数值分析上机报告(2)

合集下载

数值分析第二次上机作业实验报告

数值分析第二次上机作业实验报告

一.实验任务用MA TLAB 语言编写连续函数最佳平方逼近的算法程序(函数式M 文件)。

并用此程序进行数值试验,写出实验报告。

二.实验方法最佳平方逼近方法采用基于正交多项式的最佳平方逼近,选择Lengendre 多项式做基。

计算组合系数时,函数的积分采用变步长复化梯形求积法。

三.程序功能和使用说明1.采用基于正交多项式的最佳平方逼近,选择Lengendre 多项式做基利用递推关系0112()1,()()(21)()(1)()/2,3,.....n n n P x P x xP x n xP x n P x n n --===---⎡⎤⎣⎦=可构造出用户需要的任意次数的最佳平方逼近多项式。

2. 用M 文件建立数学函数,实现程序通过修改建立数学函数的M 文件以适用不同的被逼近函数。

3.已经考虑一般的情况]1,1[],[)(+-≠∈b a x f ,程序有变量代换的功能。

4.计算组合系数时,函数的积分采用变步长复化梯形求积法5.可根据需要,求出二次、三次、。

最佳平方逼近函数)x s (。

6.最后作出逼近函数)x s (和被逼近函数)(x f 的曲线图可进行比较,分别用绘图函数plot 和fplot 绘图。

7.在matlab 的命令窗口,输入[c,sx]=leastp(@func1,a,b,n),func1是被逼近函数,b 和a 分别是逼近函数的上、下区间,n 为最佳平方逼近的次数,可为任意次数。

四.程序代码(含注释)1. 最佳平方逼近主函数function [c,sx]=leastp(func,a,b,n)%LEASTP.m:least-square fitting with legendre polynomials%func 指被逼近函数,调用需要用句柄%a,b 分别指被逼近函数的区间上下限%n 指最佳平方逼近的次数syms t;syms x;%以Lengendre 多项式为基,构造任意次数的最佳平方逼近多项式p(2)=t;p(1)=1;if n>1for j=3:1:(n+1)p(j)=((2*j-3)*t*p(j-1)-(j-2)*p(j-2))/(j-1);endend%变量代换,区间调整为[-1,1]f=feval(func,(b-a)/2*t+(b+a)/2);%计算组合系数,其中调用变步长复化梯形求积函数trapzfor j=1:1:(n+1)c(j)=(2*j-1)/2*trapz(f*p(j),-1,1);end%将组合系数与对应的最佳平方多项式相乘然后求和,得到最佳逼近函数sx=0;for j=1:1:(n+1)sx=sx+c(j)*p(j);end%将变量替换还原sx=subs(sx,(2*x-a-b)/(b-a));%使用fplot绘制原函数图像f1=feval(func,x);f1=inline(f1);[x,y]=fplot(f1,[a,b]);plot(x,y,'r-','linewidth',1.5);hold on;%使用plot绘制最佳平方逼近函数图像g=linspace(a,b,(b-a)*300);fsx=subs(sx,g);plot(g,fsx,'b-','linewidth',1.5);str=strcat(num2str(n),'次最佳平方逼近');legend('原函数',str);end2. 计算组合系数,变步长复化梯形求积法function To1=trapz(func,a,b)%半分区间复化梯形公式计算定积分%func指需要求积分的原函数%a,b分别指积分上下区间%初值h=b-a;To=(subs(func,a)+subs(func,b))*(b-a)/2;e=1;while e>10^-6%迭代终止条件,前后两次积分值差小于10^-6 H=0;x=a+h/2;while x<bH=H+subs(func,x);%计算出所有二分新出现的值的和x=x+h;endTo1=0.5*(To+h*H);%计算出新的积分值e=abs(To1-To);h=h/2;%继续半分区间,进行迭代计算To=To1;endend3. 以.m文件定义被逼近函数function y=func1(x)y=x*cos(x);end五.实验结果1. 一次最佳平方逼近c =-1.1702 -2.4235sx=1.253290 - 1.211752*x2. 二次最佳平方逼近c =-1.1702 -2.4235 -0.4265sx=-0.159939*x^2 - 0.571997*x + 0.8267873. 三次最佳平方逼近c =-1.1702 -2.4235 -0.4265 1.2216sx=0.381759*x^3 - 2.450495*x^2 + 3.092892*x - 0.3948434. 四次最佳平方逼近c =-1.1702 -2.4235 -0.4265 1.2216 0.3123sx =0.085392*x^4 - 0.301375*x^3 - 0.693864*x^2 + 1.531443*x - 0.082553六.分析与讨论从次数从1到4的最佳平方逼近图像对比可以发现,次数越高,图像拟合效果越好。

数值分析2024上机实验报告

数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。

在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。

本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。

一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。

1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。

常见的数值方法有二分法、牛顿法、割线法等。

在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。

2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。

插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。

在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

3.数值积分这部分实验要求使用数值方法计算给定函数的积分。

常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。

在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。

4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。

常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。

在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。

结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。

2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。

结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。

二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。

数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。

2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。

方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。

我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。

3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。

在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。

我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。

4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。

在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。

我们还学习了数值微分的数值方法,如差商法和牛顿插值法。

5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。

我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。

三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。

我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。

实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。

根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。

此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。

四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。

1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。

本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。

2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。

对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。

在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。

3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。

(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。

(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。

(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。

(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。

4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。

数值分析上机作业2

数值分析上机作业2

数值实验数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。

求解方法大致可分为直接法和迭代法两大类。

直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。

当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。

如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。

Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。

对正定对称矩阵,采用平方根方法无需选主元。

方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。

实验一一、实验名称:矩阵的LU分解.二、实验目的:用不选主元的LU分解和列主元LU分解求解线性方程组Ax=b, 并比较这两种方法.三、实验内容与要求(1)用所熟悉的计算机语言将不选主元和列主元LU分解编成通用的子程序,然后用编写的程序求解下面的84阶方程组将计算结果与方程组的精确解进行比较,并就此谈谈你对Gauss消去法的看法。

(2)写出追赶法求解三对角方程组的过程,并编写程序求该实验中的方程组(1)①不选主元高斯消去法求解方程组function [L,U]=gauss1(A,b)n=length(A);for k=1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A(:,1:n),-1)+eye(n);U=triu(A);主程序为:Clear;clc;a=ones([84,1])*6;b=ones([83,1]);c=ones([83,1])*8;A=diag(a)+diag(b,1)+diag(c,-1); d=ones([82,1])*15;b=[7;d;14];[L U]=gauss1(A,b);n=length(A);y=ones(n,1);y=L\b;x=ones(n,1);x=U\y解为:x=11.000000000000001.000000000000001.000000000000000.9999999999999981.000000000000000.9999999999999931.000000000000010.9999999999999721.000000000000060.9999999999998861.000000000000230.9999999999995451.000000000000910.9999999999981811.000000000003640.9999999999927251.000000000014550.9999999999708981.000000000058200.9999999998835921.000000000232820.9999999995343671.000000000931270.9999999981374691.000000003725060.9999999925498741.000000014900250.9999999701994971.000000059601010.9999998807979861.000000238404030.9999995231919461.000000953616110.9999980927677831.000003814464440.9999923710711301.000015257857740.9999694842845201.000061031430960.9998779371380811.000244125723840.9995117485523231.000976502895350.9980469942092911.003906011581410.9921879768371871.015624046325570.9687519073490881.062496185300920.8750076294018071.249984741181830.5000305176945351.99993896437811 -0.999877927824961 4.99975585192486 -6.99951168894947 16.9990233182979 -30.9980463981918 64.9960918427676 -126.992179871071 256.984344484284 -510.968627937136 1024.93701174855 -2046.87304699420 4096.74218797682 -8190.46875190732 16383.8750076293 -32764.5000305175 65531.0001220701 -131055.000488281 262097.001953124 -524127.007812498 1048001.03125000 -2094975.124999994185857.49999999-8355328.9999999716645128.9999999-33028126.999999965007744.9999998-125821439.000000234866688.999999-402628606.999999536838144.999998可见,这是一个病态方程,从56个跟开始发散。

数值分析上机报告

数值分析上机报告

数值分析上机报告【摘要】数值分析是一门研究计算方法和计算结果误差的数学学科,该学科广泛应用于自然科学、工程技术和社会科学等领域。

本文通过对数值分析上机实验的报告,详细介绍了数值分析的基本概念、主要方法和实际应用,同时讨论了实验中的问题和解决方法,以及实验结果的分析和总结。

通过本次实验,我们不仅巩固了数值分析的理论知识,还提高了数值计算的实际操作能力。

【关键词】数值分析、计算方法、计算结果误差、实际应用、计算能力一、引言数值分析是一门研究计算方法和计算结果误差的数学学科,它通过近似计算方法解决实际问题。

数值分析在科学技术的研究和应用中具有重要的地位和作用。

通过数值分析方法,可以解决许多传统方法难以解决的问题,同时对于大规模和复杂的计算问题也具有很好的适应性。

二、实验步骤本实验分为三个部分:线性插值、非线性方程求解和数值积分。

在线性插值实验中,我们通过拉格朗日插值和Newton插值求解了给定数据的曲线拟合问题。

在非线性方程求解实验中,我们应用二分法和牛顿迭代法求解了给定方程的根。

在数值积分实验中,我们通过复化梯形公式和复化辛普森公式计算了给定函数的定积分。

三、实验结果在线性插值实验中,我们分别使用拉格朗日插值和Newton插值方法计算了给定数据的曲线拟合,并比较了两种方法的拟合效果。

在非线性方程求解实验中,我们应用二分法和牛顿迭代法求解了给定方程的根,并比较了两种方法的计算精度和收敛速度。

在数值积分实验中,我们分别使用复化梯形公式和复化辛普森公式计算了给定函数的定积分,并比较了两种方法的计算精度。

四、问题及解决方法在实验过程中,我们遇到了一些问题,例如如何选取合适的插值点、如何确定迭代停止的条件、如何选择适当的积分方法等等。

对于这些问题,我们通过仔细分析和综合比较不同方法的优缺点,选择了合适的解决方法,并取得了满意的实验结果。

五、实验分析与总结通过本次实验,我们对数值分析的基本概念、主要方法和实际应用有了更深入的理解。

东南大学数值分析上机报告2

东南大学数值分析上机报告2

数值分析上机报告作业4一、题目二、算法描述函数S(x)在每个小区间上都是三次多项式,故S’’(x)在小区间上是一次多项式,根据函数值、一阶差值、二阶差值求出d值,再求出M值,回代求出插值函数,最后节点差值输出结果。

三、源程序%求第一型3次样条插值函数的通用程序clearclc% 输入相关参数n = input('Input n: n =');n = n + 1;xn = zeros(1, n);yn = zeros(1, n);xn(1, :) = input('Input x:');yn(1, :) = input('Input y:');% 输入边界条件dy0 = input('Input the derivative of y(0):');dyn = input('Input the derivative of y(n):');% 求d值d = zeros(n, 1);h = zeros(1, n - 1);f1 = zeros(1, n- 1);f2 = zeros(1, n - 2);for i = 1: n - 1h(i) = xn(i + 1) - xn(i); % 一阶差商f1(i) = (yn(i + 1) - yn(i))/h(i);endfor i = 2 : n – 1 % 一二阶差商f2(i) = (f1(i) - f1(i - 1))/(xn(i + 1) - xn(i - 1));d(i) = 6*f2(i);endd(1) = 6*(f1(1) - dy0)/h(1);d(n) = 6*(dyn - f1(n - 1))/h(n - 1);% 求M值A = zeros(n);miu = zeros(1, n -2);lamda = zeros(1, n - 2);for i = 1: n - 2miu(i) = h(i)/(h(i) + h(i + 1));lamda(i) = 1 - miu(i);endA(1, 2) = 1;A(n, n - 1) = 1;for i = 1: nA(i, i) = 2;endfor i = 2: n - 1A(i, i - 1) = miu(i - 1);A(i, i + 1) = lamda(i - 1);endM = A\d;% 回代求插值函数syms x;for i = 1: n - 1Sx(i) = collect(yn(i) + (f1(i) - (M(i)/3 + M(i + 1)/6)*h(i))*(x - ... xn(i)) + M(i)/2*(x - xn(i))^2 + (M(i + 1) - M(i))/(6*h(i))*(x - ... xn(i))^3);Sx(i) = vpa(Sx(i), 4);endS = zeros(1, n - 1);% 求节点插值for i = 1: n - 1x = xn(i) + 0.5;S(i) = yn(i) + (f1(i) - (M(i)/3 + M(i + 1)/6)*h(i)) * (x - xn(i))... + M(i)/2*(x - xn(i))^2 + (M(i + 1) - M(i))/(6*h(i))*(x - xn(i))^3;end% 输出结果disp('S(x) = ');for i = 1: n - 1fprintf(' %s (%d, %d)\n', char(Sx(i)), xn(i), xn(i + 1))disp(' ------------------------------------------------')enddisp('S(i + 0.5)')disp(' i x(i + 0.5) S(i + 0.5)')for i = i: n - 1fprintf(' %d %.4f %.4f\n', i, xn(i) + 0.5, S(i))end四、心得体会使用变量精度算法(VPA)去计算A中每个元素为d小数位精度,其中d是当前设置的位数,结果使每个元素是符号表达式。

数值分析Runge现象计算实验

数值分析Runge现象计算实验

数值分析实验报告(02)一、实验目的通过上机绘制Runge 函数图像,理解高次插值的病态性质。

二、实验内容在区间[-1,1]上分别取n=10,n=20用两组等距节点对龙格(Runge)函数21()125f x x =+作多项式插值,对每个n 值分别画出()f x 和插值函数的图形。

三、编程思路(相关背景知识、算法步骤、流程图、伪代码)四、程序代码(Matlab 或C 语言的程序代码)function yt=Untitled8(x,y,xt)%UNTITLED5 ´Ë´¦ÏÔʾÓйش˺¯ÊýµÄÕªÒª% ´Ë´¦ÏÔʾÏêϸ˵Ã÷n=length(x);ny=length(y);if n~=nyerror('²åÖµ½ÚµãxÓ뺯ÊýÖµy²»Ò»ÖÂ');endm=length(xt);yt=zeros(1,m);for k=1:nlk=ones(1,m);for j=1:nif j~=klk=lk.*(xt-x(j))/(x(k)-x(j));endend ;yt=yt+y(k)*lk;endn=input('n=');x=linspace(-1,1,n);y=1./(1+25.*x.^2);xf=linspace(-1,1,100);yf=1./(1+25.*xf.^2)xl=xf;yl=Untitled8(x,y,xf);plot(xf,yf,'-b',xl,yl,'-r')五、数值结果及分析(数值运行结果及对结果的分析)当n=10时当n=20六、实验体会(计算中出现的问题,解决方法,实验体会)出现符号错误,代码函数变量不明重新输入,查询错误,找到并改正编码需要认真仔细,一定要头脑清晰,避免出现一些低级错误。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本实验的目的是通过编写数值分析程序,掌握解决数学问题的数值计算方法,并通过实际应用来检验其有效性和准确性。

具体包括以下几个方面的内容:1.掌握二分法和牛顿迭代法的基本原理和实现方法;2.熟悉利用矩阵的LU分解和追赶法解线性方程组的过程;3.通过具体的实例应用,比较不同方法的计算效果和精度。

二、实验内容本实验分为三个部分,每个部分包括一个具体的数学问题和相应的数值计算方法。

1.问题一:求方程f(x)=x^3-5x^2+10x-80=0的近似解。

在问题一中,我们通过二分法和牛顿迭代法来求解方程的近似解,并比较两种方法的精度和收敛速度。

2.问题二:用LU分解解线性方程组。

问题二中,我们通过矩阵的LU分解方法解线性方程组Ax=b,然后和直接用追赶法解线性方程组进行对比,验证LU分解的有效性和准确性。

三、实验结果及分析1.问题一的结果分析:通过二分法和牛顿迭代法求解方程f(x)=x^3-5x^2+10x-80=0的近似解,得到的结果如下:从结果来看,两种方法得到的近似解均与真实解x≈5非常接近。

但是,通过比较可以发现,牛顿迭代法的计算速度比二分法更快,迭代的次数更少。

因此,在需要高精度近似解的情况下,牛顿迭代法是一个更好的选择。

2.问题二的结果分析:通过LU分解和追赶法解线性方程组Ax=b,得到的结果如下:-用LU分解解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0;-用追赶法解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0。

从结果来看,两种方法得到的结果完全一致,而且与真实解非常接近。

这表明LU分解方法和追赶法均可以有效地解决线性方程组问题。

但是,在实际应用中,当方程组规模较大时,LU分解方法的计算复杂度较高,因此追赶法更加适用。

四、实验总结通过本实验,我掌握了二分法和牛顿迭代法以及LU分解和追赶法的基本原理和实现方法。

通过具体的数学问题实例应用,我比较了不同方法的计算效果和精度,得出以下结论:1.在求解函数的近似解时,牛顿迭代法相对于二分法具有更快的收敛速度和更高的计算精度;2.在解决线性方程组问题时,LU分解方法在计算准确性方面与追赶法相当,但在处理较大规模的问题时,计算复杂度较高,追赶法更适合。

数值分析上机实习报告

数值分析上机实习报告

数值分析上机实习报告随着现代科学技术的迅猛发展,计算机科学的应用日益广泛,数值分析作为计算机科学中重要的分支之一,其在工程、物理、生物学等领域的应用也越来越受到重视。

本学期,我们在数值分析课程的学习中,进行了多次上机实习,通过实习,我们对数值分析的基本方法和算法有了更深入的理解和掌握。

在实习过程中,我们使用了MATLAB软件作为主要的工具,MATLAB是一种功能强大的数学软件,它提供了丰富的数值计算函数和图形显示功能,使我们能够更加方便地进行数值计算和分析。

第一次实习是线性插值和函数逼近。

我们学习了利用已知数据点构造插值函数的方法,并通过MATLAB软件实现了线性插值和拉格朗日插值。

通过实习,我们了解了插值的基本原理,掌握了插值的计算方法,并能够利用MATLAB软件进行插值计算。

第二次实习是解线性方程组。

我们学习了高斯消元法、列主元高斯消元法和克莱姆法则等解线性方程组的方法,并通过MATLAB软件实现了这些算法。

在实习过程中,我们通过实际例子了解了这些算法的应用,掌握了它们的计算步骤,并能够利用MATLAB软件准确地求解线性方程组。

第三次实习是求解非线性方程和方程组。

我们学习了二分法、牛顿法、弦截法和迭代法等求解非线性方程的方法,以及雅可比法和高斯-赛德尔法等求解非线性方程组的方法。

通过实习,我们了解了非线性方程和方程组的求解方法,掌握了它们的计算步骤,并能够利用MATLAB软件求解实际问题。

通过这次上机实习,我们不仅深入学习了数值分析的基本方法和算法,而且锻炼了利用MATLAB软件进行数值计算和分析的能力。

同时,我们也认识到了数值分析在实际问题中的应用价值,增强了解决实际问题的能力。

总之,这次上机实习使我们受益匪浅,对我们学习数值分析课程起到了很好的辅助作用。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告班级:计算机1002姓名:陈斯琪学号:20102686课题三A . 实验题目:线性方程组的迭代法B . 实验要求(1) 应用迭代法求解线性方程组,并与直接法作比较;(2) 分别对不同精度要求,如5-4-3-10,10,10=ε,利用所需迭代次数体会该迭代法的收敛快慢;(3) 对方程组(2),(3)使用SOR 方法时,选取松弛因子=0.8,0.9,1,1.1,1.2等,试观察对算法收敛性的影响,并找出你所选用松弛因子的最佳值;(4) 编制出各种迭代法的程序并给出计算结果。

C . 目的和意义(1) 通过上机了解迭代法求解线性方程组的特点;掌握求解线性方程组的各类迭代法;(2) 体会上机计算时,终止准则‖X^(k+1)-X^k ‖∞<ε,对控制迭代精度的有效性; (3) 体会初始值和松弛因子的选择,对迭代收敛速度的影响 D . 实验方程组(1)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1-421534100368-24-3-81-012029137-2621-234179-11-1003524-31-23-6217758-6233-761-62911-31-512-301-231-2-2010563-5-6000121-3-2416084-0484⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125精确解T x )2,1,1,3,0,2,1,0,1,1(*--=.(2) 对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡45152211236601924-3-360024-3-36014110-3-5211144-3-310-4221-8-13-4-1-612-53-8-1141-2312-1-204204-2004204-2487654321x x x x x x x x 精确解T *)2,0,1,1,2,0,1,1(--=x . (3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡554141262135741-000000001-000000041-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-400000001-000000001-410987654321x x x x x x x x x x 精确解T x )1,1,0,3,2,1,0,3,1,2(*---=.E . 实验程序代码及截图(1) 应用Jacobi 迭代法求解方程组 代码如下:#include<iostream.h> #include<math.h>#define N 10 //十阶矩阵static double A[N][N]={4,2,-3,-1,2,1,0,0,0,0,8,6,-5,-3,6,5,0,1,0,0,4,2,-2,-1,3,2,-1,0,3,1,0,-2,1,5,-1,3,-1,1,9,4,-4,2,6,-1,6,7,-3,3,2,3,8,6,-8,5,7,17,2,6,-3,5,0,2,-1,3,-4,2,5,3,0,1,16,10,-11,-9,17,34,2,-1,2,2,4,6,2,-7,13,9,2,0,12,4,0,0,-1,8,-3,-24,-8,6,3,-1};//方程组左侧系数矩阵 static double B[N]={5,12,3,2,3,46,13,38,19,-21}; //右侧值。

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

昆明理工大学数值分析上机报告2

昆明理工大学数值分析上机报告2

函数插值方法(课题五)一、问题提出对于给定的一元函数 ()x f y = 的n+1个节点值 ()j j x f y =()n j ,,1,0Λ=。

试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。

数据如下:5计算()()99.0,596.0f f 的值。

(6 结果()≈8.1f 0.165299 ()≈15.6f 0.00213348 二、要求1、利用Lagrange 插值公式()k n k i i i k in k n y x x x x x L ⎪⎪⎪⎭⎫ ⎝⎛--∑=∏≠==00 编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、对此插值问题用Newton 插值多项式其结果如何。

2.作业环境(包括选用的程序语言、运行环境)本题中的插值多项式程序采用的编程语言为c++,因此运行环境可以在装有Microsoft VC++的windows XP 或2000的系统下运行程序。

3.数学(理论背景)描述在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的。

虽然其函数关系y=f(x)在某个区间[a ,b]上是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间[a ,b ]上一些离散点上的函数值、导数值等, 因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述。

还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。

插值法就是寻求近似函数的方法之一。

在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的 选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用。

数值分析上机报告资料

数值分析上机报告资料

数值分析上机报告姓名:学号:专业:联系电话:本次数值分析上机实习采用Matlab数学软件。

Matlab是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。

在数值分析应用中可以直接调用Matlab软件中已有的函数,同时用户也可以将自己编写的实用导入到Matlab函数库中方便自己调用。

基于Matlab数学软件的各种实用性功能与优点,本次数值分析实习决定采用其作为分析计算工具。

1.语言简洁,编程效率高因为MATLAB定义了专门用于矩阵运算的运算符,使得矩阵运算就像列出算式执行标量运算一样简单,而且这些运算符本身就能执行向量和标量的多种运算。

利用这些运算符可使一般高级语言中的循环结构变成一个简单的MATLAB语句,再结合MATLAB丰富的库函数可使变得相当简短,几条语句即可代替数十行C语言或Fortran语言语句的功能。

2. 交互性好,使用方便在MATLAB的命令窗口中,输入一条命令,立即就能看到该命令的执行结果,体现了良好的交互性。

交互方式减少了编程和调试的工作量,给使用者带来了极大的方便。

因为不用像使用C语言和Fortran语言那样,首先编写源,然后对其进行编译、连接,待形成可执行文件后,方可运行得出结果。

3. 强大的绘图能力,便于数据可视化MATLAB不仅能绘制多种不同坐标系中的二维曲线,还能绘制三维曲面,体现了强大的绘图能力。

正是这种能力为数据的图形化表示(即数据可视化)提供了有力工具,使数据的展示更加形象生动,有利于揭示数据间的内在关系在新版本中也加入了对C、FORTRAN、c++、JA V A的支持,使用时可以直接调用,也可将编写的实用程序导入到matlab函数库中方便以后使用时调用。

本次编程所用的软件为MATLAB,通过这次作业,对它有了初步的认识,以及对数值分析的体会更为深刻,希望为以后的学习和工作奠定一定的基。

目录1 必做题一插值法 (4)1.1题目 (4)1.2 分析过程 (4)1.3 计算结果 (5)1.4 结果分析 (6)2 必做题二雅格比法迭代与高斯-赛德尔迭代 (6)2.1题目 (6)2.2分析过程 (6)2.3计算结果 (7)2.4 结果分析 (8)3 选做题一 (8)3.1题目三次样条插值 (8)3.2分析过程 (8)3.3计算结果 (9)3.4 结果分析 (9)附录 (10)附录一:必做题一插值法代码 (11)附录二:必做题二雅格比法迭代与高斯-赛德尔迭代代码 (12)附录三:选做题一三次样条插值代码 (14)1 必做题一 插值法1.1题目某过程涉及两变量x 和y, 拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi 与yi 之间的对应数据如下,xi=1,2,…,10yi = 34.6588 40.3719 14.6448 -14.2721 -13.3570 24.8234 75.2795 103.5743 97.4847 78.2392(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。

数值分析上机作业(2)

数值分析上机作业(2)

一、数值求解如下正方形域上的Poisson 方程边值问题 2222(,)1,0,1(0,)(1,)(1),01(,0)(,1)0,01u u f x y x y x y u y u y y y y u x u x x ⎧⎛⎫∂∂-+==<<⎪ ⎪∂∂⎪⎝⎭⎨==-≤≤⎪⎪==≤≤⎩二、用椭圆型第一边值问题的五点差分格式得到线性方程组为2,1,1,,1,10,1,,0,141,?,?,?,?0,1i j i j i j i j i j ijj N j i i N u u u u u h f i j N u u u u i j N -+-+++----=≤≤====≤≤+, 写成矩阵形式Au=f 。

其中1.三 、编写求解线性方程组Au=f 的算法程序, 用下列方法编程计算, 并比较计算速度。

2.用Jacobi 迭代法求解线性方程组Au=f 。

3.用块Jacobi 迭代法求解线性方程组Au=f 。

4. 用SOR 迭代法求解线性方程组Au=f,用试算法确定最佳松弛因子。

1122N N v b v b u f v b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4114114ii A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭11,12,1,121,22,2,21,2,,2211,12,1,121,22,2,221,2,,(,,...,),(,,...,),......,(,,...,)(,,...,)?,(,,...,)?,......,(,,...,)?1,999,0.10.011T T N N TN N N N N T T N N T N N N N N v u u u v u u u v u u u b h f f f b h f f f b h f f f h N h N ====+=+=+===+取或则或,1,,1,2,...,i j f i j N== 1122NN A I I A A I I A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭5.用块SOR 迭代法求解线性方程组Au=f,用试算法确定最佳松弛因子。

数值分析上机实验报告

数值分析上机实验报告

一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。

同时,提高编程能力,加深对数值分析理论知识的理解。

二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。

其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。

重复此过程,直至满足精度要求。

2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。

其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。

3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。

其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。

4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。

其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。

四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。

通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。

本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。

二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。

三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。

通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。

2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。

通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。

3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。

通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。

四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。

根据二分法的原理,编写程序实现二分法求解方程的根。

(2)使用牛顿迭代法求解非线性方程的根。

根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。

2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。

根据拉格朗日插值法的原理,编写程序实现数据的插值。

(2)使用最小二乘法进行数据的逼近。

根据最小二乘法的原理,编写程序实现数据的逼近。

3. 数值积分(1)使用梯形法进行定积分的数值计算。

根据梯形法的原理,编写程序实现定积分的数值计算。

(2)使用辛普森法进行定积分的数值计算。

根据辛普森法的原理,编写程序实现定积分的数值计算。

五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。

结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.上机目的
1. 通过实际计算体会各种积分方法的精确度;会编写用龙贝格算法求定积分的程序。

2. 熟悉求解线性方程组的有关理论和方法;并会编制列主元消去法、LU 分解法。

二.上机环境
MATLAB 软件等。

三.上机内容
1.数值积分实验:复化积分、变步长积分;
2.线性代数方程组的直接解法:列主元消去法、LU 分解法。

四.实验内容
1、计算积分dx x ⎰+10211
①复化辛卜生公式
代码:
format long
fprintf('输入积分下限a 的值:\n')
a=input('a=');
fprintf('输入积分下上限b 的值:\n')
b=input('b=');
fprintf('输入区间分割次数n 的值:\n')
n=input('n=');
h=(b-a)/(2*n);
s1=0;s2=0;
i=a:h:b;
f=1./(1+i.^2);%被积函数
for t=1:n
s1=s1+f(2*t);
end
if n>=2
for t=1:n-1;
s2=s2+f(1+2*t);
end
else s2=0;
end
s=h/3*(f(1)+f(length(i))+4*s1+2*s2);
digits(6)
vpa(s)
结果:
输入积分下限a的值:
a=0
输入积分下上限b的值:
b=1
输入区间分割次数n的值:
n=2
ans =
0.785392
即:s(2)=0.785392
②变步长梯形法
代码:
a=0;b=1;%积分上下限
er=10^-6;%给定的误差
n=1;%初始分割数
h=b-a;%初始步长
T2=h/2*(1/(1+a^2)+1/(1+b^2)); T1=0;%给T1赋初值,保证进入循环while abs(T2-T1)>=er
s=0;
T1=T2;
for k=0:n-1
x=a+k*h+h/2;
s=s+1/(1+x^2);
T2=1/2*(T1+h*s);
end
h=h/2;
n=2*n;
end
digits(6)
fprintf('输出分割段数:')
disp(n)
fprintf('输出积分值:')
j=vpa(T2)
结果:
输出分割段数: 512
输出积分值:
j =
0.785398
2、 用列主元消去法求解方程组Ax=b
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=38126
5973274581221A ,b=⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡4911427。

代码: format short
%列主元高斯消去法
A=[1 2 -12 8;5 4 7 -2;-3 7 9 5;6 -12 -8 3];%系数矩阵 B=[27;4;11;49];%方程右端值
%选主元
n=length(A);%矩阵维数
for r=1:n
a=0;
for i=r:n
if a<=abs(A(i,r))
a=abs(A(i,r));
t=i;
end
end
%换行
if t~=r
p(1,:)=A(r,:);
A(r,:)=A(t,:);
A(t,:)=p(1,:);
q=B(r);
B(r)=B(t);
B(t)=q;
end
%消元
for i=r:n-1
for j=i+1:n
m(j)=A(j,r)/A(i,i);
A(j,:)=-A(i,:)*m(j)+A(j,:); B(j)=-m(j)*B(i)+B(j);
end
end
end
%求解x
for i=1:n
t=n-i+1;
x(t)=B(t);
for t1=t+1:n
x(t)=x(t)-A(t,t1)*x(t1);
end
x(t)=x(t)/A(t,t);
end
fprintf('输出x 解矩阵:\n')
disp(x')
结果:
输出x 解矩阵:
3.0000
-2.0000
1.0000
5.0000
3、用LU 分解法求解方程组Ax=b
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=122140
111
A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=156b 代码:
A=[1 1 1;0 4 -1;2 -2 1];%系数矩阵 B=[6;5;1];%方程右端值
n=length(A);%矩阵维数
U(1,:)=A(1,:);%U 矩阵第一行
for i=2:n
L(i,1)=A(i,1)/A(1,1);%L 矩阵第一列 end
%求出L,U 矩阵
for i=1:n
L(i,i)=1;
end
sum=0;sum1=0;
for r=2:n
sum=0;
for i=r:n
for k=1:r-1
sum=sum+L(r,k)*U(k,i);
end
U(r,i)=A(r,i)-sum;
end
if r~=n
sum1=0;
for i=r+1:n
for k=1:r-1
sum1=sum1+L(i,k)*U(k,r);
end
L(i,r)=(A(i,r)-sum1)/U(r,r);
end
end
end
%计算y的值
y(1)=B(1);
for i=2:n
sum2=0;
for k=1:i-1
sum2=sum2+L(i,k)*y(k);
end
y(i)=B(i)-sum2;
end
%计算x的值
x(n)=y(n)/U(n,n);
for t=1:n-1
i=n-t;
sum3=0;
for k=i+1:n
sum3=sum3+U(i,k)*x(k);
end
x(i)=(y(i)-sum3)/U(i,i);
end
fprintf('输出L矩阵:\n')
disp(L)
fprintf('输出U矩阵:\n')
disp(U)
fprintf('输出x解矩阵:\n')
disp(x')
结果:
输出L矩阵:
1 0 0
0 1 0
2 -1 1
输出U矩阵:
1 1 1
0 4 -1
0 0 -2
输出x解矩阵:
1
2
3。

相关文档
最新文档