2013年高考文科数学真题及答案全国卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考文科数学真题及答案全国卷1
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2
,n ∈A },则A ∩B =( ).
A .{1,4}
B .{2,3}
C .{9,16}
D .{1,2} 【答案】A
【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2
,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.
2.(2013课标全国Ⅰ,文2)
212i
1i +(-)=( ).
A.
B .1
1+i 2
- C . D .
【答案】B
【考点】本题主要考查复数的基本运算。
【解析】
2
12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1
1+i 2
-.
3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).
A .12
B .13
C .14
D .16
【答案】B
【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为
13
. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b
-(a >0,b >0)的离心率为5
2,则C 的渐近线方程
为( ).
A .
B .
C .1
2
y x =±
D .
【答案】C
【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5
e =5c a =2254
c a =.
∵c 2
=a 2
+b 2
,∴2214b a =.∴1
2
b a =.
∵双曲线的渐近线方程为b
y x a
=±,
∴渐近线方程为1
2
y x =±.故选C.
5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2
,则下列命题中为真命题的是( ).
A .p ∧q
B .⌝p ∧q
C .p ∧⌝q
D .⌝p ∧⌝q 【答案】B
【考点】本题主要考查常用逻辑用语等基本知识。
【解析】由20
=30
知,p 为假命题.令h (x )=x 3
-1+x 2
, ∵h (0)=-1<0,h (1)=1>0, ∴x 3
-1+x 2
=0在(0,1)内有解.
∴?x ∈R ,x 3
=1-x 2
,即命题q 为真命题.由此可知只有⌝p
∧q 为真命题.故选B.
6.(2013课标全国Ⅰ,文6)设首项为1,公比为
2
3
的等比数列{a n }的前n 项和为S n ,则( ). A . B .
C .
D .
【答案】D
【考点】本题主要考查等比数列前n 项和公式。
【解析】11211321113
n
n
n n a a a q a q S q q --(-)===
---=3-2a n ,故选D.
7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3], 则输出的s 属于( ).
A .[-3,4]
B .[-5,2]
C .[-4,3]
D .[-2,5] 【答案】A
【考点】本题主要考查程序框图的认识、分段函数求值域及水性结合的思想。
【解析】当-1≤t <1时,s =3t ,则s ∈[-3,3). 当1≤t ≤3时,s =4t -t 2
. ∵该函数的对称轴为t =2,
∴该函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s max =4,s min =3. ∴s ∈[3,4].
综上知s ∈[-3,4].故选A.
8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2
=的焦点,P 为C 上一点,若|PF |=,
则△POF 的面积为( ).
A .2
B ...4 【答案】C
【考点】本题主要考查抛物线的定义、数形结合思想及运算能力。
【解析】利用|PF |=P x =x P =
∴y P =±∴S △POF =
1
2
|OF |·|y P |=故选C.
9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).
【答案】C
【考点】本题主要考查数形结合思想及对问题的分析判断能力。
【解析】由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2
⎛⎤ ⎥⎝
⎦
时,f (x )>0,排除A.
当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2
x +cos x +1.令f ′(x )=0,得2π3
x =. 故极值点为2
π3
x =
,可排除D ,故选C.
10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2
A +cos 2A =0,
a =7,c =6,则
b =( ).
A .10
B .9
C .8
D .5 【答案】D
【考点】本题主要考查三角函数的化简,考查利用余弦定理解三角形以及方程思想。
【解析】由23cos 2
A +cos 2A =0,得cos 2
A =
125.∵A ∈π0,2⎛⎫
⎪⎝⎭
,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或13
5
b =-(舍).
故选D.
11.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).
A .16+8π
B .8+8π
C .16+16π
D .8+16π 【答案】A
【考点】本题主要考查三视图。
简单组合体的体积。
【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体.
V 半圆柱=
12
π×22
×4=8π, V 长方体=4×2×2=16.
所以所求体积为16+8π.故选A.
12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,
ln(1),0.
x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是( ).
A .(-∞,0]
B .(-∞,1]
C .[-2,1]
D .[-2,0] 【答案】D
【考点】本题主要考查数形结合思想、函数与方程思想、利用导数研究函数间关系,对分析能力有较高要求。
【解析】可画出|f (x )|的图象如图所示.
当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立. 若x ≤0,则以y =ax 与y =|-x 2
+2x |相切为界限, 由2
,2,
y ax y x x =⎧⎨
=-⎩得x 2
-(a +2)x =0. ∵Δ=(a +2)2
=0,∴a =-2. ∴a ∈[-2,0].故选D.
第Ⅱ卷(选择题 共90分)
二、填空题:本大题共4小题,每小题5分.
13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______. 【答案】2
【考点】本题主要考查向量的基本知识及运算。
【解析】∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122
⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0,
即t a ·b +(1-t )b 2
=0.
∴
1
2
t +1-t =0. ∴t =2.
14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件
13,
10,x x y ≤≤⎧⎨
-≤-≤⎩
则z =2x -y 的最大值为______. 【答案】3
【考点】本题主要考查简单的线性规划问题。
【解析】画出可行域如图所示.
画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3. 15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,
α截球O 所得截面的面积为π,则球O 的表面积为______.
【答案】
9
π2
【考点】本题主要考查球及基本几何体的基本知识。
【解析】如图,
设球O 的半径为R , 则AH =
23
R , OH =
3
R . 又∵π·EH 2
=π,∴EH =1.
∵在Rt△OEH 中,R 2=2
2+13R ⎛⎫ ⎪⎝⎭
,∴R 2
=98.
∴S 球=4πR 2
=9π2
.
16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.
【答案】5
-
【考点】本题主要考查三角函数的化简与求值。
【解析】∵f (x )=sin x -2cos x sin(x -φ),
其中sin φ=
5,cos φ=5. 当x -φ=2k π+π
2(k ∈Z )时,f (x )取最大值.
即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π
2
+φ(k ∈Z ).
∴cos θ=πcos 2ϕ⎛⎫
+ ⎪⎝⎭
=-sin φ=.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.
(1)求{a n }的通项公式;
(2)求数列21211
n n a a -+⎧
⎫⎨
⎬⎩⎭
的前n 项和.
【考点】本题主要考查等差数列的基本知识,特殊数列的求和等。
【解析】(1)设{a n }的公差为d ,则S n =1(1)
2
n n na d -+. 由已知可得
解得a 1=1,d =-1.
故{a n }的通项公式为a n =2-n . (2)由(1)知
21211n n a a -+=1111321222321n n n n ⎛⎫
=- ⎪(-)(-)--⎝⎭
,
从而数列21211
n n a a -+⎧
⎫⎨
⎬⎩⎭
的前n 项和为
111111121113
2321n n ⎛⎫
-+-++
- ⎪---⎝⎭
=12n n
-.
18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间:
服用B 药的20位患者日平均增加的睡眠时间:
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好 (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好
【考点】本题主要考查统计的基本知识。
茎叶图等。
【解析】(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得
x =
1
20
+++++++++++++++++++ =,
y =
1
20
+++++++++++++++++++ =.
由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:
从以上茎叶图可以看出,A 药疗效的试验结果有
710的叶集中在茎2,3上,而B 药疗效的试验结果有710
的叶集中在茎0,1上,由此可看出A 药的疗效更好.
19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.
(1)证明:AB ⊥A 1C ;
(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.
【考点】本题主要考查线面垂直问题,考查空间想象能力、逻辑思维能力、运算能力及转化能力。
【解析】
(1)取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .
由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ?平面OA 1C ,故AB ⊥A 1C .
(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,
所以OC =OA 1
又A 1C ,则A 1C 2=OC 2+2
1OA ,故OA 1⊥OC .
因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.
又△ABC 的面积S △ABC ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.
20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f (x )=e x
(ax +b )-x 2
-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;
(2)讨论f (x )的单调性,并求f (x )的极大值.
【考点】本题主要考查导数的基本知识,利用导数判断函数单调性、求极值。
【解析】(1)f ′(x )=e x
(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8.从而a =4,b =4. (2)由(1)知,f (x )=4e x
(x +1)-x 2
-4x ,
f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x ⎛⎫-
⎪⎝⎭
. 令f ′(x )=0得,x =-ln 2或x =-2.
从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.
故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2
).
21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2
=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;
(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.
【考点】本题主要考查直线、圆、椭圆结合的解析几何的综合问题,考查考生的分析能力和计算能力。
【解析】由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .
(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.
由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2
的椭圆(左顶点除外),
其方程为22
=143
x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2
+y 2
=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |
=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则
1
||||QP R
QM r =,可求得
Q (-4,0),所以可设l :y =k (x +4).
由l 与圆M
=1,解得k
=
当k =2
时,将22y x =+代入22=143
x y +,并整理得7x 2+8x -8=0,解得x 1,2=
462-±, 所以|AB |=2
1k +|x 2-x 1|=187
.
当k =24-时,由图形的对称性可知|AB |=18
7
.
综上,|AB |=23或|AB |=18
7
.
请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲
如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .
(Ⅰ)证明:DB=DC; (Ⅱ)设圆的半径为1,BC=
,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
【考点】本题主要考查几何证明中的圆的集合性质、切线的相关定理与结论的应用。
【解析】 (1)连结DE ,交BC 于点G .
由弦切角定理得,∠ABE =∠BCE .
而∠ABE =∠CBE , 故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,
所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .
(2)由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线, 所以BG 3设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,
故Rt△BCF 3
23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为
45cos ,
55sin x t y t
=+⎧⎨
=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程;
(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).
【考点】本题主要考查参数方程、极坐标方程、普通方程的互化。
【解析】(1)将45cos ,55sin x t y t
=+⎧⎨
=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2
=25,
即C 1:x 2
+y 2
-8x -10y +16=0.
将cos ,sin x y ρθρθ
=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为
ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C 2的普通方程为x 2
+y 2
-2y =0.
由2222
810160,20x y x y x y y ⎧+--+=⎨+-=⎩
解得1,1x y =⎧⎨=⎩
或0,2.x y =⎧⎨=⎩
所以C 1与C 2
交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭
. 24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.
(1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ⎡⎫
-
⎪⎢⎣⎭
时,f (x )≤g (x ),求a 的取值范围. 【考点】本题主要考查绝对值不等式的解法,分段函数等,考查考生分析、解决问题的能力。
【解析】(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,
则y =15,,212,1,236, 1.x x x x x x ⎧
-<⎪⎪
⎪
--≤≤⎨⎪
->⎪⎪⎩
其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.
所以原不等式的解集是{x |0<x <2}.
(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭
时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.
所以x ≥a -2对x ∈1,22a ⎡⎫-
⎪⎢⎣⎭
都成立. 故2a -≥a -2,即a ≤43
. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。