全国通用高考物理一轮复习第六章动量动量守恒定律微专题50力学三大规律的综合应用备考精炼
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
最新2019版高考物理一轮复习(全国通用)配套精品课件:6.1第六章 动量守恒定律 力学三大观点
-5知识梳理 考点自诊
二、动量定理 1.内容:物体所受 合力 的冲量等于物体 动量的增量 。 2.表达式:F·Δt=Δp=p'-p。 3.矢量性:动量变化量的方向与 合力 的方向相同,可以在某一 方向上应用动量定理。
-6知识梳理 考点自诊
1.(2017· 湖北咸宁月考)下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量就保持不变 D.物体的动量变化越大,则该物体的速度变化一定越大
B
解析 答案
-11命题点一 命题点二 命题点三
冲量和动量 动量、动能、动量变化量的比较
项目 定义 定义式 矢标性 特点 关联 方程
动 量 动 能 物体的质量和 物体由于运动 速度的乘积 而具有的能量 p=mv 矢量 状态量
p2 1
动量变化量 物体末动量与初 动量的矢量差 Δp=p'-p 矢量 过程量
关闭
p=mv,p由m、v二者乘积决定,故A、B错误;p是矢量,故C错误;Δp=m· Δv,故 D正确。 D
解析
关闭
答案
-7知识梳理 考点自诊
2.(多选)(2017· 广东广州海珠区期末)质量为m的物体以初速度v0 开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间 内物体动量变化量的大小为( ) A.m(v-v0) B.mgt C.m ������ 2 -������0 2 D.m 2������ℎ
关闭
动状态的变化情况是所有作用在物体上的力共同产生的效果,所以B选项
不正确;物体所受冲量I=Ft与物体的动量的大小p=mv无关,C选项不正确; 冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与
(统考版)高考物理一轮复习 第六章 动量守恒定律 专题五 动力学、动量和能量观点的综合应用学生用书
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
高考物理一轮复习第六章动量守恒定律力学三大观点2碰撞反冲动量守恒定律的应用考点规范练
碰撞反冲动量守恒定律的应用一、单项选择题1。
如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s,乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)()A.1 m/sB.0.5 m/sC。
—1 m/s D。
—0.5 m/s解析两车碰撞过程中动量守恒m 1v1—m2v2=(m1+m2)v得v= m/s=—0。
5 m/s。
答案D2。
滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示。
人与雪橇的总质量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A.B。
C。
D。
v1解析根据动量守恒条件可知,人与雪橇组成的系统在水平方向动量守恒,人跳起后水平方向速度不变,雪橇的速度仍为v1,D正确。
答案D3.在光滑的水平面上有静止的物体A和B。
物体A的质量是B的2倍,两物体中间用细绳束缚的处于压缩状态的轻质弹簧相连.当把细绳剪断,弹簧在恢复原长的过程中()A。
A的速率是B的2倍B。
A的动量大于B的动量C.A的受力大于B的受力D.A、B组成的系统的总动量为零解析弹簧在恢复原长的过程中,两滑块系统动量守恒,规定向左为正方向,有m1v1+m2(—v2)=0,由于物体A的质量是B的2倍,故A的速率是B的,A的动量等于B的动量,故A、B错误,D正确;根据牛顿第三定律,A受的力等于B受的力,故C错误。
答案D4。
质量相同的两方形木块A、B紧靠在一起放在光滑水平面上,一子弹先后水平穿透两木块后射出,若木块对子弹的阻力恒定不变,且子弹射穿两木块的时间相同,则子弹射穿木块时A、B木块的速度之比为()A.1∶1 B。
1∶2C。
1∶3 D.1∶4 〚导学号17420223〛解析水平面光滑,子弹射穿木块过程中,子弹受到的合外力为子弹的冲击力,设子弹的作用力为F f,对AB由动量定理得F f t=(m+m)v A,对B由动量定理得F f t=mv B—mv A,解得v A∶v B=1∶3,故C项正确.答案C5.(2016·福建福州模拟)一质量为M的航天器正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v1,加速后航天器的速度大小v2,则喷出气体的质量m为()A.M B。
新教材适用2024版高考物理一轮总复习第6章动量和动量守恒定律专题强化6力学三大观点的综合应用课件
(3)设物块 A 第一次从斜面滑到平面上时的速度为 vx,物块 A(含弹簧) 回到水平面,第二次与 B 相互作用过程系统机械能守恒、动量守恒。则 有
mBv2-mAvx=mBv3+mA·2v0⑧ 12mBv22+12mAv2x=12mBv23+12mA(2v0)2⑨ 得 vx=v0(另一解舍去) 物块 A 第一次从斜面底端滑到最高点的过程,由动能定理有 -mgμscos θ-mgssin θ=0-12m(2v0)2⑪
解得 v 共=1 m/s。 根据能量守恒可得 μm′gx 相=12m′v′2物-12(m′+M′)v2共, 解得 x 相=1.875 m。
[解析]对物块 B,在速度未达到 v=7 m/s 之前,其受到沿着传送带 向下的摩擦力,由牛顿第二定律有 mgsin θ+μmgcos θ=maB,
可得 aB=12 m/s2。 设经过时间 t1,B 与传送带达到共同速度,由运动学公式有 v=v0 +aBt1, 可得 t1=0.5 s。 此时 B 对地的位移大小 x=v+2v0t1=2 m, 此后物体 B 与传送带一起匀速下滑到底端,有 L-x=vt2,
3.力学三大观点的综合应用 这类模型各阶段的运动过程具有独立性,只要对不同过程分别选用 相应规律即可,两个相邻的过程连接点的速度是联系两过程的纽带。
例3 (2022·全国乙卷)如图(a),一质量为m的物块A与轻质弹簧连 接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t= 2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图(b)所示。已知 从t=0到t=t0时间内,物块A运动的距离为0.36v0t0。A、B分离后,A滑 上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再 次滑上斜面,达到的最高点与前一次相同。斜面倾角为θ(sin θ=0.6), 与水平面光滑连接。碰撞过程中弹簧始终处于弹性限度内。求:
专题(29)专题五 力学三大观点的综合应用(解析版)
2021年高考物理一轮复习必热考点整合回扣练专题(29)专题五力学三大观点的综合应用(解析版)知识点一力的三个作用效果与五个规律知识点二常见的力学模型及其结论命题热点 动力学、动量和能量观点在力学中的应用 力学三大观点的综合应用 选择力学三大观点的一般原则1、在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【答案】B【解析】由图象知a 球以一初速度向原来静止的b 球运动,碰后a 球反弹且速度大小小于其初速度大小,根据动量守恒定律,a 球的质量小于b 球的质量。
2、如图所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物体,某时刻给物体一个水平向右的初速度v 0,那么在物体与盒子前后壁多次往复碰撞后( )A .两者的速度均为零B .两者的速度总不会相等C .盒子的最终速度为mv 0M ,方向水平向右D .盒子的最终速度为mv 0M +m ,方向水平向右【答案】D【解析】由于盒子内表面不光滑,在多次碰后物体与盒相对静止,由动量守恒得:mv 0=(M +m )v ′,解得:v ′=mv 0M +m,故D 正确。
3、(多选)A 、B 两球沿同一条直线运动,如图所示的x -t 图象记录了它们碰撞前后的运动情况,其中a 、b 分别为A 、B 碰撞前的x -t 图象。
c 为碰撞后它们的x -t 图象。
若A 球质量为1 kg ,则B 球质量及碰后它们的速度大小为( )A .2 kg B.23kgC .4 m/sD .1 m/s【答案】BD【解析】由图象可知碰撞前二者都做匀速直线运动,v a =4-102 m/s =-3 m/s ,v b =4-02 m/s=2 m/s ,碰撞后二者连在一起做匀速直线运动,v c =2-44-2m/s =-1 m/s 。
高考物理一轮复习 第六章 动量守恒定律 力学三大观点 专题4 力学三大观点的综合应用课件
12/9/2021
第十四页,共三十七页。
考点一
考点(kǎo
diǎn)一
考点(kǎo
diǎn)二
考点(kǎo
diǎn)三
解析:在0~3 s内,以向右为正方向,对P由动量定理有
F1t1+F2t2-μmg(t1+t2)=mv-0,
其中F1=2 N,F2=3 N,t1=2 s,t2=1 s,
解得v=8 m/s,
若一个物体参与了多个运动过程,而运动过程只涉及运动和力的问题或只要
求分析物体的动力学特点而不涉及能量问题,则常常用牛顿运动定律、运
动学规律和动量定理等求解。
12/9/2021
第九页,共三十七页。
考点一
考点(kǎo
考点(kǎo
diǎn)二
diǎn)一
-10-
考点(kǎo
diǎn)三
例1如图所示,B为竖直圆轨道的左端点,它和圆心O的连线与竖直方向的夹
12/9/2021
第十一页,共三十七页。
-11-
考点一
考点(kǎo
diǎn)一
考点(kǎo
diǎn)二
-12-
考点(kǎo
diǎn)三
例2如图所示,一质量为m的物块在与水平方向成θ的力F的作用下从A点由
静止开始沿水平直轨道运动,到B点后撤去力F,物体飞出后越过“壕沟”落在平
台EG段。已知物块的质量m=1 kg,物块与水平直轨道间的动摩擦因数μ=0.5,AB
,细绳
mv0 2
2
的长略大于弹簧的自然长度。放手后绳在短暂时间内被拉断,之后B继续向
右运动,一段时间后与向左匀速运动、速度为v0的物块C发生碰撞,碰后B、
C立刻形成粘合体并停止运动,C的质量为2m。求:
高考物理一轮复习 第六章 动量 动量守恒定律 微专题50 力学三大规律的综合应用备考精炼
50 力学三大规律的综合应用[方法点拨] 做好以下几步:①确定研究对象,进行运动分析和受力分析;②分析物理过程,按特点划分阶段;③选用相应规律解决不同阶段的问题,列出规律性方程.1.(2018·广东东莞模拟)如图1所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相互嵌套结为一体,以共同的速度运动了距离l2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k 倍,忽略空气阻力,重力加速度为g .求:图1(1)购物车碰撞过程中系统损失的机械能; (2)工人给第一辆购物车的水平冲量大小.2.(2017·河北石家庄第二次质检)如图2所示,质量分布均匀、半径为R 的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙壁.一质量为m 的小球从距金属槽上端R 处由静止下落,恰好与金属槽左端相切进入槽内,到达最低点后向右运动从金属槽的右端冲出,小球到达最高点时与金属槽圆弧最低点的距离为74R ,重力加速度为g ,不计空气阻力.求:图2(1)小球第一次到达最低点时对金属槽的压力大小;(2)金属槽的质量.3.(2017·江西上饶一模)如图3所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:图3(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,B、C相距多远?4.(2017·河南六市第一次联考)足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢板静止时弹簧的压缩量为x0,如图4所示.一物块从钢板上方距离为3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O 点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求:图4(1)质量为m的物块与钢板碰撞后瞬间的速度大小v1;(2)碰撞前弹簧的弹性势能;(3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离.5.(2017·山东泰安一模)如图5所示,质量为m1=0.5 kg的小物块P置于台面上的A点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M=1 kg的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m2=1 kg的小滑块Q.现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内),撤去推力,此后P沿台面滑到边缘C时速度v0=10 m/s,与长木板左端的滑块Q相碰,最后物块P 停在AC的正中点,Q停在木板上.已知台面AB部分光滑,P与台面AC间的动摩擦因数μ1=0.1,AC间距离L=4 m.Q与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g取10 m/s2),求:图5(1)撤去推力时弹簧的弹性势能;(2)长木板运动中的最大速度;(3)长木板的最小长度.6.(2018·河北邢台质检)如图6所示,某时刻质量为m1=50 kg的人站在m2=10 kg的小车上,推着m3=40 kg的铁箱一起以速度v0=2 m/s在水平地面沿直线运动到A点时,该人迅速将铁箱推出,推出后人和车刚好停在A点,铁箱则向右运动到距A点s=0.25 m的竖直墙壁时与之发生碰撞而被弹回,弹回时的速度大小是碰撞前的二分之一,当铁箱回到A点时被人接住,人、小车和铁箱一起向左运动,已知小车、铁箱受到的摩擦力均为地面压力的0.2倍,重力加速度g=10 m/s2,求:图6(1)人推出铁箱时对铁箱所做的功;(2)人、小车和铁箱停止运动时距A点的距离.答案精析1.(1)mkgl (2)m 6gkl解析 (1)设第一辆车碰前瞬间的速度为v 1,与第二辆车碰后的共同速度为v 2. 由动量守恒定律有mv 1=2mv 2由动能定理有-2kmg ·l 2=0-12(2m )v 22则碰撞中系统损失的机械能ΔE =12mv 12-12(2m )v 22联立以上各式解得ΔE =mkgl (2)设第一辆车推出时的速度为v 0 由动能定理有 -kmgl =12mv 12-12mv 02I =mv 0联立解得I =m 6gkl 2.(1)5mg (2)(33+833)m31解析 (1)小球从静止到第一次到达最低点的过程,根据机械能守恒定律有:mg ·2R =12mv 02小球刚到最低点时,根据圆周运动规律和牛顿第二定律有:F N -mg =m v 02R据牛顿第三定律可知小球对金属槽的压力为:F N ′=F N 联立解得:F N ′=5mg(2)小球第一次到达最低点至小球到达最高点过程,小球和金属槽水平方向动量守恒,选取向右为正方向,则:mv 0=(m +M )v设小球到达最高点时与金属槽圆弧最低点的高度为h . 则有R 2+h 2=(74R )2根据能量守恒定律有:mgh =12mv 02-12(m +M )v 2联立解得M =(33+833)m31.3.(1)4v 0227gL (2)L3解析 (1)设A 、B 的质量为m ,则C 的质量为2m .B 、C 碰撞过程中动量守恒,令B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得:mv 0=3mv 1 解得:v 1=v 03B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度v 2,以向右为正方向,由动量守恒定律得:mv 0+2mv 1=3mv 2解得:v 2=5v 09在A 、C 相互作用过程中,根据能量守恒定律得:F f L =12mv 02+12×2mv 12-12×3mv 22又F f =μmg 解得:μ=4v 0227gL(2)A 在C 上滑动时,C 的加速度a =μmg 2m =2v 0227LA 从滑上C 到与C 共速经历的时间: t =v 2-v 1a =3L v 0B 运动的位移:x B =v 1t =LC 运动的位移x C =(v 1+v 2)t 2=4L3B 、C 相距:x =x C -x B =L34.(1)6gx 0sin θ2 (2)12mgx 0sin θ (3)x 02解析 (1)设物块与钢板碰撞前速度为v 0, 3mgx 0sin θ=12mv 02解得v 0=6gx 0sin θ设物块与钢板碰撞后一起运动的速度为v 1,以沿斜面向下为正方向,由动量守恒定律得mv 0=2mv 1解得v 1=6gx 0sin θ2(2)设碰撞前弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为零,根据机械能守恒定律得E p +12(2m )v 12=2mgx 0sin θ解得E p =12mgx 0sin θ(3)设v 2表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,以沿斜面向下为正方向,由动量守恒定律得 2mv 0=3mv 2它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为v ,由机械能守恒定律得E p +12(3m )v 22=3mgx 0sin θ+12(3m )v 2在O 点物块与钢板分离,分离后,物块以速度v 继续沿斜面上升,设运动到达的最高点离O 点的距离为l ,有v 2=2al2mg sin θ=2ma 解得l =x 025.(1)27 J (2)2 m/s (3)3 m 解析 (1)小物块P 由B 到C 的过程:W 弹-μ1m 1gL =12m 1v 02-0解得W 弹=27 JE p =W 弹=27 J即撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向m 1v 0=-m 1v P +m 2v Q小物块P 从碰撞后到静止 -12μ1m 1gL =0-12m 1v P 2 解得v Q =6 m/sQ 在长木板上滑动过程中:对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2 解得a 1=-4 m/s 2,a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大,设速度为v ,滑行时间为t . 对Q :v =v Q +a 1t 对木板:v =a 2t 解得t =1 sv =2 m/s长木板运动中的最大速度为2 m/s (3)在Q 和木板相对滑动过程中Q 的位移:x Q =12(v Q +v )·t木板的位移:x 板=12(0+v )·t木板的最小长度:L =x Q -x 板 解得L =3 m6.(1)420 J (2)0.2 m解析 (1)人推铁箱过程,以v 0的方向为正方向,由动量守恒定律得: (m 1+m 2+m 3)v 0=m 3v 1 解得v 1=5 m/s人推出铁箱时对铁箱所做的功为:W =12m 3v 12-12m 3v 02=420 J(2)设铁箱与墙壁相碰前的速度为v 2,箱子再次滑到A 点时速度为v 3,根据动能定理得: 从A 到墙:-0.2m 3gs =12m 3v 22-12m 3v 12解得v 2=2 6 m/s从墙到A :-0.2m 3gs =12m 3v 32-12m 3(12v 2)2解得v 3= 5 m/s设人、小车与铁箱一起向左运动的速度为v 4,以向左方向为正方向,根据动量守恒定律得:m 3v 3=(m 1+m 2+m 3)v 4解得v 4=255 m/s根据动能定理得:-0.2(m 1+m 2+m 3)gx =0-12(m 1+m 2+m 3)v 42解得x =0.2 m。
高考物理一轮复习第六章动量守恒定律力学三大观点课时规范练21力学三大观点的综合应用新人教版
【2019最新】精选高考物理一轮复习第六章动量守恒定律力学三大观点课时规范练21力学三大观点的综合应用新人教版能力提升组1.(2017·河南新乡模拟)如图所示,半径为R=1 m的圆弧形轨道固定在水平轨道上,与圆弧形轨道相切的水平轨道上静置一小球B。
小球A从圆弧形轨道上离水平轨道高度为h=0.8 m处沿轨道下滑,与小球B发生碰撞并粘在一起。
所有接触面均光滑,A、B两球的质量均为m=1 kg,g取10m/s2。
求:(1)小球A在弧形轨道最低点时对轨道的压力大小F;(2)小球A、B碰撞过程中损失的机械能ΔE。
设小球A在圆弧形轨道最低点受到轨道的支持力大小为F',由牛顿第二定律得F'-mg=由以上两式解得F'=26 N由牛顿第三定律可知,F=F'=26 N。
(2)对小球A、B碰撞的过程,由动量守恒定律有mv=2mv',其中由于A、B碰撞并粘在一起,对该过程,由能量守恒定律有ΔE=mv2-×2mv'2,解得ΔE=4 J。
2.如图甲所示,在倾角为37°的粗糙足够长的斜面的底端,一质量m=1 kg 可视为质点的滑块压缩一轻弹簧,滑块与弹簧不相连。
t=0时释放物块,计算机通过传感器描绘出滑块的v-t图象如图乙所示,其中Oab段为曲线,bc 段为直线,在t1=0.1 s时滑块已上滑x=0.2 m的距离,g取10 m/s2。
(sin 37°=0.6,cos 37°=0.8)求:(1)物体与斜面间的动摩擦因数μ的大小;(2)压缩弹簧时,弹簧具有的弹性势能Ep。
根据牛顿第二定律,有mgsin 37°+μmgcos 37°=ma解得μ=0.5。
(2)由题中图线可知,t2=0.1 s时的速度大小v=2.0 m/s,由功能关系可得Ep=mv2+mgxsin 37°+μmgxcos 37°代入数据得Ep=4.0 J。
2022版高考物理一轮复习第六章动量动量守恒定律章末提升核心素养培养课件新人教版
4.动量守恒定律的应用是有条件的,碰撞、爆炸、反冲均因作用时间 极短,内力远大于外力满足动量守恒(或近似守恒),动量守恒方程中的 速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的 速度。
[典例1] (多选)如图所示,竖直墙面和水平地面均光滑,质量分别为mA=6 kg,mB=2 kg的A、B两物体用质量不计的轻弹簧相连,其中A紧靠墙壁,现 对B物体缓慢施加一个向左的力,该力对物体B做功W=25 J,使A、B间弹簧 被压缩,在系统静止时,突然撤去向左的力解除压缩,则( BCD )
A.解除压缩后,两物体和弹簧组成系统动量守恒 B.解除压缩后,两物体和弹簧组成系统机械能守恒 C.从撤去外力至A与墙面刚分离,弹簧对A的冲量I=10 N·s,方向水平向右 D.A与墙面分离后至首次弹簧恢复原长时,两物体速率均是2.5 m/s
[解析] 解除压缩后,弹簧在恢复原长的过程中,墙壁对 A 物体有弹力 的作用,故解除压缩后到弹簧恢复原长前,两物体和弹簧组成的系统动 量不守恒,恢复原长后,A、B 一起向右运动,系统的合外力为零,动 量守恒,故 A 错误;解除压缩后,两物体和弹簧组成系统只有动能和弹 性势能的相互转化,故机械能守恒,故 B 正确;压缩弹簧时,外力做的 功全转化为弹性势能,撤去外力,弹簧恢复原长,弹性势能全转化为 B 的动能,设此时 B 的速度为 v0,则 W=Ep=12mBv02,得 v0=5 m/s,此
核心素养培养
素养1 物理观念——物理概念和规律的辨析 1.动量是矢量,其方向与物体的速度方向相同,动量变化量也是矢量, 其方向与物体合外力的冲量方向相同。 2.冲量是力在时间上的积累,其大小等于力和力的作用时间的乘积, 与力是否做功无关。 3.动量定理中物体动量的改变量等于合外力的冲量,包括物体重力的 冲量。应用动量定理列方程时应选取正方向,且力和速度必须选同一正 方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50 力学三大规律的综合应用[方法点拨] 做好以下几步:①确定研究对象,进行运动分析和受力分析;②分析物理过程,按特点划分阶段;③选用相应规律解决不同阶段的问题,列出规律性方程.1.(2018·广东东莞模拟)如图1所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相互嵌套结为一体,以共同的速度运动了距离l 2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k 倍,忽略空气阻力,重力加速度为g .求:图1(1)购物车碰撞过程中系统损失的机械能;(2)工人给第一辆购物车的水平冲量大小.2.(2017·河北石家庄第二次质检)如图2所示,质量分布均匀、半径为R 的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙壁.一质量为m 的小球从距金属槽上端R 处由静止下落,恰好与金属槽左端相切进入槽内,到达最低点后向右运动从金属槽的右端冲出,小球到达最高点时与金属槽圆弧最低点的距离为74R ,重力加速度为g ,不计空气阻力.求:图2(1)小球第一次到达最低点时对金属槽的压力大小;(2)金属槽的质量.3.(2017·江西上饶一模)如图3所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:图3(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,B、C相距多远?4.(2017·河南六市第一次联考)足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢板静止时弹簧的压缩量为x0,如图4所示.一物块从钢板上方距离为3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O 点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求:图4(1)质量为m的物块与钢板碰撞后瞬间的速度大小v1;(2)碰撞前弹簧的弹性势能;(3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离.5.(2017·山东泰安一模)如图5所示,质量为m1=0.5 kg的小物块P置于台面上的A点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M=1 kg的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m2=1 kg的小滑块Q.现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内),撤去推力,此后P沿台面滑到边缘C时速度v0=10 m/s,与长木板左端的滑块Q相碰,最后物块P 停在AC的正中点,Q停在木板上.已知台面AB部分光滑,P与台面AC间的动摩擦因数μ1=0.1,AC间距离L=4 m.Q与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g取10 m/s2),求:图5(1)撤去推力时弹簧的弹性势能;(2)长木板运动中的最大速度;(3)长木板的最小长度.6.(2018·河北邢台质检)如图6所示,某时刻质量为m1=50 kg的人站在m2=10 kg的小车上,推着m3=40 kg的铁箱一起以速度v0=2 m/s在水平地面沿直线运动到A点时,该人迅速将铁箱推出,推出后人和车刚好停在A点,铁箱则向右运动到距A点s=0.25 m的竖直墙壁时与之发生碰撞而被弹回,弹回时的速度大小是碰撞前的二分之一,当铁箱回到A点时被人接住,人、小车和铁箱一起向左运动,已知小车、铁箱受到的摩擦力均为地面压力的0.2倍,重力加速度g=10 m/s2,求:图6(1)人推出铁箱时对铁箱所做的功;(2)人、小车和铁箱停止运动时距A点的距离.答案精析1.(1)mkgl (2)m 6gkl解析 (1)设第一辆车碰前瞬间的速度为v 1,与第二辆车碰后的共同速度为v 2.由动量守恒定律有mv 1=2mv 2由动能定理有-2kmg ·l 2=0-12(2m )v 22 则碰撞中系统损失的机械能ΔE =12mv 12-12(2m )v 22 联立以上各式解得ΔE =mkgl(2)设第一辆车推出时的速度为v 0由动能定理有-kmgl =12mv 12-12mv 02 I =mv 0联立解得I =m 6gkl2.(1)5mg (2)(33+833)m 31解析 (1)小球从静止到第一次到达最低点的过程,根据机械能守恒定律有:mg ·2R =12mv 02小球刚到最低点时,根据圆周运动规律和牛顿第二定律有: F N -mg =m v 02R据牛顿第三定律可知小球对金属槽的压力为:F N ′=F N联立解得:F N ′=5mg(2)小球第一次到达最低点至小球到达最高点过程,小球和金属槽水平方向动量守恒,选取向右为正方向,则:mv 0=(m +M )v设小球到达最高点时与金属槽圆弧最低点的高度为h .则有R 2+h 2=(74R )2 根据能量守恒定律有:mgh =12mv 02-12(m +M )v 2 联立解得M =(33+833)m 31.3.(1)4v 0227gL (2)L 3解析 (1)设A 、B 的质量为m ,则C 的质量为2m .B 、C 碰撞过程中动量守恒,令B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得:mv 0=3mv 1 解得:v 1=v 03 B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度v 2,以向右为正方向,由动量守恒定律得:mv 0+2mv 1=3mv 2解得:v 2=5v 09在A 、C 相互作用过程中,根据能量守恒定律得:F f L =12mv 02+12×2mv 12-12×3mv 22又F f =μmg解得:μ=4v 0227gL (2)A 在C 上滑动时,C 的加速度a =μmg 2m =2v 0227LA 从滑上C 到与C 共速经历的时间:t =v 2-v 1a =3L v 0B 运动的位移:x B =v 1t =LC 运动的位移x C =(v 1+v 2)t 2=4L 3B 、C 相距:x =x C -x B =L 34.(1)6gx 0sin θ2 (2)12mgx 0sin θ (3)x 02解析 (1)设物块与钢板碰撞前速度为v 0,3mgx 0sin θ=12mv 02 解得v 0=6gx 0sin θ设物块与钢板碰撞后一起运动的速度为v 1,以沿斜面向下为正方向,由动量守恒定律得 mv 0=2mv 1解得v 1=6gx 0sin θ2(2)设碰撞前弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为零,根据机械能守恒定律得E p +12(2m )v 12=2mgx 0sin θ解得E p =12mgx 0sin θ (3)设v 2表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,以沿斜面向下为正方向,由动量守恒定律得2mv 0=3mv 2它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为v ,由机械能守恒定律得 E p +12(3m )v 22=3mgx 0sin θ+12(3m )v 2在O 点物块与钢板分离,分离后,物块以速度v 继续沿斜面上升,设运动到达的最高点离O 点的距离为l ,有 v 2=2al2mg sin θ=2ma解得l =x 025.(1)27 J (2)2 m/s (3)3 m解析 (1)小物块P 由B 到C 的过程: W 弹-μ1m 1gL =12m 1v 02-0解得W 弹=27 J E p =W 弹=27 J即撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向m 1v 0=-m 1v P +m 2v Q小物块P 从碰撞后到静止-12μ1m 1gL =0-12m 1v P 2 解得v Q =6 m/sQ 在长木板上滑动过程中:对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2解得a 1=-4 m/s 2,a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大,设速度为v ,滑行时间为t . 对Q :v =v Q +a 1t对木板:v =a 2t解得t =1 sv =2 m/s长木板运动中的最大速度为2 m/s(3)在Q 和木板相对滑动过程中Q 的位移:x Q =12(v Q +v )·t木板的位移:x 板=12(0+v )·t 木板的最小长度:L =x Q -x 板解得L =3 m6.(1)420 J (2)0.2 m解析 (1)人推铁箱过程,以v 0的方向为正方向,由动量守恒定律得: (m 1+m 2+m 3)v 0=m 3v 1解得v 1=5 m/s人推出铁箱时对铁箱所做的功为: W =12m 3v 12-12m 3v 02=420 J(2)设铁箱与墙壁相碰前的速度为v 2,箱子再次滑到A 点时速度为v 3,根据动能定理得:从A 到墙:-0.2m 3gs =12m 3v 22-12m 3v 12 解得v 2=2 6 m/s从墙到A :-0.2m 3gs =12m 3v 32-12m 3(12v 2)2 解得v 3= 5 m/s设人、小车与铁箱一起向左运动的速度为v 4,以向左方向为正方向,根据动量守恒定律得:m 3v 3=(m 1+m 2+m 3)v 4解得v 4=255m/s 根据动能定理得:-0.2(m 1+m 2+m 3)gx =0-12(m 1+m 2+m 3)v 42 解得x =0.2 m。