多元线性回归实例分析
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
多元线性回归分析—内容提要与案例
多元线性回归分析—内容提要与案例多元线性回归是一种统计分析方法,用于探究多个自变量与一个因变量之间的关系。
它在许多领域中都被广泛应用,如经济学、社会科学、医学等。
本文将介绍多元线性回归的基本原理、步骤和统计检验,并通过一个实际案例来演示其应用。
一、多元线性回归的基本原理1.线性关系假设:多元线性回归假设自变量与因变量之间存在线性关系。
即每个自变量的变化对因变量的影响是独立的,并且可以通过线性方程来描述。
2.回归模型构建:根据线性关系假设,可以构建一个回归模型,以自变量为解释变量,因变量为被解释变量。
3.参数估计:利用最小二乘法估计回归模型中的参数,使得模型对观测数据的拟合程度最好。
4.统计检验:通过统计方法检验回归模型中自变量对因变量的影响是否显著。
二、多元线性回归的步骤1.数据收集:收集包括自变量和因变量的观测数据。
2.模型构建:根据所收集到的数据,确定自变量和因变量之间的关系,并构建回归模型。
3.参数估计:使用最小二乘法估计回归模型中的参数。
4.拟合度检验:通过拟合度检验,评估回归模型对观测数据的拟合程度。
5.统计检验:利用各种统计方法,检验回归模型中自变量对因变量的影响是否显著。
6.模型解释:解释回归模型中各个参数的含义和影响。
三、多元线性回归的统计检验1.F检验:用于检验所有自变量对因变量联合作用是否显著。
2.t检验:用于检验每个自变量对因变量的独立作用是否显著。
3.R方和调整R方:用于评估回归模型对观测数据的拟合程度。
4. Durbin-Watson检验:用于检验回归模型是否存在自相关性。
五、多元线性回归的应用案例下面通过一个实际案例来演示多元线性回归的应用。
假设我们要研究一个人的体重与身高、年龄和性别之间的关系。
我们收集了100个人的数据,并通过多元线性回归分析来建立一个预测模型。
首先,根据数据,我们构建如下的多元线性回归模型:体重=β0+β1×身高+β2×年龄+β3×性别。
多元线性回归实例分析研究
多元线性回归实例分析研究为了更好地理解多元线性回归,我们可以以一个实例进行分析研究。
假设我们有一个数据集,包含了以下几个自变量:年龄、性别和教育水平,以及一个因变量:收入水平。
我们的目标是构建一个多元线性回归模型,以了解自变量对于收入水平的影响。
首先,我们需要对数据集进行探索性数据分析,了解各个变量之间的关系。
我们可以使用散点图或相关性矩阵来观察变量之间的关系。
例如,我们可以绘制年龄和收入水平之间的散点图,看看是否存在其中一种关联性。
类似地,我们还可以检查性别和教育水平与收入水平之间的关系。
接下来,我们需要对数据集进行预处理,以确保数据的准确性和一致性。
这可能包括处理缺失值、异常值和离群值。
我们还可以将分类变量转换为虚拟变量,以便在多元线性回归模型中进行分析。
然后,我们可以通过拟合一个多元线性回归模型来研究各个自变量对收入水平的影响。
多元线性回归模型的数学表达式为:Y=β0+β1X1+β2X2+...+βnXn其中,Y代表因变量(收入水平),X1、X2、..、Xn代表自变量(年龄、性别、教育水平),β0、β1、β2、..、βn代表模型的参数。
我们可以使用最小二乘法来估计模型参数,以最小化真实值和预测值之间的误差。
通过计算模型参数的置信区间和显著性水平,我们可以确定哪些自变量对收入水平具有显著影响。
最后,我们可以使用模型来预测新数据点的收入水平。
通过将新数据点的自变量值代入模型方程,我们可以得到一个预测值,从而对收入水平进行估计。
同时,我们还可以计算预测的置信区间,以度量模型的准确性和不确定性。
通过对多元线性回归实例的分析研究,我们可以深入了解多元线性回归方法的原理和应用。
这种方法可以帮助我们探索多个自变量对一个因变量的影响关系,并且提供了一种有效的方式来预测因变量的值。
同时,我们还可以通过分析参数的置信区间和显著性水平来确定影响因变量的重要自变量。
多元线性回归分析实例及教程
多元线性回归分析实例及教程多元线性回归分析是一种常用的统计方法,用于探索多个自变量与一个因变量之间的关系。
在这个方法中,我们可以利用多个自变量的信息来预测因变量的值。
本文将介绍多元线性回归分析的基本概念、步骤以及一个实际的应用实例。
1.收集数据:首先,我们需要收集包含因变量和多个自变量的数据集。
这些数据可以是实验数据、观察数据或者调查数据。
2.确定回归模型:根据实际问题,我们需要确定一个合适的回归模型。
回归模型是一个数学方程,用于描述自变量与因变量之间的关系。
3.估计回归参数:使用最小二乘法,我们可以估计回归方程的参数。
这些参数代表了自变量对因变量的影响程度。
4.检验回归模型:为了确定回归模型的有效性,我们需要进行各种统计检验,如F检验和t检验。
5.解释结果:最后,我们需要解释回归结果,包括参数的解释和回归方程的解释能力。
应用实例:假设我们想预测一个人的体重(因变量)与他们的年龄、身高、性别(自变量)之间的关系。
我们可以收集一组包含这些变量的数据,并进行多元线性回归分析。
首先,我们需要建立一个回归模型。
在这个例子中,回归模型可以表示为:体重=β0+β1×年龄+β2×身高+β3×性别然后,我们可以使用最小二乘法估计回归方程的参数。
通过最小化残差平方和,我们可以得到每个自变量的参数估计值。
接下来,我们需要进行各种统计检验来验证回归模型的有效性。
例如,我们可以计算F值来检验回归方程的整体拟合优度,t值来检验各个自变量的显著性。
最后,我们可以解释回归结果。
在这个例子中,例如,如果β1的估计值为正且显著,表示年龄与体重呈正相关;如果β2的估计值为正且显著,表示身高与体重呈正相关;如果β3的估计值为正且显著,表示男性的体重较女性重。
总结:多元线性回归分析是一种有用的统计方法,可以用于探索多个自变量与一个因变量之间的关系。
通过收集数据、确定回归模型、估计参数、检验模型和解释结果,我们可以得到有关自变量对因变量影响的重要信息。
(完整word版)多元线性回归模型案例分析
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
—多元线性回归分析案例
t=(2.184942) (3.849318) (12.80847)
(7.130844)
R2 0.963517 R 2 0.959307 F 228.2846 df 26
模型检验:拟合优度可决系数 R2 0.963517 较高, 修正的可决系数 R 2 0.959307 也较高,表明模型 拟合较好。
t0025260684因为各解释变量的参数对应的t统计量均大于0684这说明在5的显著水平下斜率系数均显著不为零表明三大产业的增长率对gdp增长都有显著影响
多元线性回归分析 案例
目录
• 1.建立模型 • 2.模型参数估计 • 3.检验 • 4.预测 • 5.软件操作
1.建立模型
考察三大产业的增长对我国经济增长 的贡献
F检验: 针对H0: b1=b2=b3=0
F 228.2846
给定 0.05,得临界值F0.0(5 k,n k 1) F0.05(3,26) 2.98 由于228.2846>2.98,故拒绝H0 回归方程是显著的。
t检验: 给定 0.05,查自由度t分布表得:t0.025(26)=0.684 因为各解释变量的参数对应的t统计量均大于0.684, 这说明在5%的显著水平下,斜率系数均显著不为零, 表明三大产业的增长率对GDP增长都有显著影响。
8.3
2.8
8.4
10.3
1987 11.6
4.7
13.7
14.4 2002
9.1
2.9
9.8
10.4
1988 11.3
2.5
14.5
13.2 2003 10.0
2.5
—多元线性回归分析案例
—多元线性回归分析案例多元线性回归分析是一种广泛使用的统计分析方法,用于研究多个自变量对一个因变量的影响程度。
在实际应用中,多元线性回归可以帮助我们理解变量之间的相互关系,并预测因变量的数值。
下面我们将以一个实际案例来介绍多元线性回归分析的应用。
假设我们是一家电子产品制造商,我们想研究影响手机销量的因素,并尝试通过多元线性回归模型来预测手机的销量。
我们选择了三个自变量作为影响因素:广告投入、价格和市场份额。
我们收集了一段时间内的数据,包括这三个因素以及对应的手机销量。
现在我们将利用这些数据来进行多元线性回归分析。
首先,我们需要将数据进行预处理和清洗。
我们检查数据的完整性和准确性,并去除可能存在的异常值和缺失值。
然后,我们对数据进行描述性统计分析,以了解数据的整体情况和变量之间的关系。
接下来,我们将建立多元线性回归模型。
我们将销量作为因变量,而广告投入、价格和市场份额作为自变量。
通过引入这些自变量,我们可以预测手机销量,并分析它们对销量的影响程度。
为了进行回归分析,我们需要估计模型的系数。
这可以通过最小二乘法来实现,该方法将使得模型的预测结果与实际观测值之间的残差平方和最小化。
接下来,我们将进行统计检验,以确定自变量对因变量的显著影响。
常见的统计指标包括回归系数的显著性水平、t值和p值。
在我们的案例中,假设多元线性回归模型的方程为:销量=β0+β1×广告投入+β2×价格+β3×市场份额+ε。
其中,β0、β1、β2和β3为回归系数,ε为误差项。
完成回归分析后,我们可以进行模型的诊断和评估。
我们可以检查模型的残差是否呈正态分布,以及模型的拟合程度如何。
此外,我们还可以通过交叉验证等方法评估模型的准确性和可靠性。
最后,我们可以利用训练好的多元线性回归模型来进行预测。
通过输入新的广告投入、价格和市场份额的数值,我们可以预测手机的销量,并根据预测结果制定相应的市场策略。
综上所述,多元线性回归分析是一种强大的统计工具,可用于分析多个自变量对一个因变量的影响。
多元线性回归模型案例分析报告
多元线性回归模型案例分析报告多元线性回归模型是一种用于预测和建立因变量和多个自变量之间关系的统计方法。
它通过拟合一个线性方程,找到使得回归方程和实际观测值之间误差最小的系数。
本报告将以一个实际案例为例,对多元线性回归模型进行案例分析。
案例背景:公司是一家在线教育平台,希望通过多元线性回归模型来预测学生的学习时长,并找出对学习时长影响最大的因素。
为了进行分析,该公司收集了一些与学习时长相关的数据,包括学生的个人信息(性别、年龄、学历)、学习环境(家乡、宿舍)、学习资源(网络速度、学习材料)以及学习动力(学习目标、学习习惯)等多个自变量。
数据分析方法:通过建立多元线性回归模型,我们可以找到与学习时长最相关的因素,并预测学生的学习时长。
首先,我们将根据实际情况对数据进行预处理,包括数据清洗、过滤异常值等。
然后,我们使用逐步回归方法,通过逐步添加和删除自变量来筛选最佳模型。
最后,我们使用已选定的自变量建立多元线性回归模型,并进行系数估计和显著性检验。
案例分析结果:经过数据分析和模型建立,我们得到了如下的多元线性回归模型:学习时长=0.5*年龄+0.2*学历+0.3*学习资源+0.4*学习习惯对于系数估计,我们发现年龄、学历、学习资源和学习习惯对于学习时长均有正向影响,即随着这些变量的增加,学习时长也会增加。
其中,年龄和学习资源的影响较大,学历和学习习惯的影响较小。
在显著性检验中,我们发现该模型的拟合度较好,因为相关自变量的p值均小于0.05,表明它们对学习时长的影响具有统计学意义。
案例启示:本案例的分析结果为在线教育平台提供了重要的参考。
公司可以针对年龄较大、学历高、学习资源丰富和有良好学习习惯的学生,提供个性化的学习服务和辅导。
同时,公司也可以通过提供更好的学习资源和培养良好的学习习惯,来提升学生的学习时长和学习效果。
总结:多元线性回归模型在实际应用中具有广泛的应用价值。
通过对因变量和多个自变量之间的关系进行建模和分析,我们可以找到相关影响因素,并预测因变量的取值。
多元线性回归实例分析
SPSS返回多元线性返回模型案例剖析!(一)之阳早格格创做多元线性返回,主假如钻研一个果变量与多个自变量之间的相闭闭系,跟一元返回本理好已几,辨别正在于做用果素(自变量)更多些而已,比圆:一元线性返回圆程为:毫无疑问,多元线性返回圆程该当为:上图中的 x1, x2, xp分别代表“自变量”Xp停止,代表有P个自变量,如果有“N组样本,那么那个多元线性返回,将会组成一个矩阵,如下图所示:那么,多元线性返回圆程矩阵形式为:其中:代表随机缺面,其中随机缺面分为:可阐明的缺面战不可阐明的缺面,随机缺面必须谦脚以下四个条件,多元线性圆程才蓄意思(一元线性圆程也一般)1:服成正太分散,即指:随机缺面必须是服成正太分别的随机变量.2:无偏偏性假设,即指:憧憬值为03:共共圆好性假设,即指,所有的随机缺面变量圆好皆相等4:独力性假设,即指:所有的随机缺面变量皆相互独力,不妨用协圆好阐明.即日跟大家所有计划一下,SPSS多元线性返回的简曲支配历程,底下以教程教程数据为例,分解汽车特性与汽车出卖量之间的闭系.通太过解汽车特性跟汽车出卖量的闭系,建坐拟合多元线性返回模型.数据如下图所示:面打“分解”——返回——线性——加进如下图所示的界里:将“出卖量”动做“果变量”拖进果变量框内,将“车少,车宽,耗油率,车洁沉等10个自变量拖进自变量框内,如上图所示,正在“要收”中间,采用“逐步”,天然,您也不妨采用其余的办法,如果您采用“加进”默认的办法,正在分解停止中,将会得到如下图所示的停止:(所有的自变量,皆市强止加进)如果您采用“逐步”那个要收,将会得到如下图所示的停止:(将会根据预先设定的“F统计量的概率值举止筛选,最先加进返回圆程的“自变量”该当是跟“果变量”闭系最为稀切,孝敬最大的,如下图不妨瞅出,车的代价战车轴跟果变量闭系最为稀切,切合推断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“采用变量(E)" 框内,尔并不输进数据,如果您需要对于某个“自变量”举止条件筛选,不妨将那个自变量,移进“采用变量框”内,有一个前提便是:该变量从已正在另一个目标列表中出现!,再面打“准则”设定相映的“筛选条件”即可,如下图所示:面打“统计量”弹出如下所示的框,如下所示:正在“返回系数”底下勾选“预计,正在左侧勾选”模型拟合度“ 战”共线性诊疗“ 二个选项,再勾选“个案诊疗”再面打“离群值”普遍默认值为“3”,(设定非常十分值的依据,惟有当残好超出3倍尺度好的瞅测才会被当搞非常十分值)面打继承.提示:共线性考验,如果有二个大概二个以上的自变量之间存留线性相闭闭系,便会爆收多沉共线性局里.那时间,用最小二乘法预计的模型参数便会不宁静,返回系数的预计值很简单引起误导大概者引导过失的论断.所以,需要勾选“共线性诊疗”去搞推断通过容许度不妨预计共线性的存留与可?容许度TOL=1RI仄圆大概圆好伸展果子(VIF): VIF=1/1RI仄圆,其中RI仄圆是用其余自变量预测第I个变量的复相闭系数,隐然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其余自变量之间存留共线性的大概性越大.提供三种处理要收:1:从有共线性问题的变量里简略不要害的变量2:减少样本量大概沉新抽与样本.3:采与其余要收拟合模型,如收返回法,逐步返回法,主身分分解法.再面打“画造”选项,如下所示:上图中:DEPENDENT( 果变量) ZPRED(尺度化预测值) ZRESID(尺度化残好) DRESID(剔除残好) ADJPRED(建正后预测值) SRSID(教死化残好) SDRESID(教死化剔除残好)普遍咱们大部分以“自变量”动做 X 轴,用“残好”动做Y 轴,然而是,也不要忽略特殊情况,那里咱们以“ZPRED (尺度化预测值)动做"x" 轴,分别用“SDRESID(血死化剔除残好)”战“ZRESID(尺度化残好)动做Y轴,分别动做二组画图变量.再面打”保存“按钮,加进如下界里:如上图所示:勾选“距离”底下的“cook距离”选项(cook 距离,主假如指:把一个个案从预计返回系数的样本中剔除时所引起的残好大小,cook距离越大,标明该个案对于返回系数的做用也越大)正在“预测区间”勾选“均值”战“单值” 面打“继承”按钮,再面打“决定按钮,得到如下所示的分解停止:(此分解停止,采与的是“逐步法”得到的停止)SPSS—返回—多元线性返回停止分解(二),迩去背去很闲,公司的潮起潮降,便佳比人死的跌岩起伏,眼瞅着一步步走背衰强,却无计可施,也许要教习“步步惊心”内里“四阿哥”的座左铭:“止到火贫处”,”坐瞅云起时“.交着上一期的“多元线性返回剖析”内里的真质,上一次,不写停止分解,那次补上,停止分解如下所示:停止分解1:由于启初采用的是“逐步”法,逐步法是“背前”战“背后”的分离体,从停止不妨瞅出,最先加进“线性返回模型”的是“price in thousands"建坐了模型1,紧随其后的是“Wheelbase"建坐了模型2,所以,模型中有此要收有个概率值,当小于等于0.05时,加进“线性返回模型”(最先加进模型的,相闭性最强,闭系最为稀切)当大于等0.1时,从“线性模型中”剔除停止分解:1:从“模型汇总”中不妨瞅出,有二个模型,(模型1战模型2)从R2 拟合劣度去瞅,模型2的拟合劣度明隐比模型1要佳一些(0.422>0.300)2:从“Anova"表中,不妨瞅出“模型2”中的“返回仄圆战”为115.311,“残好仄圆战”为153.072,由于总仄圆战=返回仄圆战+残好仄圆战,由于残好仄圆战(即指随即缺面,不可阐明的缺面)由于“返回仄圆战”跟“残好仄圆战”险些交近,所有,此线性返回模型只阐明了总仄圆战的一半,3:根据后里的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引进,其隐著性概率值均近小于0.01,所以不妨隐著天中断总体返回系数为0的本假设,通过ANOVA圆好分解表不妨瞅出“出卖量”与“代价”战“轴距”之间存留着线性闭系,至于线性闭系的强强,需要进一步举止分解.停止分解:1:从“已排除的变量”表中,不妨瞅出:“模型2”中各变量的T检的概率值皆大于“0.05”所以,不克不迭够引进“线性返回模型”必须剔除.从“系数a” 表中不妨瞅出:1:多元线性返回圆程该当为:出卖量=1.8220.055*代价+0.061*轴距然而是,由于常数项的sig为(0.116>0.1) 所以常数项不具备隐著性,所以,咱们再瞅后里的“尺度系数”,正在尺度系数一列中,不妨瞅到“常数项”不数值,已经被剔除所以:尺度化的返回圆程为:出卖量=0.59*代价+0.356*轴距2:再瞅末尾一列“共线性统计量”,其中“代价”战“轴距”二个容好战“vif皆一般,而且VIF皆为1.012,且皆小于5,所以二个自变量之间不出现共线性,容忍度战伸展果子是互为倒数闭系,容忍度越小,伸展果子越大,爆收共线性的大概性也越大从“共线性诊疗”表中不妨瞅出:1:共线性诊疗采与的是“特性值”的办法,特性值主要用去描画自变量的圆好,诊疗自变量间是可存留较强多沉共线性的另一种要收是利用主身分分解法,基础思维是:如果自变量间真真存留较强的相闭闭系,那么它们之间必定存留疑息沉叠,于是便不妨从那些自变量中提与出既能反应自变量疑息(圆好),而且有相互独力的果素(身分)去,该要收主要从自变量间的相闭系数矩阵出收,预计相闭系数矩阵的特性值,得到相映的若搞身分.条件索引=最大特性值/相对于特性值再举止启圆(即特性值2的条件索引为 2.847/0.150 再启圆=4.351)尺度化后,圆好为1,每一个特性值皆不妨描画某自变量的一定比率,所有的特性值能将描画某自变量疑息的局部,于是,咱们不妨得到以下论断:不妨瞅出:不一个特性值,既不妨阐明“代价”又不妨阐明“轴距”所以“代价”战“轴距”之间存留共线性较强.前里的论断进一步得到了论证.(残好统计量的表中数值怎么去的,那个预计历程,尔便不写了)从上图不妨得知:大部分自变量的残好皆切合正太分散,惟有一,二处场合稍有偏偏离,如图上的(5到3天区的)处理偏偏离状态。
多元线性回归模型的案例分析
1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。
年份 Y/千克X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克)1980 2.78 397 4.22 5。
07 7。
83 1992 4。
18 911 3。
97 7。
91 11。
40 1981 2。
99 413 3.81 5.20 7.921993 4。
04 931 5。
219.54 12。
41 1982 2。
98 4394.035。
40 7。
92 1994 4.07 1021 4。
89 9。
42 12。
76 1983 3。
08 459 3。
95 5.53 7。
92 1995 4.01 1165 5.83 12.35 14.29 1984 3。
12 492 3。
73 5.47 7.74 1996 4。
27 1349 5.79 12。
99 14.36 1985 3.33 5283.816.37 8.02 1997 4.41 1449 5。
67 11。
76 13。
921986 3.56 560 3。
93 6.98 8.04 1998 4.67 15756.3713.09 16。
55 1987 3.64 624 3。
78 6.59 8.39 1999 5.06 1759 6。
16 12。
98 20.33 1988 3.67 666 3.84 6.45 8。
55 2000 5.01 1994 5。
89 12。
80 21。
961989 3。
84 717 4。
017。
00 9.37 2001 5.17 2258 6。
6414。
10 22.16 1990 4。
04 768 3.86 7。
32 10。
61 2002 5。
29 2478 7。
0416.8223.261991 4。
03 8433.986.7810.48(1) 求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++(2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。
多元线性回归实例分析
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于,当概率值大于等于时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元线性回归模型案例
多元线性回归模型案例多元线性回归模型是一种用于分析多个自变量和一个因变量之间关系的统计方法。
它可以帮助我们理解不同自变量对因变量的影响程度,以及它们之间的相互关系。
在本文中,我们将通过一个实际案例来演示多元线性回归模型的应用。
假设我们想要研究某个地区的房屋价格与房屋面积、房间数量和地理位置之间的关系。
我们收集了一些数据,包括不同房屋的面积、房间数量、地理位置和售价。
我们希望利用这些数据建立一个多元线性回归模型,以预测房屋价格。
首先,我们需要对数据进行预处理。
这包括检查数据是否存在缺失值、异常值或离群点。
如果发现这些问题,我们需要进行相应的处理,例如删除缺失值、调整异常值或使用合适的方法进行离群点处理。
在数据预处理完成后,我们可以开始建立多元线性回归模型。
建立多元线性回归模型的第一步是选择自变量。
在本例中,我们选择房屋面积、房间数量和地理位置作为自变量,售价作为因变量。
接下来,我们需要检验自变量之间是否存在多重共线性。
如果存在多重共线性,我们需要进行相应的处理,例如删除一些自变量或使用主成分分析等方法进行处理。
一旦确定了自变量,我们可以利用最小二乘法来估计回归系数。
最小二乘法是一种常用的估计方法,它可以帮助我们找到使得观测数据和模型预测值之间残差平方和最小的回归系数。
通过最小二乘法,我们可以得到每个自变量的回归系数,从而建立多元线性回归模型。
建立好多元线性回归模型后,我们需要对模型进行检验。
这包括检验模型的拟合优度、残差的正态性和独立性等。
如果模型通过了检验,我们就可以利用该模型进行预测和推断。
例如,我们可以利用模型来预测某个房屋的售价,或者利用模型来推断不同自变量对售价的影响程度。
在实际应用中,多元线性回归模型可以帮助我们理解复杂的数据关系,进行预测和推断。
然而,我们也需要注意模型的局限性和假设条件。
例如,多元线性回归模型假设自变量和因变量之间是线性关系,如果实际情况并非如此,我们需要考虑使用其他模型进行分析。
多元线性回归方法及其应用实例
多元线性回归方法及其应用实例多元线性回归方法(Multiple Linear Regression)是一种广泛应用于统计学和机器学习领域的回归分析方法,用于研究自变量与因变量之间的关系。
与简单线性回归不同,多元线性回归允许同时考虑多个自变量对因变量的影响。
多元线性回归建立了自变量与因变量之间的线性关系模型,通过最小二乘法估计回归系数,从而预测因变量的值。
其数学表达式为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,Xi是自变量,βi是回归系数,ε是误差项。
1.房价预测:使用多个自变量(如房屋面积、地理位置、房间数量等)来预测房价。
通过建立多元线性回归模型,可以估计出各个自变量对房价的影响权重,从而帮助房产中介或购房者进行房价预测和定价。
2.营销分析:通过分析多个自变量(如广告投入、促销活动、客户特征等)与销售额之间的关系,可以帮助企业制定更有效的营销策略。
多元线性回归可以用于估计各个自变量对销售额的影响程度,并进行优化。
3.股票分析:通过研究多个自变量(如市盈率、市净率、经济指标等)与股票收益率之间的关系,可以辅助投资者进行股票选择和投资决策。
多元线性回归可以用于构建股票收益率的预测模型,并评估不同自变量对收益率的贡献程度。
4.生理学研究:多元线性回归可应用于生理学领域,研究多个自变量(如年龄、性别、体重等)对生理指标(如心率、血压等)的影响。
通过建立回归模型,可以探索不同因素对生理指标的影响,并确定其重要性。
5.经济增长预测:通过多元线性回归,可以将多个自变量(如人均GDP、人口增长率、外商直接投资等)与经济增长率进行建模。
这有助于政府和决策者了解各个因素对经济发展的影响力,从而制定相关政策。
在实际应用中,多元线性回归方法有时也会面临一些挑战,例如共线性(多个自变量之间存在高度相关性)、异方差性(误差项方差不恒定)、自相关(误差项之间存在相关性)等问题。
为解决这些问题,研究人员提出了一些改进和扩展的方法,如岭回归、Lasso回归等。
多元线性回归分析实例及教程
多元线性回归分析预测法概述在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。
而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。
例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。
这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。
多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。
当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
[编辑]多元线性回归的计算模型[1]一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。
设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:其中,b0为常数项,为回归系数,b1为固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y = b0 + b1x1 + b2x2 + e建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种非常实用且强大的工具,它可以帮助我们探究多个自变量与一个因变量之间的线性关系。
下面,我将为您详细介绍使用 SPSS 进行多元线性回归分析的实例操作步骤。
首先,打开 SPSS 软件,我们需要准备好数据。
假设我们有一组关于房屋价格的数据集,其中包含房屋面积、房间数量、地理位置等自变量,以及房屋的销售价格作为因变量。
在 SPSS 中,通过“文件”菜单中的“打开”选项,找到并导入我们的数据文件。
确保数据的格式正确,并且变量的名称和类型都符合我们的预期。
接下来,选择“分析”菜单中的“回归”,然后点击“线性”选项,这就开启了多元线性回归分析的设置窗口。
在“线性回归”窗口中,将我们的因变量(房屋销售价格)放入“因变量”框中,将自变量(房屋面积、房间数量、地理位置等)放入“自变量”框中。
然后,我们可以点击“统计”按钮,在弹出的“线性回归:统计”窗口中,根据我们的需求选择合适的统计量。
通常,我们会勾选“估计”“置信区间”“模型拟合度”等选项,以获取回归系数的估计值、置信区间以及模型的拟合优度等信息。
接着,点击“图”按钮,在“线性回归:图”窗口中,我们可以选择绘制一些有助于分析的图形,比如“标准化残差图”,用于检查残差的正态性;“残差与预测值”图,用于观察残差的分布是否均匀。
再点击“保存”按钮,在这里我们可以选择保存一些额外的变量,比如预测值、残差等,以便后续的进一步分析。
设置完成后,点击“确定”按钮,SPSS 就会开始进行多元线性回归分析,并输出相应的结果。
结果中首先会给出模型的汇总信息,包括 R 方(决定系数)、调整后的 R 方等。
R 方表示模型对因变量的解释程度,越接近 1 说明模型的拟合效果越好。
调整后的 R 方则考虑了自变量的个数,对模型的拟合优度进行了更合理的修正。
接着是方差分析表,用于检验整个回归模型是否显著。
如果 F 值对应的显著性水平小于设定的阈值(通常为 005),则说明回归模型是显著的,即自变量整体上对因变量有显著的影响。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学研究领域。
其中,多元线性回归分析是SPSS中常用的一种统计方法,用于探讨多个自变量与一个因变量之间的关系。
本文将演示SPSS中进行多元线性回归分析的操作步骤,帮助读者了解和掌握该方法。
一、数据准备在进行多元线性回归分析之前,首先需要准备好数据。
数据应包含一个或多个因变量和多个自变量,以及相应的观测值。
这些数据可以通过调查问卷、实验设计、观察等方式获得。
确保数据的准确性和完整性对于获得可靠的分析结果至关重要。
二、打开SPSS软件并导入数据1. 启动SPSS软件,点击菜单栏中的“文件(File)”选项;2. 在下拉菜单中选择“打开(Open)”选项;3. 导航到保存数据的文件位置,并选择要导入的数据文件;4. 确保所选的文件类型与数据文件的格式相匹配,点击“打开”按钮;5. 数据文件将被导入到SPSS软件中,显示在数据编辑器窗口中。
三、创建多元线性回归模型1. 点击菜单栏中的“分析(Analyse)”选项;2. 在下拉菜单中选择“回归(Regression)”选项;3. 在弹出的子菜单中选择“线性(Linear)”选项;4. 在“因变量”框中,选中要作为因变量的变量;5. 在“自变量”框中,选中要作为自变量的变量;6. 点击“添加(Add)”按钮,将自变量添加到回归模型中;7. 可以通过“移除(Remove)”按钮来删除已添加的自变量;8. 点击“确定(OK)”按钮,创建多元线性回归模型。
四、进行多元线性回归分析1. 多元线性回归模型创建完成后,SPSS将自动进行回归分析并生成结果;2. 回归结果将显示在“回归系数”、“模型总结”和“模型拟合优度”等不同的输出表中;3. “回归系数”表显示各个自变量的回归系数、标准误差、显著性水平等信息;4. “模型总结”表提供模型中方程的相关统计信息,包括R方值、F 统计量等;5. “模型拟合优度”表显示模型的拟合优度指标,如调整后R方、残差平方和等;6. 可以通过菜单栏中的“图形(Graphs)”选项,绘制回归模型的拟合曲线图、残差图等。
多元线性回归模型案例
多元线性回归模型案例多元线性回归是一种常见的统计分析方法,用于建立一个因变量与多个自变量之间的关系模型。
该模型可以帮助我们理解自变量对因变量的影响,并用于预测新数据的因变量取值。
本文将介绍一个实际案例,说明如何使用多元线性回归模型进行分析。
假设我们是一家电商公司,想要探究哪些因素会对在线销售额产生影响。
为了实现这一目标,我们收集了一年内的销售数据,并选取了以下变量作为自变量:1.广告费用:对于每个月,我们记录了投入到在线广告的费用。
2.促销活动:我们将每种促销活动的销售额记录成一个二进制变量,代表该促销活动是否进行。
3.季节性:我们记录了每个月的季节性变量,例如,一年中的第一个季度为1,第二个季度为2,以此类推。
同时,我们将每月的销售额作为因变量。
基于这些数据,我们将应用多元线性回归模型来分析这些自变量对销售额的影响。
首先,我们需要进行数据预处理。
这包括处理缺失值,检查异常值,并将分类变量进行独热编码转换。
我们还可以计算自变量之间的相关性,以了解它们是否具有高度相关性。
如果有,我们可能需要进行变量转换或删除一些自变量。
接下来,我们可以使用多元线性回归模型来建立销售额与自变量之间的关系。
模型可以表示如下:销售额=β₀+β₁×广告费用+β₂×促销活动+β₃×季节性+ɛ其中,β₀,β₁,β₂,β₃是回归系数,ɛ是误差项。
我们的目标是估计这些回归系数,以便预测新数据的销售额。
为了估计这些回归系数,我们可以使用最小二乘法。
最小二乘法的核心思想是最小化残差平方和,即模型预测值与实际值之间的差异。
通过最小化这个差异,我们可以找到使模型最拟合数据的回归系数。
在我们的案例中,我们可以使用各种统计软件或编程语言(如R或Python)来实现多元线性回归,并计算回归系数的估计值。
这些软件和语言通常具有内置的回归函数,只需提供数据和自变量就可以进行回归分析。
一旦我们获得了估计的回归系数,我们可以进行模型的解释和推断。
多元线性回归模型案例
多元线性回归模型案例多元线性回归模型是统计学中常用的一种回归分析方法,它可以用来研究多个自变量对因变量的影响。
在实际应用中,多元线性回归模型可以帮助我们理解和预测各种复杂的现象,比如销售额和广告投入、学生成绩和学习时间等等。
接下来,我们将通过一个实际的案例来详细介绍多元线性回归模型的应用。
案例背景:假设我们是一家电子产品公司的市场营销团队,我们想要了解广告投入、产品定价和促销活动对销售额的影响。
为了实现这个目标,我们收集了一段时间内的销售数据,并且记录了每个月的广告投入、产品定价和促销活动的情况。
现在,我们希望利用这些数据来建立一个多元线性回归模型,从而分析这些因素对销售额的影响。
数据收集:首先,我们需要收集相关的数据。
在这个案例中,我们收集了一段时间内的销售额、广告投入、产品定价和促销活动的数据。
这些数据可以帮助我们建立多元线性回归模型,并且进行相关的分析。
建立模型:接下来,我们将利用收集到的数据来建立多元线性回归模型。
在多元线性回归模型中,我们将销售额作为因变量,而广告投入、产品定价和促销活动作为自变量。
通过建立这个模型,我们可以分析这些因素对销售额的影响,并且进行预测。
模型分析:一旦建立了多元线性回归模型,我们就可以进行相关的分析。
通过分析模型的系数、拟合优度等指标,我们可以了解每个自变量对销售额的影响程度,以及整个模型的拟合情况。
这些分析结果可以帮助我们更好地理解销售额的变化规律,以及各个因素之间的关系。
模型预测:除了分析模型的影响,多元线性回归模型还可以用来进行预测。
通过输入不同的自变量数值,我们可以预测对应的销售额。
这样的预测结果可以帮助我们制定更加合理的市场营销策略,从而提高销售业绩。
模型评估:最后,我们需要对建立的多元线性回归模型进行评估。
通过对模型的残差、预测误差等进行分析,我们可以了解模型的准确性和可靠性。
如果模型的预测效果不理想,我们还可以通过改进模型结构、增加自变量等方式来提高模型的预测能力。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析的领域中,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
下面,我们将通过一个具体的实例来详细介绍 SPSS 中多元线性回归分析的操作步骤。
假设我们正在研究一个人的体重与身高、年龄和每日运动量之间的关系。
首先,打开 SPSS 软件,并将我们收集到的数据输入或导入到软件中。
数据准备阶段是至关重要的。
确保每个变量的数据格式正确,没有缺失值或异常值。
如果存在缺失值,可以根据具体情况选择合适的处理方法,比如删除包含缺失值的样本,或者使用均值、中位数等进行填充。
对于异常值,需要仔细判断其是否为真实的数据错误,如果是,则需要进行修正或删除。
接下来,点击“分析”菜单,选择“回归”,然后再选择“线性”。
在弹出的“线性回归”对话框中,将我们的因变量(体重)选入“因变量”框中,将自变量(身高、年龄、每日运动量)选入“自变量”框中。
然后,我们可以在“方法”选项中选择合适的回归方法。
SPSS 提供了几种常见的方法,如“进入”“逐步”“向后”“向前”等。
“进入”方法会将所有自变量一次性纳入模型;“逐步”方法则会根据一定的准则,逐步选择对因变量有显著影响的自变量进入模型;“向后”和“向前”方法则是基于特定的规则,逐步剔除或纳入自变量。
在这个例子中,我们先选择“进入”方法,以便直观地看到所有自变量对因变量的影响。
接下来,点击“统计”按钮。
在弹出的“线性回归:统计”对话框中,我们通常会勾选“描述性”,以获取自变量和因变量的基本统计信息,如均值、标准差等;勾选“共线性诊断”,用于检查自变量之间是否存在严重的多重共线性问题;勾选“模型拟合度”,以评估回归模型的拟合效果。
然后,点击“绘制”按钮。
在“线性回归:图”对话框中,我们可以选择绘制一些有助于分析的图形,比如“正态概率图”,用于检验残差是否服从正态分布;“残差图”,用于观察残差的分布情况,判断模型是否满足线性回归的假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS--回归-多元线性回归模型案例解析!(一)
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:
毫无疑问,多元线性回归方程应该为:
上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
那么,多元线性回归方程矩阵形式为:
其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为0
3:同共方差性假设,即指,所有的随机误差变量方差都相等
4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:
点击“分析”——回归——线性——进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10
个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)
如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)
“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:
点击“统计量”弹出如下所示的框,如下所示:
在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
提示:
共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。
这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。
所以,需要勾选“共线性诊断”来做判断
通过容许度可以计算共线性的存在与否?容许度TOL=1-RI平方或方差膨胀因子(VIF): VIF=1/1-RI平方,其中RI平方是用其他自变量预测第I个变量的复相关系数,显然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其他自变量之间存在共线性的可能性越大。
提供三种处理方法:
1:从有共线性问题的变量里删除不重要的变量
2:增加样本量或重新抽取样本。
3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。
再点击“绘制”选项,如下所示:
上图中:
DEPENDENT( 因变量) ZPRED(标准化预测值) ZRESID(标准化残差) DRESID(剔除残差) ADJPRED(修正后预测值) SRSID(学生化残差) SDRESID(学生化剔除残差)
一般我们大部分以“自变量”作为 X 轴,用“残差”作为Y轴,但是,也不要忽略特殊情况,这里我们以“ZPRED(标准化预测值)作为"x" 轴,分别用“SDRESID(血生化剔除残差)”和“ZRESID(标准化残差)作为Y轴,分别作为两组绘图变量。
再点击”保存“按钮,进入如下界面:
如上图所示:勾选“距离”下面的“cook距离”选项(cook 距离,主要是指:把一个个案从计算回归系数的样本中剔除时所引起的残差大小,cook距离越大,表明该个案对回归系数的影响也越大)
在“预测区间”勾选“均值”和“单值” 点击“继续”按钮,再点击“确定按钮,得到如下所示的分析结果:(此分析结果,采用的是“逐步法”得到的结果)
SPSS—回归—多元线性回归结果分析(二)
,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:
结果分析1:
由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands" 建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1时,从“线性模型中”剔除
结果分析:
1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些
(0.422>0.300)
2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不
可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,
3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA 方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。
结果分析:
1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。
从“系数a” 表中可以看出:
1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距
但是,由于常数项的sig为(0.116>0.1) 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除
所以:标准化的回归方程为:销售量=-0.59*价格+0.356*轴距
2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和
膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大
从“共线性诊断”表中可以看出:
1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。
从上图可以看出:从自变量相关系数矩阵出发,计算得到了三个特征值(模型2中),最大特征值为2.847,最小特征值为0.003
条件索引=最大特征值/相对特征值再进行开方(即特征值2的条件索引为 2.847/0.150 再开方=4.351)
标准化后,方差为1,每一个特征值都能够刻画某自变量的一定比例,所有的特征值能将刻画某自变量信息的全部,于是,我们可以得到以下结论:
1:价格在方差标准化后,第一个特征值解释了其方差的0.02,第二个特征值解释了0.97,第三个特征值解释了0.00
2:轴距在方差标准化后,第一个特征值解释了其方差的0.00,第二个特征值解释了0.01,第三个特征值解释了0.99
可以看出:没有一个特征值,既能够解释“价格”又能够解释“轴距”所以“价格”和“轴距”之间存在共线性较弱。
前面的结论进一步得到了论证。
(残差统计量的表中数值怎么来的,这个计算过程,我就不写了)
从上图可以得知:大部分自变量的残差都符合正太分布,只有一,两处地方稍有偏离,如图上的(-5到-3区域的)处理偏离状态。