铁力市外国语学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁力市外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 将函数)63sin(
2)(π+=x x f 的图象向左平移4
π
个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )
A .3)43sin(
2)(--=πx x g B .3)43sin(2)(++=π
x x g C .3)123sin(2)(+-=πx x g D .3)12
3sin(2)(--=π
x x g
【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.
2. 如图,正六边形ABCDEF 中,AB=2,则(
﹣
)•(
+
)=( )
A .﹣6
B .﹣2
C .2
D .6
3. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2
4. 设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足( )
A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
5. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
6. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12
B .10
C .9
D .8
7. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )
A .1
B .
C .2
D .4
8. 给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②线性回归直线一定经过样本中心点,;
③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;
④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1
B .2
C .3
D .4
9. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )
A .f (x )为奇函数
B .f (x )为偶函数
C .f (x )+1为奇函数
D .f (x )+1为偶函数
10.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )
A .(1,4]
B .(0,1]
C .[﹣1,1]
D .(4,+∞)
11.“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣
=1”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .不充分不必要条件
12.已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( )
A .8
B .﹣8
C .11
D .﹣11
二、填空题
13.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .
14.已知一个动圆与圆C :(x+4)2+y 2
=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .
15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23
π,23c a -=,则a 与
c
的夹角为__________,a c ⋅的最大值为 .
【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 16.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是(写出所有真命题的序号)
17.设集合A={x|x+m≥0},B={x|﹣2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为.18.在复平面内,复数与对应的点关于虚轴对称,且,则____.
三、解答题
19.已知a>0,b>0,a+b=1,求证:
(Ⅰ)++≥8;
(Ⅱ)(1+)(1+)≥9.
20.已知椭圆:的长轴长为,为坐标原点.
(Ⅰ)求椭圆C的方程和离心率;
(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.
21.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;
(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,
若不存在,说明理由.
22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,2
3
3-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:2
7
<
n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.
23.已知函数f(x)=log2(m+)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.
24.已知双曲线C:与点P(1,2).
(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;
(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.
铁力市外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4
π个单位得到函数)4(π
+x f 的图
象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4
(++π
x f
3)4
3sin(23]6)4(31sin[2++=+++=π
ππx x .
2. 【答案】D
【解析】解:根据正六边形的边的关系及内角的大小便得:
=
=
=2+4﹣
2+2=6. 故选:D .
【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.
3. 【答案】A 【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),
∴AB 是正方体的体对角线,AB=,
设正方体的棱长为x ,
则,解得x=4.
∴正方体的棱长为4,
故选:A .
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
4. 【答案】C
【解析】解:作出y=2x
和y=log
x 的函数图象,如图:
由图象可知当x0>a时,2>log x0,
∴f(x0)=2﹣log x0>0.
故选:C.
5.【答案】A
6.【答案】D
【解析】解:∵函数y=f(x)为
偶函数,且满足f(x+2)=﹣f(x),
∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),
∴偶函数y=f(x)
为周期为4的函数,
由x∈[0,2]时,
f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,
同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,
故选:D.
7.【答案】B
【解析】解:设圆柱的高为h,则
V圆柱=π×12×h=h,V球==,
∴h=.
故选:B.
8.【答案】B
【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;
②线性回归直线一定经过样本中心点(,),故②正确;
③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.
故选:B.
【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.
9.【答案】C
【解析】解:∵对任意x1,x2∈R有
f(x1+x2)=f(x1)+f(x2)+1,
∴令x1=x2=0,得f(0)=﹣1
∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,
∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],
∴f(x)+1为奇函数.
故选C
【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.
10.【答案】A
【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,
则a>lne=1,
若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,
则△=16﹣4a≥0,解得a≤4,
若命题“p∧q”为真命题,
则p,q都是真命题,
则,
解得:1<a≤4.
故实数a的取值范围为(1,4].
故选:A.
【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.
11.【答案】C
【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,
若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,
故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.
12.【答案】D
【解析】解:设{a n}是等比数列的公比为q,
因为a2=2,a3=﹣4,
所以q===﹣2,
所以a1=﹣1,
根据S5==﹣11.
故选:D.
【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.
二、填空题
13.【答案】(﹣∞,3].
【解析】解:f′(x)=3x2﹣2ax+3,
∵f(x)在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2﹣2ax+3≥0在[1,+∞)上恒成立.
则必有≤1且f′(1)=﹣2a+6≥0,
∴a≤3;
实数a的取值范围是(﹣∞,3].
14.【答案】+=1.
【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,
∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,
∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,
∵圆B经过点A(4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,
∵|AC|=8<10,
∴点B的轨迹是以A、C为焦点的椭圆,
设方程为(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.
故答案为:+=1.
π,18+
15.【答案】
6
【解析】
16.【答案】①②④
【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;
对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
17.【答案】m≥2.
【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},
又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.
故答案为m≥2.
18.【答案】-2
【解析】【知识点】复数乘除和乘方
【试题解析】由题知:
所以
故答案为:-2
三、解答题
19.【答案】
【解析】证明:(Ⅰ)∵a+b=1,a >0,b >0,
∴++=
=2(
)=2(
)
=2()+4≥4+4=8,(当且仅当a=b 时,取等号),
∴++
≥8;
(Ⅱ)∵(1+)(1+)=1+++,
由(Ⅰ)知, ++≥8,
∴1+++
≥9,
∴(1+)(1+)≥9.
20.【答案】
【解析】【知识点】圆锥曲线综合椭圆 【试题解析】(Ⅰ)因为椭圆C :,
所以,
,
故,解得
, 所以椭圆的方程为
.
因为, 所以离心率
.
(Ⅱ)由题意,直线的斜率存在,设点,
则线段的中点的坐标为
,
且直线的斜率
,
由点
关于直线的对称点为
,得直线
,
故直线的斜率为,且过点
,
所以直线的方程为:
,
令,得,则,
由,得,
化简,得.
所以
.
当且仅当,即时等号成立.
所以的最小值为.
21.【答案】
【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,
又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
22.【答案】
【解析】
23.【答案】
【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,
∴(x﹣1)(x﹣)>0,
若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);
若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);
若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).
(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.
所以,
解得:.
【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.
24.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…
当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2
≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.。