周 行程问题(一)
五年级奥数行程问题
五年级奥数行程问题Newly compiled on November 23, 2020行程问题专题训练一行程问题之基本公式运用1 、甲和乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两地在距中点32千米处相遇。
东西两地相距多少千米2、快车和慢车同时从甲乙两地相向开出,快车每小时40千米,经过3小时,快车已经驶过中点25千米,这时快车和慢车还相距7千米。
慢车每小时行多少千米3、甲乙两人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米4、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度,在两队之间不停的往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队每小时4千米。
两队相遇时,骑自行车的同学共行多少千米5、甲乙两车早上8时分别从AB两地同时相向出发,到10时两车相距千米。
两车继续行驶到下午1时,两车相距还是千米。
AB两地相距多少千米二行程问题之追击问题6、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前。
求几小时后小轿车追上中巴车7、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶。
途中因汽车出故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
问汽车是在离甲地多远处修车的8、甲汽车,乙跑步,二人同时从一点出发沿着长四千米的环形公路方向进行晨练。
出发后十分钟,甲便从乙身后追上了乙,已知两人速度和是每分钟行700米,求甲乙两人的度各是多少9、甲乙丙三人都从A地到B地,早晨六点钟,甲乙两人一起从A地出发,甲每小时走5千米,乙每小时走4千米。
丙上午八时才从A地出发,傍晚六点,甲丙同时到达B,问丙什么时候追上乙10、甲乙丙三人步行的速度分别是每分钟100米、90米、75米。
五年级奥数行程问题列方程解行程问题
五年级奥数行程问题列方程解行程问题xx年xx月xx日•行程问题概述•相遇问题•追及问题目录•环行跑道问题•过桥问题•复杂行程问题综合分析01行程问题概述行程问题是指在运动过程中,涉及速度、时间、距离之间相互关系的问题。
在行程问题中,通常会涉及到两个或多个物体或人在同一条路线上相对或同向运动。
1 2 3物体或人在同一直线上运动,涉及相遇、追及、超越等问题。
直线型行程问题物体或人在圆形、椭圆形等曲线上运动,涉及最短路径、周长等问题。
曲线型行程问题结合直线和曲线型行程问题,涉及更复杂的运动关系和条件。
综合型行程问题明确题目中涉及的物体或人,以及他们之间的运动关系。
确定研究对象根据题目描述,建立行程问题的方程或不等式模型。
建立数学模型通过数学计算,求解方程或不等式的解,得到所需的结果。
解方程或不等式行程问题的解题思路02相遇问题相遇问题是指两个或多个物体(通常为运动物体)从不同的地点同时出发,在某一点相遇的数学问题。
相遇问题的基本要素包括:物体的数量、出发的时间、地点、速度、相遇的地点等。
相遇问题的定义1相遇问题的解题思路23确定物体的数量和它们的运动性质(同时同向或同时反向)。
确定物体出发的时间和地点,以及相遇的地点。
运用速度、时间、距离之间的关系,列出方程并求解。
相遇问题的实例解析•问题:甲、乙两人分别从A、B两地同时出发,相向而行,经过4小时后相遇。
甲的速度是10千米/小时,乙的速度是8千米/小时。
求A、B两地的距离。
•分析:甲和乙两人同时出发,相向而行,所以他们的相对速度是两者速度之和,即10千米/小时 + 8千米/小时 = 18千米/小时。
经过4小时后相遇,所以A、B两地的距离就是甲和乙两人相对速度乘以相遇时间。
•解法•设A、B两地的距离为x千米。
•根据题意,甲和乙两人相对速度为18千米/小时,相遇时间为4小时。
•则有方程:x = 18 × 4•解得:x = 72千米•答案:A、B两地的距离为72千米。
五年级奥数题及答案:行程问题1(高等难度)
五年级奥数题及答案:行程问题1(高等难度) 结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题行程问题(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩!行程问题:(高等难度)A城每隔30分钟有直达班车开往B镇,速度为每小时60千米;小王骑车从A城去B镇,速度为每小时20千米。
当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B镇时,第三趟班车恰好与他同时到达。
A、B间路程为多少千米?要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
行程答案:由于班车速度是小王速度的3倍,所以当第一趟班车追上并超过小王的那一刻,由于小王已出发30分钟,所以第一趟班车已出发30÷3=10分钟;再过50分钟,第三趟班车出发,此时小王已走了30+50=80分钟,从此刻开始第三趟班车与小王同向而行,这是一个追及问题。
由于班车速度是小王速度的3倍,所以第三趟班车走完全程的时间内小王走了全程的三分之一,所以小王80分钟走了全程的三分之二,AB间路程为:20×80/60÷2/3=40千米。
五年级行程问题奥数题
五年级行程问题奥数题一、行程问题基础概念1. 路程、速度、时间的关系路程 = 速度×时间,通常用字母表示为公式。
速度 = 路程÷时间,即公式。
时间 = 路程÷速度,公式。
2. 单位换算在行程问题中,常用的长度单位有千米(公式)、米(公式)、分米(公式)、厘米(公式)、毫米(公式),其中公式,公式,公式,公式。
常用的时间单位有小时(公式)、分钟(公式)、秒(公式),且公式,公式。
速度单位则根据路程和时间单位而定,如米/秒(公式)、千米/小时(公式)等。
1. 相遇问题题目:甲、乙两车分别从A、B两地同时相向开出,甲车的速度是每小时50千米,乙车的速度是每小时40千米。
经过3小时两车相遇,求A、B两地的距离。
解析:这是一个相遇问题,根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙两车的速度和为公式(千米/小时)。
相遇时间是3小时,所以A、B两地的距离为公式(千米)。
2. 追及问题题目:甲、乙两人在环形跑道上跑步,甲的速度是每分钟250米,乙的速度是每分钟200米。
跑道一圈长400米,甲在乙前面50米,多少分钟后甲第一次追上乙?解析:这是追及问题,追及路程为公式米(因为甲在乙前面50米,甲要追上乙需要多跑一圈少50米的距离)。
甲、乙的速度差为公式米/分钟。
根据追及时间 = 追及路程÷速度差,可得追及时间为公式分钟。
3. 行船问题(拓展)题目:一艘轮船在静水中的速度是每小时15千米,它从上游甲地开往乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少小时?解析:从甲地到乙地是顺水行驶,顺水速度 = 静水速度+水速,所以顺水速度为公式千米/小时。
根据路程 = 速度×时间,甲乙两地的距离为公式千米。
从乙地返回甲地是逆水行驶,逆水速度 = 静水速度水速,即公式千米/小时。
那么返回所需时间为公式小时。
五年级奥数行程问题一讲座及练习答案
五年级奥数行程问题一讲座及练习答案文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]五年级奥数行程问题[一]讲座及练习答案行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1:甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米。
两车在距中点 32 千米处相遇。
东、西两地相距多少千米?【思路导航】两车在距中点 32 千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多 32 千米,乙车行了全程的一半少 32 千米,因此,两车相遇时,甲车比乙车共多行了 32 × 2= 64 (千米)。
两车同时出发,又相遇了,两车所行的时同是一样的,为什么甲车会比乙车多行 64 千米?因为甲车每小时比乙车多行 56-48 = 8 (千米)。
64 ÷8 =8 所以两车各行了 8 小时,求东、西的路程只要用( 56 + 48 )× 8 即可。
32× 2 ÷(56-48 )= 8 (小时) ( 56 + 48 ) ×8 = 832 (千米)答:东、西两地相距 832 千米。
【疯狂操练】1、小玲每分行 100 米,小平每分行 80 米,两人同时从学校和少年宫相向而行,并在离中点 120 米处相遇,学校到少年宫有多少米?解:小玲速度比小平速度快,在离中点120米处相遇,也就是说他们相遇的时候小玲比小平多走了120×2=240米,那么他们相遇时间为240÷(100-80)=12分钟,总路程就是他们的速度和乘以相遇时间:(100 + 80)×12 = 2160(米)答:学校到少年宫有2160米.2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行 40 千米,摩托车每小时行 65 千米,当摩托车行到两地中点处时,与汽车还相距 75 千米,甲、乙两地相距多少千米?解:因当摩托车行到两地中点处时,与汽车还相距 75 千米,所以75千米就是两车所行的路程差。
小学五年级数学思维能力(奥数)行程问题训练题(一)
小学五年级数学思维能力(奥数)行程问题训练题1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?2、两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?3、甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米?4、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
5、甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。
求A、B两地之间的距离。
6、两地相距37.5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米。
相遇时甲、乙二人各走了多少千米?7、甲、乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。
相遇后他们又都走了1小时。
两人各走了多少千米?8、两列火车分别从甲、乙两个火车站相对开出,第一列火车每小时行48.65千米,第二列火车每小时行47.35千米。
在相遇时第一列火车比第二列火车多行了5.2千米。
到相遇时两列火车各行了多少千米?9、东、西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。
第一列火车比第二列火车每小时快2千米。
相遇时这两列火车各行了多少千米?10、两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。
两车开了几小时以后相遇?11、、在一次战役中,敌我双方原来相距62.75千米。
行程问题五年级奥数题及答案
行程问题五年级奥数题
及答案
work Information Technology Company.2020YEAR
行程问题
甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V 人),
所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇?。
五年级 奥数行程问题
第二讲行程(1)相遇问题知识链接:相遇问题是研究两个物体共同走一段路程的运动。
可分为相向,相背,环行运动等相遇问题。
行程问题基本数量关系式:路程=速度×时间相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间超级课堂1. 甲乙两车同时从两地相对开出,经过5小时后相遇。
甲车每小时行70千米,乙车每小时行65千米,问:甲,乙两地相距多少千米?2. 甲,乙两人同时从两地出发,相向而行,距离是50千米。
甲每小时走3千米,乙每小时走2千米。
甲带一只狗,每小时跑5千米,这只狗同甲一起出发,当它碰到乙后便转回头跑向甲…如此下去,直到两人碰到头为止。
问这只狗一共跑了多少千米?3. 甲,乙两辆货车分别同时从A,B两个城市相向开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两城中点25千米处相遇。
那么A,B两个城市间的路程是多少千米?4. A,B两城相距60千米,甲,乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?5. 客车和货车早上8时分别从甲,乙两个城市同时出发相向而行,到上午10时两车相距120千米,两车继续行驶到下午1时,两车又相距120千米,那么甲,乙两城之间路程是多少千米?6. A,B两地相距1100米,甲从A地,乙从B地同时出发,相向而行,甲每分钟行90米,乙每分钟行70米,第一次在C处相遇,AC之间距离是多少米?相遇后继续前进,分别到达A,B两地后立即返回,第二次相遇于D处,CD之间的距离是多少米?超级练习1. 电气机车和磁悬浮列车各一列,从相距298千米的两面地同时相向而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米每小时,半小时后两车相遇。
则电气机车和磁悬浮列车的速度分别是多少?2. 两支部队从相距50千米的甲,乙两地同时相对而行,一名通信员骑车以每小时20千米的速度在两支部队间不断往返联络。
五年级奥数举一反三专题 第29周 行程问题(二)
第二十九周行程问题(二)专题简析:本周的主要问题是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。
追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例1中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。
60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车。
练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?(3)甲骑自行车从A地到B地,每小时行16千米。
1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。
A、B两地相距多少千米?例2一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?分析途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。
90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。
因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。
五年级奥数
1、哥哥和弟弟分别从家和学校相向而行。
哥哥每分钟行80米,弟弟每分钟行60米,两人在离中点100米处相遇,问:家到学校有多少米?2、客货两辆汽车分别从甲、乙两地相对开出,客车每小时行50千米,货车每小时行65千米,当货车行到两地中点时,与客车还相距75千米,求甲、乙两地的距离。
3、甲、乙两人同时从东街到西街去,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西街。
东街到西街的路程是多少米?4、A、B两车同时从甲、乙两地相向而行。
A车每小时行55千米,经过4小时己驶过中点20千米,这时A、B两车还相距8千米。
B车每小时行驶多少千米?5、汽车从甲地开往乙地,每小时行40千米,3小时后剩下的路程比全程的一半少8千米。
如改用每小时52千米的速度行驶,再行几小时到达乙地?6、五(1)班的52位同学去校外植树。
如每人植3棵树,全班同学能植完这批树苗的一半还多52棵。
五(1)同学要植这批树,平均每人应植多少棵?1、父亲在儿子读书的学校教书,每天父子二人步行去学校,父亲每分钟比儿子多走20米,30分钟后父亲到学校,到校后发现未带钥匙,立即原路返回。
在离校350米处碰上儿子,儿子每分钟行多少米?2、甲、乙两支队伍同时从相距100千米的两地相向而行,甲队每小时行7千米,乙队每小时行3千米。
通信员骑马负责两队联络,每小时行15千米。
通信员和甲队一道出发,碰到乙队后就立即掉头朝甲队这边走来,碰到甲队时又向乙队那边走,直到两队相遇,通信员一共走了多少千米?3、东、西两地相距44千米,甲、乙两人同时从东、西两镇相向而行,2小时后丙从东镇骑车出发去追甲,结果三人同时在某地相遇。
己知甲每小时行5千米,乙每小时行6千米,求丙的骑车速度。
4、两队同学分别从相距60千米的甲、乙丙地相向出发。
李明同学以每小时12千米的速度在两队同学之间不断往返送信。
如果李明从同学们出发到相遇共行了60千米,而甲队比乙队每小时多走1千米,求两队同学行走的速度。
五年级奥数行程问题1习题
第六讲行程问题(一)1、两地相距900千米,甲、乙两列火车同时从两地出发相向而行。
甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。
两车相遇后,它们开到对方的出发点还需要多长时间?2、两匹马在相距50米地A、B两地同时同向出发,出发时黑马在前白马在后,如果黑马每秒跑10米,白马每秒跑12米,几秒后两马相距70米?3、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇,相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?4、两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
两车相遇后,两车开到对方的出发点还需要多少小时?5、小玲每分行100米,小平每分行80米,两人同时同地背向行了5分后,小玲调转方向去追赶小平。
小玲追上小平时一共行了多少米?6、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
两人在C处第一次相遇。
问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。
问CD之间距离是多少?7、东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲的速度是乙速度的2倍,5小时后两人相遇。
甲、乙两人的速度各是多少?8、快车和慢车同时从甲、乙两地相对开出,一直快车每小时行60千米,慢车每小时行52千米,两车在距离中点32千米处相遇。
甲、乙两地的路程是多少千米?9、甲、乙两站相距360千米。
客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,途中两车相遇,求相遇的地点离乙站多少千米?10、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。
行程问题五年级奥数题及答案
行程问题
甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V人),
所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V 人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇。
(最新)五年级奥数分册第28周 行程问题(一)
第28周行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
五年级奥数行程问题一讲座及练习答案
五年级奥数行程问题[一]讲座及练习答案行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1:甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米。
两车在距中点 32 千米处相遇。
东、西两地相距多少千米?【思路导航】两车在距中点 32 千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多 32 千米,乙车行了全程的一半少 32 千米,因此,两车相遇时,甲车比乙车共多行了 32 × 2= 64 (千米)。
两车同时出发,又相遇了,两车所行的时同是一样的,为什么甲车会比乙车多行 64 千米?因为甲车每小时比乙车多行 56-48 = 8 (千米)。
64 ÷8 =8 所以两车各行了 8 小时,求东、西的路程只要用( 56 + 48 )× 8 即可。
32× 2 ÷(56-48 )= 8 (小时) ( 56 + 48 ) ×8 = 832 (千米)答:东、西两地相距 832 千米。
【疯狂操练】1、小玲每分行 100 米,小平每分行 80 米,两人同时从学校和少年宫相向而行,并在离中点 120 米处相遇,学校到少年宫有多少米?解:小玲速度比小平速度快,在离中点120米处相遇,也就是说他们相遇的时候小玲比小平多走了120×2=240米,那么他们相遇时间为240÷(100-80)=12分钟,总路程就是他们的速度和乘以相遇时间:(100 + 80)×12 = 2160(米)答:学校到少年宫有2160米.2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行 40 千米,摩托车每小时行 65 千米,当摩托车行到两地中点处时,与汽车还相距 75 千米,甲、乙两地相距多少千米?解:因当摩托车行到两地中点处时,与汽车还相距 75 千米,所以75千米就是两车所行的路程差。
五年级奥数行程问题
行程问题有关速度、时间、路程三者之间关系的应用题叫做行程问题,行程问题的主要数量关系是:路程=速度×时间如果用s表示路程,v表示速度,t表示时间,则上述关系可以用字母表示成:s=vt相遇问题一般是指两个物体从两地出发,相向而行,共同走一段路程,直至相遇,这类应用题的基本数量关系式:总路程=速度和×总时间追击问题一般是指两个物体同时运动,经过一段时间,后者追上前者的问题,追击问题的一般关系为:速度差×追击时间=总路程相遇问题例1哥哥和弟弟分别从家和学校相向而行。
哥哥每分钟行80m,弟弟每分钟行60m,两人在离终点100m处相遇,问:从家到学校有多少米?练习 1.1 客货两辆汽车分别从甲、乙两地相对开出。
客车每小时行50km,货车每小时行65km,d当货车行到两地终点时,与客车还相距75km,求甲、乙两地的距离?练习1.2 甲、乙两人同时从A、B两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点62.4千米处与乙相遇。
A、B两地相距多少千米?例2、A、B两地相距60千米。
两辆汽车同时从A地出发前往B地。
甲车比乙车早30分到达B地。
当甲车到达B地时,乙车离B地还有10千米。
甲从A地到B地共行了几小时?练习2.1中巴车每小时行60千米,小轿车每小时行84千米,两车由同一个车库出发。
已知道中巴车先开出,30分钟后小轿车顺着中巴车的路线出发,小轿车经过多少时间能追上中巴车?练习2.2 甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。
途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地。
两地间的路程是多少千米?练习2.3 玲玲从家到县城上学,她以每分50米的速度走了2分后,发现按个人速度走下去要迟到8分,于是她加快了速度,每分多走10米,结果到学校时,离上课还有5分。
玲玲家到学校的路程是多少米?火车行程问题火车过桥(或隧道)所用的时间=[桥长(隧道长)+货车长度]÷火车的速度两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷火车的速度和两列火车同向而行,快车追上慢车所用的时间=两车车声长度差÷火车的速度差例3 甲火车长210m,每秒行18m,乙火车长140m,每秒行13m,乙火车在前,两火车在双轨上行驶,求甲火车追上到超过乙火车用多少时间?练习3.1 一列快车长150m,每秒行22m,一列慢车长100m,每秒行14m,快车从后面追上并超过慢车需要几秒钟?练习3.2 小明以2米每秒的速度沿铁路旁边的人行道行走,身后开来一列188m长的火车,火车每秒行18m,问火车追上并超过小明需要几秒?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28周行程问题(一)
专题简析:
行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?
分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)
(56+48)×8=832(千米)
答:东、西两地相距832千米。
1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?
2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?
3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?
例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?
分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)
答:慢车每小时行21千米。
练习二
1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?
2,汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?
3,学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学都能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人植多少树?
例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米)。
因此,东西两村的距离是15×(5-1)=60(千米)
上午8时至中午12时是5小时。
15×2÷6=5(小时)
15÷(5-4)=15(千米)
15×(5-1)=60(千米)
练习三
1,甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?
2,小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350千米处遇到小红。
小红每分钟走多少千米?
3,甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。
上午11时甲到达B 地后立即返回,在距B地24千米处与乙相遇。
求A、B两地相距多少千米?
例4 甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米。
两车继续行驶到下午1点,两车相距还是112.5千米。
A、B两地间的距离是多少千米?
分析与解答要求骑自行车的同学一共行多少千米,就要知道他的速度和所行时间。
骑自行车同学的速度是每小时14千米,而他所行的时间就是甲、乙两队学生从出发到相遇这段时间。
因此,用18÷(4+5)=2小时,用这个时间和骑的同学的速度相乘就得到了他一共行的千米数。
练习四
1,甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米;又行3小时,两车又相距120千米。
A、B两地相距多少千米?
2,东、西两村相距36千米,甲、乙二人同时从东西两村相向出发,3小时后,丙骑车从东村出发去追甲,结果三人同时在某地相遇。
已知甲每小时行4千米,乙每小时行5千米,求丙的速度。
3,两队同学同时从相距30千米的甲、乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。
如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。
例5 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。
两车继续行驶到下午1时,两车相距还是112.5千米。
A、B两地间的距离是多少千米?
分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距112.5千米到又相距112.5千米,共行112.5×2=225千米。
两车的速度和是225÷3=75千米。
从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+112.5=262.5千米。
练习五
1,甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米。
又行3小时,两车又相距120千米。
A、B两地相距多少千米?
2,快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米。
继续行驶到14时,两车又相距170千米。
甲、乙两地相距多少千米?
3,甲、乙两人分别从A、B两地同时相向而行,匀速前进。
如果各人按原定速度前进,4小时相遇;如果两人各自比原计划少走1千米,则5小时相遇。
A、B两地相距多少千米?。