fpga数字时钟课程设计
用fpga简易数字钟电路设计实验报告 概述及解释说明
用fpga简易数字钟电路设计实验报告概述及解释说明1. 引言1.1 概述本实验报告旨在介绍使用FPGA(可编程门阵列)设计的简易数字钟电路。
数字钟是一种可以显示时间的时钟装置,广泛应用于日常生活和工业领域。
本文将详细讲解数字钟的设计原理、硬件要求、设计步骤以及实验的实现过程。
1.2 文章结构本文共分为五个部分,即引言、FPGA简易数字钟电路设计、实验实现过程、实验结果分析和结论与总结。
下面将对每个部分进行具体说明。
1.3 目的该实验旨在通过学习和操作FPGA,深入理解数字电路设计的基本原理和方法,并通过设计一个简易的数字钟电路来巩固所学知识。
通过本实验,我们还将探索数字钟电路的性能评估和可能的改进方向,并对未来发展方向进行展望。
同时,通过参与这个项目,我们也将获得一定的实践经验和技能提升。
2. FPGA简易数字钟电路设计:2.1 设计原理:在本次实验中,我们使用FPGA(现场可编程逻辑门阵列)来设计一个简易的数字钟电路。
FPGA是一种集成电路芯片,可依据用户需要重新配置其内部互连,从而实现不同的逻辑功能。
我们将利用FPGA的可编程性和强大的计算能力来实现数字钟的功能。
该数字钟电路主要由时钟模块、倒计时模块和显示模块组成。
时钟模块负责产生稳定而精确的脉冲信号作为系统的时基;倒计时模块通过对输入时间进行倒计时操作,并发出相应信号提示时间变化;显示模块用于将倒计时结果以数码管显示出来。
2.2 硬件要求:为了完成该设计,我们需要准备以下硬件设备:- FPGA开发板:提供了外部接口和资源,用于连接其他硬件设备并加载程序。
- 数码管:用于显示时间信息。
- 时钟源:提供稳定而精确的脉冲信号作为系统的时基。
2.3 设计步骤:以下是设计步骤的详细说明:1. 确定所需功能:首先明确数字钟需要具备哪些功能,例如12小时制还是24小时制、倒计时功能等。
2. 确定FPGA型号:根据设计需求和资源限制,选择适合的FPGA型号。
基于FPGA的电子钟设计报告
基于FPGA的电子钟设计报告一、FPGA的基本知识1、可编程逻辑器件的概况可编程逻辑器件主要分为FPGA和CPLD 两种,两者的功能基本相同。
FPGA--现场可编程门阵列的简称CPLD--复杂可编程逻辑器件的简称2、FPGA芯片及其最小系统(1)FPGA芯片它的外形与普通嵌入式处理器芯片相同采用PGA(Organic pin grid Array,有机管脚阵列)的封装形式,但可以通过烧写特殊程序改变其内部结构,实现专门的电路功能。
基于FPGA的数字时钟2019-11-23 21:36·电力源动一、FPGA的基本知识1、可编程逻辑器件的概况可编程逻辑器件主要分为FPGA和CPLD 两种,两者的功能基本相同。
FPGA--现场可编程门阵列的简称CPLD--复杂可编程逻辑器件的简称它的外形与普通嵌入式处理器芯片相同采用PGA(Organic pin grid Array,有机管脚阵列)的封装形式,但可以通过烧写特殊程序改变其内部结构,实现专门的电路功能。
二、FPGA的设计方法1、编程语言FPGA的主流程序设计语言主要有VHDL语言与Verilog语言两种。
本课题采用VHDL语言进行编写。
VHDL--用简洁明确的源代码来描述复杂的逻辑控制。
它具有多层次的设计描述功能,层层细化,最后可直接生成电路级描述。
Verilog--一种基本语法与C语言相近,相比较于C语言更容易理解,2、图形化程序设计(设计效率低)三、软件开发环境QuartusII是Altera提供的FPGA开发集成环境,它提供了一种与结构无关的设计环境,使设计者能方便地进行设计输入、快速处理和器件编程。
它完全支持VHDL设计流程,其内部嵌有VHDL逻辑综合器。
四、数字钟功能模块认识数字时钟的设计采用了自顶向下分模块的设计。
底层是实现各功能的模块,各模块由VHDL语言编程实现顶层采用原理图形式调用。
具体的设计框图:各模块原理剖析:(1)在七段数码管上具有时--分--秒的依次显示;(2)时、分、秒的个位记满十向高位进一,分、秒的十位记满五向高位进一,小时按24进制计数,分、秒按60进制计数;(3)整点报时,当计数到整点时扬声器发出响声;(4)时间设置:可以通过按键手动调节秒和分的数值。
数字钟课程设计fpga
数字钟课程设计 fpga一、课程目标知识目标:1. 学生能理解数字钟的基本原理和组成,掌握数字钟的计时方法。
2. 学生能了解FPGA的基本概念,掌握FPGA在数字钟设计中的应用。
3. 学生能掌握数字钟设计中涉及的二进制、十进制转换方法。
技能目标:1. 学生能够运用所学知识,设计并实现一个简单的数字钟电路。
2. 学生能够使用FPGA编程,实现数字钟的功能。
3. 学生能够通过实验操作,培养动手能力和团队协作能力。
情感态度价值观目标:1. 学生对数字电路产生兴趣,树立学习信心,形成积极的学习态度。
2. 学生在学习过程中,培养创新精神和实践能力,增强对科技发展的关注。
3. 学生通过合作学习,培养团队意识,学会尊重他人,分享成果。
课程性质:本课程为电子技术实践课程,结合理论教学,注重培养学生的实际操作能力和创新思维。
学生特点:学生为高中生,具备一定的电子技术基础,对新鲜事物充满好奇,喜欢动手实践。
教学要求:教师需引导学生运用所学知识,通过实验操作,掌握数字钟设计方法,提高学生的实践能力和创新精神。
同时,关注学生的情感态度价值观培养,使学生在学习过程中形成良好的学习习惯和团队合作意识。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 数字钟原理及组成- 数字钟工作原理- 数字钟各部分功能及相互关系2. FPGA基础知识- FPGA基本概念- FPGA在数字电路设计中的应用3. 数字钟设计与实现- 数字钟计时方法- 二进制与十进制转换方法- 数字钟电路设计流程4. FPGA编程与实验操作- FPGA编程基础- 数字钟功能模块编程- 实验操作步骤与注意事项5. 数字钟综合设计与调试- 设计要求与评价指标- 设计方案撰写与展示- 团队合作与交流教学内容安排与进度:第一周:数字钟原理及组成、FPGA基础知识学习第二周:数字钟设计与实现、FPGA编程基础学习第三周:数字钟功能模块编程、实验操作第四周:数字钟综合设计与调试、成果展示与评价教材章节:第一章:数字钟原理及组成第二章:FPGA基础知识第三章:数字钟设计与实现第四章:FPGA编程与实验操作第五章:数字钟综合设计与调试教学内容遵循科学性和系统性原则,结合课程目标,确保学生能够掌握数字钟设计与FPGA编程相关知识,培养实践能力和创新精神。
FPGA课程设计多功能数字钟讲解
多功能数字钟开课学期:2014—2015 学年第二学期课程名称:FPGA课程设计学院:信息科学与工程学院专业:集成电路设计与集成系统班级:学号:姓名:任课教师:2015 年7 月21 日说明一、论文书写要求与说明1.严格按照模板进行书写。
自己可以自行修改标题的题目2.关于字体:a)题目:三号黑体加粗。
b)正文:小四号宋体,行距为1.25倍。
3.严禁抄袭和雷同,一经发现,成绩即判定为不及格!!!二、设计提交说明1.设计需要提交“电子稿”和“打印稿”;2.“打印稿”包括封面、说明(即本页内容)、设计内容三部分;订书机左边装订。
3.“电子稿”上交:文件名为“FPGA课程设计报告-班级-学号-姓名.doc”,所有报告发送给班长,由班长统一打包后统一发送到付小倩老师。
4.“打印稿”由班长收齐后交到:12教305办公室;5.上交截止日期:2015年7月31日17:00之前。
第一章绪论 (3)关键词:FPGA,数字钟 (3)第二章FPGA的相关介绍 (4)2.1 FPGA概述 (4)2.2 FPGA特点 (4)2.3 FPGA设计注意 (5)第三章Quartus II与Verilog HDL相关介绍 (7)3.1 Quartus II (7)3.2 Verilog HDL (7)第四章设计方案 (8)4.1数字钟的工作原理 (8)4.2 按键消抖 (8)4.3时钟复位 (8)4.4时钟校时 (8)4.5数码管显示模块。
(8)第五章方案实现与验证 (9)5.1产生秒脉冲 (9)5.2秒个位进位 (9)5.3按键消抖 (9)5.4复位按键设置 (10)5.5 数码管显示。
(10)5.6 RTL结构总图 (11)第六章实验总结 (14)第七章Verilog HDL源代码附录 (15)第一章绪论现代社会的标志之一就是信息产品的广泛使用,而且是产品的性能越来越强,复杂程度越来越高,更新步伐越来越快。
支撑信息电子产品高速发展的基础就是微电子制造工艺水平的提高和电子产品设计开发技术的发展。
基于FPGA的数字电子钟的设计与实现
基于FPGA的数字电⼦钟的设计与实现背景:本实验所有结果基于Quartus II 13.1 (64-bit)实现,实验过程采⽤⾃下⽽上⽬录⼀、基本功能设计与思路基本功能:能实现秒、分钟、⼩时的计数,计数结果清晰稳定的显⽰在 6 位数码管上。
1、动态显⽰模块该模块主要功能是通过数码管的动态扫描实现 6 位数码管显⽰计数结果,本模块由扫描模块scan_cnt6,位选控制模块 dig_select,数据选择控制模块 seg_select 以及译码模块 decoder 构成扫描模块 scan_cnt6模块功能:产⽣ 位选控制端dig_select 和数据选择端 code_select 模块所需要的地址信息,扫描时钟决定位选信号和数据切换的速度。
设计思路:利⽤74390芯⽚(P160 TTL 双⼗进制异步计数器)构建⼀个模六计数器,就是6进制计数器,利⽤计数到6(110)时,“q2”和“q1”为⾼电平,产⽣ ⼀个复位信号,加到74390的⾼电平有效的异步清0端“1CLR”上,使计数器回0,从⽽实现模六计数。
设计结果:cnt6模块设计图波形仿真:(默认为时序仿真)cnt6模块波形仿真图位选模块 dig_select模块功能:在地址端的控制下,产⽣位选信号。
设计思路:利⽤74138芯⽚(3线-8线译码器),当选通端输⼊端G1为⾼电平,选通端输⼊端G2AN和G2BN为低电平时,将扫描信号cnt6的输出作为输⼊信号,dig[5..0]是译码输出,输出低电平有效。
设计结果:dig_select模块设计图波形仿真:dig_select模块波形仿真图数据选择模块 seg_select模块功能:输⼊ 6 组数据,每组数据 4bit,本模块完成在地址端的控制下从6 组数据当中选择 1 组输出。
设计思路:利⽤74151芯⽚(P91 8选1数据选择器),在控制输⼊端GN为低电平时,将扫描信号的选择下,分别选中D[5..0]对应的输⼊信号输出为Y。
基于XilinxFPGA的数字钟设计
基于FPGA的多功能数字钟一、设计题目基于Xilinx FPGA的多功能数字钟设计二、设计目的1.掌握可编程逻辑器件的应用开发技术——设计输入、编译、仿真和器件编程;2.熟悉一种EDA软件使用;3.掌握Verilog设计方法;4.掌握分模块分层次的设计方法;5.用Verilog完成一个多功能数字钟设计;6.学会FPGA的仿真。
三、设计内容设计实验项目九多功能电子钟✧功能要求:利用实验板设计实现一个能显示时分秒的多功能电子钟,具体要求为:基本功能:1)准确计时,以数字形式显示时、分、秒,可通过按键选择指示当前显示时间范围模式;2)计时时间范围 00:00:00-23:59:593)可实现校正时间功能;4)可通过实现时钟复位功能:00:00:00扩展功能:1)定时报:时间自定(不要求改变),闹1分钟(1kHz)---利用实验板LED或外接电路实现。
2)仿广播电台正点报时:XX:59:[51,53,55,57(500Hz);59(1kHz)] ---利用实验板LED或外接电路实现。
3)报整点时数:XX:00:[00.5-XX.5](1kHz),自动、手动---利用实验板LED或外接电路实现。
4)手动输入校时;5)手动输入定时闹钟;6)万年历;7)其他扩展功能;✧设计步骤与要求:1)计算并说明采用Basys2实验板时钟50MHz实现系统功能的基本原理。
2)在Xilinx ISE13.1 软件中,利用层次化方法,设计实现模一百计数及显示的电路系统,设计模块间的连接调用关系,编写并输入所设计的源程序文件。
3)对源程序进行编译及仿真分析(注意合理设置,以便能够在验证逻辑的基础上尽快得出仿真结果)。
4)输入管脚约束文件,对设计项目进行编译与逻辑综合,生成下载所需.bit类型文件。
5)在Basys2实验板上下载所生成的.bit文件,观察验证所设计的电路功能。
四、总体设计思路主体分为分频模块,正常时间模块(包含两个模60计数器和一个模24计数器子模块),闹钟模块(分为一个模60计数器模块,一个模24计数器模块,四个比较器模块),电台报时模块,数码管显示模块(分为模式选择模块,片选信号及扫描程序模块,和译码模块)。
《FPGA设计与应用》数字时钟实验
《FPGA设计与应用》数字时钟实验一、实验目的和要求
1.学习动态数码管的工作原理;
2.实现 FPGA 对四位动态数码管的控制;
3.熟悉模块化编程的操作流程。
二、实验内容
1.实现 FPGA 对四位动态数码管的控制,使其能够正常工作;2.基于eGo-1的数字钟设计与实现
三、实验要求
1、能够在实验板上实现数字时钟
四、操作方法与实验步骤
本实验的设计思路如下:
各模块实现方式:
分频
计数器
Hex2BCD
数码管动态显示
五、实验数据记录和处理实验代码如下:
设计文件:(部分)
仿真文件(部分):
约束文件(部分):
六、实验结果与分析
综合后生成的网表结构如下图所示:
仿真图像:
实物操作:
经过如上图代码的运行,实验要求的功能已基本实现,得出的实验结果与预期基本一致。
七、讨论和心得
这次实验用到了之前学习的动态数码管工作原理,将动态数码管与时钟相结合,对于每一位数码管来说,每隔一段时间点亮一次。
显示器的亮度通过导通电流,点亮时间和间隔时间的控制。
通过调整电流和时间参数,可以既保证亮度,又保证显示。
基于FPGA的数字钟课程设计
集成电路设计课程设计报告专业班级学号姓名基于FPGA的数字钟课程设计1.任务和设计要求设计具有时、分、秒计数显示,以24小时循环计时的时钟电路,带有清零和校准功能;2.设计原理采用硬件描述语言Verilog 进行编程,实现20MHZ晶振到1HZ的分频;采用verilog 语言实现数字表功能实现的各个模块;通过各个模块的代码生成相应的模块原理图;再将各个模块生成的原理图进行叠加组成一个数字表系统;3.系统设计设计的数字表有6个输入,16个输出;6个输入中,有一个是时钟信号,开发板上的28号引脚输入的50MHZ的时钟信号;一个清零端,当数字表正常显示时,按下清零端可以实现数字钟整体电路图:4.各个模块设计基于EP1C6Q240C8的数字钟设计,有6个模块组成:Fdiv 分频模块Control 模式选择模块Tune 校正模块Zoushi 时间正常运行模块Saomiao 数码管动态扫描模块;Decoder BCD译码模块;Fdiv 模块:功能:实现20MHZ的时钟信号分成10KHZ的信号和1HZ的信号;输入:clk 为20MHZ的时钟信号;输出:f10000HZ 为10KH的时钟信号;F1HZ 为1HZ的时钟信号;Fdiv 模块代码:module fdiv(clk,f10000Hz,f1Hz);output f10000Hz,f1Hz;input clk;reg f10000Hz,f1Hz;integer CNT1=0,CNT2=0;always@(posedge clk)beginif(CNT1<1999)beginCNT1=CNT1+1;f10000Hz<=1'b0;endelsebeginCNT1=0;f10000Hz<=1'b1;endendalways@(posedge f10000Hz)beginif(CNT2<9999)beginCNT2=CNT2+1;f1Hz<=1'b0;endelsebeginCNT2=0;f1Hz<=1'b1;endendendmodulefdiv 模块波形仿真:由于实际的分频波形仿真中,由于要将20MHZ的分成1HZ的,需要将信号缩小20 000 000倍,因此,此处采用将20HZ的先分成10HZ,然后再将10HZ的分成1HZ的时钟信号;在仿真中这样整,在实际演示中再改下代码,实现真正的20MHZ到1HZ的分频;它们只是一个倍数关系而已;Control 模块:功能:实现电子表的正常显示及时间校正模式的转换;输入:key 模式修改键,每来一个高电平,mode加一次。
基于FPGA的数字时钟设计
基于FPGA的数字时钟设计一、实验设计目的:1、进一步熟悉QuartusⅡ的软件使用方法;2、熟悉可编程逻辑器件的开发流程及硬件测试方法;3、熟悉基于FPGA的综合数字系统设计方法;二、设计任务及要求:设计一台可以显示时、分、秒的数字钟。
如图:图1 数字钟系统要求:1、能直接显示小时、分、秒,其中小时为以二十四为计数周期;2、当电路发生走时错误时,要求电路有校时功能,可以对时、分单独校正;3、具有闹钟功能,即输入想要定时的时间,当时钟到达该时间时报警,系统可由灯亮代表报警信号。
4、能显示年月日,使其具有日历功能,并能完成对三种日期状态的校正。
三、设计思路:在24进制程序的基础上设计时钟功能,并加入校正模块以实现对时钟的校正。
在实现时钟功能后添加闹钟模块,并用高位信号表示报时信号。
根据时钟设计方法设计日历功能,同样也加入校正模块。
并且根据日期的进位特点(3月31日,4月30日)完善对日历功能的设计。
四、设计原理:1、根据24进制与60进制的进位信号,完成分钟位,小时位的显示,使其构成基本时钟功能。
2、根据24小时的进位信号count,进行年月日功能的实现。
设置K2与K1为日历与时钟的切换键。
3、在时钟电平作用下,设计两个高低电位JZ1与JZ2电平与K2与K1信号同时控制小时位、分钟的校正。
4、用时钟电平clk2作为闹钟的进位信号,设置K2与K1为闹钟和时钟的切换键。
设置MZ1与MZ2控制闹钟的分钟位与小时位,进行闹钟的设定。
5、在K2、K1与使能信号控制下,设置JZ1与JZ2进行对日历的日与月的校正;JZ1与JZ2进行对年份的个位与十位的校正。
6、最终用K1、K2的四种模式控制显示闹钟、时钟与日历的切换显示模块。
五、设计过程:当时间为23:59:59则进位端count为1,此时判别月份与日期,进行相应的日进位与月进位。
模块2:校准与闹钟设置该程序段为分与时校正,当K1=K2=0时,JZ1为1时,进行分校准;JZ2为1时,进行时校准。
基于FPGA的多功能数字时钟设计
7.利用适配器将综合后的网络表文件针对某一具体的目标器件进行逻辑映射操作,包括底层器件配置、逻辑分割、逻辑优化和布局布线。
8.在适配完成后,产生多项设计结果:(a)适配报告,包括芯片内部资源利用情况,设计的布尔方程描述情况等;(b)适配后的仿真模型;(c)器件编程文件。根据适配后的仿真模型,可以进行适配后时序仿真,因为已经得到器件的实际硬件特性(如时延特性),所以仿真结果能比较精确的预期未来芯片的实际性能。如果仿真结果达不到设计要求,就修改VHDL源代码或选择不同速度和品质的器件,直至满足设计要求。
1.CLB是FPGA的主要组成部分。图2-1是CLB基本结构框图,它主要由逻辑函数发生器、触发器、数据选择器等电路组成。CLB中3个逻辑函数发生器分别是G、F和H,相应的输出是G’、F’和H’。G有4个输入变量G1、G2、G3和G4;F也有4个输入变量F1、F2、F3和F4。这两个函数发生器是完全独立的,均可以实现4输入变量的任意组合逻辑函数。逻辑函数发生器H有3个输入信号;前两个是函数发生器的输出G’和F’,而另一个输入信号是来自信号变换电路的输出H1。这个函数发生器能实现3输入变量的各种组合函数。这3个函数发生器结合起来,可实现多达9变量的逻辑函数。
verilog数字钟设计(FPGA)[15页].doc
verilog数字钟设计(FPGA)[15页].doc一、课程设计目标1. 熟悉并掌握verilog 硬件描述语言2. 熟悉quartus 软件开发环境3. 学会设计大中规模的数字电路,并领会其中的设计思想二、课程设计实现的功能(1)设计一个数码管实时显示时、分、秒的数字时钟(24小时显示模式);(2)可以调节小时,分钟。
(3)能够进行24小时和12小时的显示切换。
(4)可以设置任意时刻闹钟,并且有开关闹钟功能。
(5)有整点报时功能,几点钟LED 灯闪亮几下。
(6)有复位按键,复位后时间从零开始计时,但闹钟设置时间不变。
三、设计原理:1、总原理框图:是是计数模块译码显示模块分频模块设置闹钟小时分钟校正小时校正模式选择模块设置闹钟分钟复位是否到闹钟时间切换12进制显示输出闹钟信号到达整点输出整点报时信号附全部代码:总模块:moduleclock(clk,reset,MODE,Alarm_ctr,BT2,H12_24,DSH,DSL,DMH,D ML,DHH,DHL,dian,bao_signa l,nao_signal);input clk;//50MHzinput reset,MODE,Alarm_ctr,BT2,H12_24;//复位键,模式选择按钮,闹钟开关档,调节按钮,12—24小时切换档output [7:0]DMH,DML,DHH,DHL; //4个数码管显示输入信号output dian,bao_signal,nao_signal; //时分间隔点,报时信号,闹钟信号output [3:0]DSH,DSL; //秒钟输出信号wire [3:0] SH,SL,MH,ML,HH,HL;wire [3:0] LED_mode;wire [3:0] HH12,HL12,HH24,HL24,MH24,ML24,SH24,SL24;wire [3:0] set_HH,set_HL,set_MH,set_ML;wire _1HZ,_10ms,_250ms,_500ms;wire Keydone1;wire Keydone2;wire co1,co11,co111,co2,co22,co222,set_co2;wire [3:0]mode_flag;assign dian=1'b0;devide_f u1(_1HZ,_10ms,_250ms,_500ms,reset,clk); //分频,得到4种不同频率的时钟信号key_press u2(_10ms,MODE,Keydone1); //模式档按钮去抖动key_press u20(_10ms,BT2,Keydone2); //调节按钮去除抖动mode u3(Keydone1,mode_flag); //通过模式按钮产生不同模式second u4(_1HZ,reset,mode_flag,Keydone2,SH24,SL24,co1); //秒计时minute u5(co11,reset,MH24,ML24,co2); //分计时hour u6(co22,reset,HH24,HL24); //小时计时SEG7_LUT u7(DML,ML); //4个数码管显示SEG7_LUT u8(DMH,MH);SEG7_LUT u9(DHL,HL);SEG7_LUT u10(DHH,HH);display_LED u11(DSL,SL); //LED灯显示秒或模式灯display_LED u12(DSH,SH);mode_chooseu13(mode_flag,Keydone2,_250ms,co1,co2,set_co2,co11,co22,co 111,co222); //选择模式进行不同操作hour12_24 u14(HH24,HL24,HH12,HL12); //12--24小时切换boshi u15(HH,HL,MH,ML,SH,SL,_1HZ,bao_signal); //整点报时set_naozhongu16(co111,co222,set_HH,set_HL,set_MH,set_ML,set_co2); //设置闹钟时间Naozhongu17(Alarm_ctr,_500ms,set_HH,set_HL,set_MH,set_ML,HH24, HL24,MH24,ML24,nao_signal);//任意闹钟响应LUT_modeu18(mode_flag,H12_24,HH12,HL12,HH24,HL24,MH24,ML24, set_HH,set_HL,set_MH,set_ML, MH,ML,HH,HL);//通过模式选择数码管显示LED_mode u19(mode_flag,SH24,SL24,SH,SL); 模式选择LED灯显示Endmodule分频模块:分频模块的作用主要是要获得各种频率的时钟信号。
基于FPGA多功能数字钟的设计
实验名称:基于FPGA的数字时钟设计一、实验目的:通过实验熟练运用Verilog HDL语言和 FPGA开发软件,使用BASYS2开发板设计一个可调式并且较复杂的数字时钟。
二、实验硬件要求:计算机、BASYS2开发板、蜂鸣器三、实验内容:1、电路功能:在ISE Design Suite 14.7软件开发环境下,使用Verilog描述语言、结合FPGA开发板编译和仿真数字时钟;要求时钟能进行基本的计时功能,按照:“时:分”来显示时间,秒的功能由流水灯表示;能引入秒脉冲进行校时、校分,并可用rst信号给清零;具有整点报时功能,当计时到整点的时候蜂鸣器开始鸣响,响声为乐曲“铃儿响叮当”。
2、电路图:3、Veilog 程序:1)分频模块div_clk:module divclk(sys_clk,rst,sec_clk);input sys_clk,rst;//系统时钟,复位output reg sec_clk;//秒时钟输出reg[27:0] cnt;//分频计数器,在人眼可识别范围之内always @(negedge sys_clk)beginif(rst)//对计数器进行复位begincnt <= 28'h0000000;sec_clk <= 1'b0;endelseif(cnt >= 28'h17d783f)begincnt <= 28'h0000000;sec_clk <= ~sec_clk;endelse cnt <= cnt+1'b1;endendmodule2)时钟计时模块clockmoduleclock(clk,rst,key,hor_h,hor_l,min_h,min_l,sec_h,sec_l,speak,sys_clk); input clk,rst,sys_clk;input [3:0]key;output [3:0]hor_h,hor_l,min_h,min_l,sec_h,sec_l;output speak;reg [3:0]hor_h,hor_l,min_h,min_l,sec_h,sec_l;reg speak;always@(posedge clk or posedge rst)beginif(rst)beginsec_h <=4'h0;sec_l <=4'h0;min_h <=4'h0;min_l <=4'h0;hor_h <=4'h0;hor_l <=4'h0;endelsecase(key)4'b1000:beginif(hor_h >= 4'h2)hor_h <= 4'h0;elsehor_h <= hor_h + 1'b1;end4'b0100:beginif(hor_l >= 4'h9||(hor_h >= 4'h2 && hor_l >= 4'h3)) hor_l <= 4'h0;elsehor_l <= hor_l + 1'b1;end4'b0010:beginif(min_h >= 4'h5)min_h <= 4'h0;elsemin_h <= min_h + 1'b1;end4'b0001:beginif(min_l >= 4'h9)min_l <= 4'h0;elsemin_l <= min_l + 1'b1;enddefault :beginif(sec_l >= 4'h9)beginsec_l <= 4'h0;if(sec_h >= 4'h5)beginsec_h <= 4'h0;if(min_l >= 4'h9)beginmin_l <= 4'h0;if(min_h >= 4'h5)beginmin_h <= 4'h0;if(hor_l >= 4'h9||(hor_h >= 4'h2 && hor_l >= 4'h3))beginhor_l <= 4'h0;if(hor_h >= 4'h2)hor_h <= 4'h0;elsehor_h <= hor_h + 1'b1;endelsehor_l <= hor_l + 1'b1;endelsemin_h <= min_h + 1'b1;endelsemin_l <= min_l + 1'b1;endelsesec_h <= sec_h + 1'b1;endelsesec_l <= sec_l + 1'b1;endendcaseendalways @(posedge clk)beginif(rst)speak <= 1'b0;else if(min_h == 4'h0 && min_l <=4'h0 && sec_h <= 4'h0)speak <= 1'b1;elsespeak <= 1'b0;endendmodule3)发声模块speaker:module speaker(clk,rst,en,f);input clk,rst,en;output reg f;reg [6:0] tonestep;reg [3:0] tonecode;reg [19:0] divcnt;reg [19:0] cntnum;reg sub_clk;reg[24:0] sub_cnt;always@(posedge clk)beginif(rst) beginsub_cnt <= 0;cntnum <= 0;divcnt <= 0;f <= 0;sub_clk <=0;endelse beginif(sub_cnt >=1500000)beginsub_clk <= ~sub_clk;sub_cnt <=0;endelse sub_cnt <= sub_cnt + 1'b1;if(en == 1'b1)begincase(tonecode)1:cntnum <= 95444;2:cntnum <= 85052;3:cntnum <= 75750;4:cntnum <= 71625;5:cntnum <= 63775;6:cntnum <= 56825;7:cntnum <= 50600;default : cntnum <= 0;endcaseif(cntnum == 0)f <= 1'b0;elseif(divcnt >= cntnum)begindivcnt <= 0;f <= ~f;endelse divcnt <= divcnt + 1'b1;endendendalways@(posedge sub_clk)beginif(rst)begintonestep <= 0;tonecode <= 0;endelseif(tonestep <=80)tonestep <= tonestep + 1'b1;else tonestep <= 0;case(tonestep)7'b0000000:tonecode <= 3;7'b0000001:tonecode <= 3;7'b0000010:tonecode <= 8;7'b0000011:tonecode <= 3;7'b0000100:tonecode <= 3;7'b0000101:tonecode <= 8;7'b0000110:tonecode <= 8;7'b0000111:tonecode <= 3;7'b0001000:tonecode <= 3;7'b0001001:tonecode <= 3;7'b0001010:tonecode <= 3;7'b0001011:tonecode <= 8;7'b0001100:tonecode <= 8;7'b0001101:tonecode <= 3;7'b0001110:tonecode <= 3;7'b0001111:tonecode <= 8;7'b0010000:tonecode <= 3;7'b0010001:tonecode <= 3;7'b0010010:tonecode <= 8;7'b0010011:tonecode <= 8;7'b0010101:tonecode <= 3; 7'b0010110:tonecode <= 3; 7'b0010111:tonecode <= 3; 7'b0011000:tonecode <= 8; 7'b0011001:tonecode <= 8; 7'b0011010:tonecode <= 3; 7'b0011011:tonecode <= 3; 7'b0011100:tonecode <= 8; 7'b0011101:tonecode <= 5; 7'b0011110:tonecode <= 5; 7'b0011111:tonecode <= 8; 7'b0100000:tonecode <= 8; 7'b0100001:tonecode <= 1; 7'b0100010:tonecode <= 1; 7'b0100011:tonecode <= 8; 7'b0100100:tonecode <= 2; 7'b0100101:tonecode <= 2; 7'b0100110:tonecode <= 8; 7'b0100111:tonecode <= 8; 7'b0101000:tonecode <= 3; 7'b0101001:tonecode <= 3; 7'b0101010:tonecode <= 3; 7'b0101011:tonecode <= 3; 7'b0101100:tonecode <= 8; 7'b0101101:tonecode <= 8; 7'b0101110:tonecode <= 4; 7'b0101111:tonecode <= 4; 7'b0110000:tonecode <= 8; 7'b0110001:tonecode <= 4; 7'b0110010:tonecode <= 4;7'b0110100:tonecode <= 8; 7'b0110101:tonecode <= 4; 7'b0110110:tonecode <= 4; 7'b0110111:tonecode <= 4; 7'b0111000:tonecode <= 8; 7'b0111001:tonecode <= 4; 7'b0111010:tonecode <= 8; 7'b0111011:tonecode <= 8; 7'b0111100:tonecode <= 4; 7'b0111101:tonecode <= 4; 7'b0111110:tonecode <= 8; 7'b0111111:tonecode <= 3; 7'b1000000:tonecode <= 3; 7'b1000001:tonecode <= 8; 7'b1000010:tonecode <= 8; 7'b1000011:tonecode <= 3; 7'b1000100:tonecode <= 3; 7'b1000101:tonecode <= 3; 7'b1000110:tonecode <= 8; 7'b1000111:tonecode <= 3; 7'b1001000:tonecode <= 8; 7'b1001001:tonecode <= 3; 7'b1001010:tonecode <= 8; 7'b1001011:tonecode <= 5; 7'b1001100:tonecode <= 5; 7'b1001101:tonecode <= 8; 7'b1001110:tonecode <= 5; 7'b1001111:tonecode <= 5; 7'b1010000:tonecode <= 8; 7'b1000001:tonecode <= 8;7'b1000010:tonecode <= 4;7'b1000011:tonecode <= 4;7'b1000100:tonecode <= 8;7'b1000101:tonecode <= 2;7'b1000110:tonecode <= 2;7'b1000111:tonecode <= 8;7'b1001000:tonecode <= 8;7'b1001001:tonecode <= 1;7'b1001010:tonecode <= 1;7'b1001011:tonecode <= 1;7'b1001100:tonecode <= 1;7'b1001101:tonecode <= 8;7'b1001110:tonecode <= 8;7'b1001111:tonecode <= 5;7'b1010000:tonecode <= 5;7'b1010001:tonecode <= 8;7'b1010010:tonecode <= 3;7'b1010011:tonecode <= 3;7'b1010100:tonecode <= 8;7'b1010101:tonecode <= 8;7'b1010110:tonecode <= 2;7'b1010111:tonecode <= 2;7'b1011000:tonecode <= 8;7'b1011001:tonecode <= 1;7'b1011010:tonecode <= 1;7'b1011011:tonecode <= 8;7'b1011100:tonecode <= 8;endcaseendendmodule4)数码管显示模块seg:module seg(q,ctr,h_h,h_l,m_h,m_l,clk,rst);output[6:0]q;output[3:0] ctr;input[3:0] h_h,h_l,m_h,m_l;input clk,rst;reg[6:0] q;reg[25:0] count;reg[3:0] temp;reg[3:0] scan;always @ (posedge clk)beginif (rst)begincount = 0;endelsebegincount = count +1;endendalways @ (posedge clk ) //Seg Scanbeginif(rst)beginscan<=4'b0000;endelsecase(count[11:10]) // 执行设计时将扫描频率改回 2'b00: scan<=4'b0111;2'b01: scan<=4'b1011;2'b10: scan<=4'b1101;2'b11: scan<=4'b1110;endcaseendassign ctr = scan;always @ (posedge clk) //Seg Scanbeginif(rst)begintemp<=4'b0000;endelsecase(count[11:10]) // 执行设计时将扫描频率改回 2'b00: temp<=h_h;2'b01: temp<=h_l;2'b10: temp<=m_h;2'b11: temp<=m_l;endcaseendalways @(posedge clk) //数码管译码beginif(rst)beginq<=7'b0000000;endelsecase(temp)4'd0:q<=7'b0000001; //04'd1:q<=7'b1001111; //14'd2:q<=7'b0010010; //24'd3:q<=7'b0000110; //34'd4:q<=7'b1001100; //44'd5:q<=7'b0100100; //54'd6:q<=7'b0100000; //64'd7:q<=7'b0001111; //74'd8:q<=7'b0000000; //84'd9:q<=7'b0000100; //9default:q<=7'b0000001;endcaseendendmodule5)秒计时流水灯模块sec_ledmodule sec_led(input sys_clk,input rst,output [7:0] led);reg[24:0] cnt;reg[7:0] led_reg;always@(posedge sys_clk)beginif(rst)cnt <= 0;else cnt <= cnt+1;endalways@(posedge sys_clk)beginif(rst)led_reg <= 8'b0000_0001;else if (cnt == 25'd4*******)beginled_reg <= led_reg << 1;if(led_reg==8'b1000_0000)led_reg<=8'b0000_0001;endassign led=led_reg;Endmodule6键盘修改模块:module keyboard(input sys_clk,// input rst_n,input ps2_clk,input ps2_data,output reg[3:0] key_val);wire [15:0]xkey;reg ps2cf,ps2df;reg clk25=0;reg [7:0]ps2c_filter,ps2d_filter;reg [10:0]shift1,shift2;assign xkey={shift2[8:1],shift1[8:1]};assign rst_n=1;always@(posedge sys_clk)clk25=~clk25;always@(posedge clk25 or negedge rst_n) beginif(!rst_n)beginps2c_filter<=0;ps2d_filter<=0;ps2cf<=1;ps2df<=1;endelsebeginps2c_filter[7]<=ps2_clk;ps2c_filter[6:0]<=ps2c_filter[7:1];ps2d_filter[7]<=ps2_data;ps2d_filter[6:0]<=ps2c_filter[7:1];if(ps2c_filter==8'b1111_1111)ps2cf<=1;elseif(ps2c_filter==8'b0000_0000)ps2cf<=0;if(ps2d_filter==8'b1111_1111)ps2df<=1;elseif(ps2d_filter==8'b0000_0000)ps2df<=0;endendalways@(negedge ps2cf or negedge rst_n)beginif(!rst_n)beginshift1<=0;shift2<=1;endelsebeginshift1<={ps2df,shift1[10:1]};shift2<={shift1[0],shift2[10:1]};endendparameterone = 16'b0001_0110_0001_0110,//{16,16},two = 16'b0001_1110_0001_1110,//{1e,1e},three = 16'b0010_0110_0010_0110,//{26,26},four = 16'b0010_0101_0010_0101,//{25,25},onen = 16'b1111_0000_0001_0110,//{F0,16},twon = 16'b1111_0000_0001_1110,//{F0,1E},threen = 16'b1111_0000_0010_0110,//{F0,26},fourn = 16'b1111_0000_0010_0101;//{F0,25};always@(xkey)case(xkey)one:key_val<=4'b1000;two:key_val<=4'b0100;three:key_val<=4'b0010;four:key_val<=4'b0001;onen:key_val<=4'b0000;twon:key_val<=4'b0000;threen:key_val<=4'b0000;fourn:key_val<=4'b0000;default:key_val<=4'b0000;endcaseendmodulemodule keyboard(input sys_clk,// input rst_n,input ps2_clk,input ps2_data,output reg[3:0] key_val);wire [15:0]xkey;reg ps2cf,ps2df;reg clk25=0;reg [7:0]ps2c_filter,ps2d_filter;reg [10:0]shift1,shift2;assign xkey={shift2[8:1],shift1[8:1]};assign rst_n=1;always@(posedge sys_clk)clk25=~clk25;always@(posedge clk25 or negedge rst_n)beginif(!rst_n)beginps2c_filter<=0;ps2d_filter<=0;ps2cf<=1;ps2df<=1;endelsebeginps2c_filter[7]<=ps2_clk;ps2c_filter[6:0]<=ps2c_filter[7:1];ps2d_filter[7]<=ps2_data;ps2d_filter[6:0]<=ps2c_filter[7:1];if(ps2c_filter==8'b1111_1111)ps2cf<=1;elseif(ps2c_filter==8'b0000_0000)ps2cf<=0;if(ps2d_filter==8'b1111_1111)ps2df<=1;elseif(ps2d_filter==8'b0000_0000)ps2df<=0;endendalways@(negedge ps2cf or negedge rst_n)beginif(!rst_n)beginshift1<=0;shift2<=1;endelsebeginshift1<={ps2df,shift1[10:1]};shift2<={shift1[0],shift2[10:1]};endendparameterone = 16'b0001_0110_0001_0110,//{16,16},two = 16'b0001_1110_0001_1110,//{1e,1e},three = 16'b0010_0110_0010_0110,//{26,26},four = 16'b0010_0101_0010_0101,//{25,25},onen = 16'b1111_0000_0001_0110,//{F0,16},twon = 16'b1111_0000_0001_1110,//{F0,1E},threen = 16'b1111_0000_0010_0110,//{F0,26},fourn = 16'b1111_0000_0010_0101;//{F0,25};always@(xkey)case(xkey)one:key_val<=4'b1000;two:key_val<=4'b0100;three:key_val<=4'b0010;four:key_val<=4'b0001;onen:key_val<=4'b0000;twon:key_val<=4'b0000;threen:key_val<=4'b0000;fourn:key_val<=4'b0000;default:key_val<=4'b0000;endcaseendmodule4、仿真波形图和波形解释:(1)、仿真波形图:(2)、波形解释:将系统的50Mhz的时钟频率进行分频为1hz的频率。
数电课程设计-基于FPGA的数字时钟的设计-图文
数电课程设计-基于FPGA的数字时钟的设计-图文基于FPGA的数字时钟的设计课题:基于FPGA的数字时钟的设计学院:电气信息工程学院专业:测量控制与仪器班级:08测控(2)班姓名:潘志东学号:083142392022年12月12日数字电路课程设计综述近年来随着数字技术的迅速发展,各种中、大规模集成电路在数字系统、控制系统、信号处理等方面都得到了广泛的应用。
这就迫切要求理工科大学生熟悉和掌握常用中、大规模集成电路功能及其在实际中的应用方法,除通过实验教学培养数字电路的基本实验方法、分析问题和故障检查方法以及双踪示波器等常用仪器使用方法等基本电路的基本实验技能外,还必须培养大学生工程设计和组织实验能力。
本次课程设计的目的在于培养学生对基本电路的应用和掌握,使学生在实验原理的指导下,初步具备基本电路的分析和设计能力,并掌握其应用方法;自行拟定实验步骤,检查和排除故障、分析和处理实验结果及撰写实验报告的能力。
综合实验的设计目的是培养学生初步掌握小型数字系统的设计能力,包括选择设计方案,进行电路设计、安装、调试等环节,运用所学知识进行工程设计、提高实验技能的实践。
数字电子钟是一种计时装置,它具有时、分、秒计时功能和显示时间功能;具有整点报时功能。
-2-数字电路课程设计1、课题要求1.1课程设计的性质与任务1)根据课题要求,复习巩固数字电路有关专业基础知识;2)掌握数字电路的设计方法,特别是熟悉模块化的设计思想;3)掌握QUARTUS-2软件的使用方法;4)熟练掌握EDA工具的使用,特别是原理图输入,波形仿真,能对仿真波形进行分析;5)具备EDA技术基础,能够熟练使用VHDL语言进行编程,掌握层次化设计方法;6)掌握多功能数字钟的工作原理,学会不同进制计数器及时钟控制电路的设计方法;7)能根据设计要求对设计电路进行仿真和测试;基本功能:能进行正常的时、分、秒计时功能,分别由6个数码管显示24小时,60分钟,60秒钟的计数器显示。
基于FPGA的数字时钟设计
基于FPGA的数字时钟设计数字时钟是现代生活中必不可少的时间展示设备,广泛应用于各种场所,如家庭、办公室、学校等。
随着科技的不断发展,数字时钟的功能也得到不断升级,为人们日常生活提供了更多的便利和体验。
本文将介绍基于FPGA的数字时钟设计方案。
FPGA(Field Programmable Gate Array)是可编程门阵列的缩写,是一种现场可编程逻辑器件。
FPGA具有可编程性强、功能强大、极低的延迟等特点,被广泛应用于数字系统设计中。
本文中使用FPGA来实现数字时钟设计方案。
数字时钟的核心是计时电路,计时电路可以通过FPGA实现,使用FPGA来实现数字时钟的主要优点是可编程性强,能够满足不同需求的设计。
一、数字时钟的设计思路1、时钟信号的产生数字时钟的起点是时钟信号的产生,时钟信号的产生一般需要使用晶振。
晶振可以在一定频率范围内提供稳定的时钟信号。
FPGA可以通过将晶振与逻辑电路相连接,从而得到稳定的时钟信号。
2、计时电路的设计在数字时钟中,需要实现时、分、秒的计时功能。
这可以采用三个计时器来实现。
计时器可以使用FPGA内置的计数器实现,也可以通过逻辑电路实现。
计时器根据时钟信号的变化而变化,通过累计时钟信号的脉冲数计算出时、分、秒。
3、数码管的控制数字时钟的时间要通过数码管进行显示,数码管需要接受来自FPGA的控制信号才能正常显示数字。
通常采用多路复用器的方式来控制数码管的显示。
这里可以使用FPGA内置的多路复用器实现,FPGA输出控制信号,控制多路复用器选择哪个数码管进行显示。
数字时钟的硬件设计主要包括以下部分:时钟信号发生电路包含晶振以及晶振产生的时钟信号经过变压器传送到电路板上。
在电路板上,时钟信号经过电路处理,产生一定的电平和频率,供后续计时模块使用。
2、计时模块计时模块包括三个计时器,分别用于计算时、分、秒。
计时器通过累加时钟信号的脉冲数计算时间。
计时模块的输出需要送到数码管的控制模块进行显示。
FPGA24小时计时器课程设计
一、设计任务与要求设计一个具有系统时间设置和带闹钟功能的24小时计时器中的应用。
电子钟要求如下:(1)计时功能:4位LED数字时钟对当前时间的小时和分钟进行显示,显示的最长时间为23小时59分。
(2)设置并显示新的闹钟时间:用户先按“set”键,再用数字键“0”~“9”输入时间,然后按“alarm”键确认。
在正常计时显示状态下,用户直接按下“alarm”键,则已设置的闹钟时间显示在显示屏上。
(3)设置新的计时器时间:用户先按“set”键,再用数字键“0”-“9”输入新的时间,然后按“time”键确认。
在输入过程中;输入的数字在显示屏上从右到左依次显示。
例如,用户要设置新的时间12:00,则按顺序输入“l”,“2”,“0”,“0”键,与之对应,显示屏上依次显示的信息为:“1”,“12”;“120”,“1200”。
如果用户在输入任意几个数字后较长时间内,例如5秒,没有按任何键,则计时器恢复到正常的计时显示状态。
(4)闹钟功能:如果当前时间与设置的闹钟时间相同,则扬声器发出蜂鸣声;目录摘要 (I)Abstract (II)1 任务分析 (1)2 FPGA简介 (2)2.1 FPGA简述 (2)2.2 FPGA工作原理 (2)2.3 FPGA的基本结构 (2)3主要模块设计 (5)3.1 分频模块 (5)3.1.1 分频模块源代码 (5)3.1.2 分频模块仿真 (6)3.2 按键模块 (7)3.2.1 按键模块源代码 (7)3.2.2 按键模块仿真 (10)3.3 时间模块 (10)3.3.1 时间模块源代码 (10)3.3.2 时间模块仿真 (13)3.4 显示模块 (14)3.4.1 显示模块源代码 (14)3.4.1 显示模块仿真 (17)3.5 闹钟模块 (18)3.5.1 闹钟模块源代码 (18)3.5.2 闹钟模块仿真 (19)3.6 顶层模块 (19)3.6.1 顶层模块源代码 (19)3.6.2 顶层模块仿真 (21)4 小结与体会 (22)参考文献 (23)FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,是在PAL、GAL、EPLD等可编程器件基础上进一步发展的产物。
怎么设计数字时钟(FPGA)
怎么设计数字时钟(FPGA)仔细观察6个信号,每个单独来看,其数字都是递增的,增加到一定数后就清零。
以秒个位为例,开始时值为0,然后是1、2、3依次增加,直到变成9后,然后变成0,再次循环。
其他信号都是相同的规律。
这些依次递增的信号,就是计数器。
我们认识到这些信号是计数器,那就好办了,明·德·扬最擅长就是计数器的设计。
计数器设计只需要考虑两点,什么时候加1和要数多少个,明确这两个问题后,剩下的就是套用明·德·扬计数器模板了。
以秒个位这个计数器为例,这个计数器加1的条件是什么呢?到了1秒就加1、那我们怎么知道1秒钟时间到了呢?FPGA是通过数时钟周期数来确定时间的。
例如下图,假设时钟频率是50MHz,即时钟周期是20ns,cnt是每个时钟加1,则当cnt==99时,就说明数了100个时钟周期,也就是时间是100*20=2000ns了。
同样的道理,1秒钟时间,我们就是数1s/20ns = 50_000_000个时钟周期。
我们也认识到这个cnt也是计数器,其加1条件是“1”,要数50_000_000个数。
我们套用明·德·扬计数器模块,即有下面代码。
代码中,always语句除了名字后,完全套用模板,不用更改。
加1条件体现在第13行,要数多少个体现在第14行。
确定了cnt后,那么秒个位的加1条件就非常明确了,就是cnt数到50_000_000个,也就是end_cnt有效的时候。
所以秒个位的加1条件是end_cnt。
秒个位要数多少个数字呢?由0到9,因此有10个。
综上所述,我们得到秒个位的代码如下表:1. 6用类似于秒个位的思考方法,我们可以得到秒十位、分个位、分十位、时个位和时十位的代码,完整的代码就出来了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fpga数字时钟课程设计
FPGA数字时钟课程设计
随着科技的不断发展,数字时钟已经成为现代人生活中必不可少的物品。
数字时钟的准确性和便捷性吸引了越来越多的人使用。
而现在,我们可以通过FPGA数字时钟课程设计来实现一个高精度的数字时钟。
FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,可以通过编程实现各种不同的功能。
数字时钟的实现也可以通过FPGA来完成。
在FPGA数字时钟课程设计中,我们需要先确定时钟的基础部分。
时钟的基础部分由时钟信号产生器、时钟分频器、时钟计数器和时钟显示器组成。
时钟信号产生器需要产生一个稳定的时钟信号,以供后续的计数器和分频器使用。
我们可以通过FPGA中的时钟模块来产生一个稳定的时钟信号。
接下来,时钟分频器需要将时钟信号分频,使得计数器可以进行精确的计数。
分频器的分频系数可以通过FPGA中的数码开关进行设置。
然后,时钟计数器需要根据分频器的设定进行精确的计数。
计数器
的计数值可以通过FPGA中的计数器模块进行设置。
时钟显示器需要将计数器的计数值进行显示。
我们可以通过FPGA 中的数码管模块来实现时钟的显示功能。
除了基础部分,我们还可以通过添加更多的功能来完善数字时钟。
例如,我们可以添加闹钟功能、日期显示功能等,以增加数字时钟的实用性。
在FPGA数字时钟课程设计中,我们可以使用VHDL(VHSIC Hardware Description Language)语言进行编程。
VHDL是一种硬件描述语言,可以用于FPGA和ASIC的设计。
通过编写VHDL 程序,我们可以实现数字时钟的各种功能。
FPGA数字时钟课程设计是一个非常有趣和实用的课程项目。
通过这个项目,我们可以深入了解数字时钟的工作原理,熟悉FPGA的编程方法,同时也可以锻炼自己的编程能力。