襄阳市人教版七年级上册数学期末试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
襄阳市人教版七年级上册数学期末试卷及答案
一、选择题
1.﹣3的相反数是( ) A .13
-
B .
13
C .3-
D .3
2.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9
B .327-
C .3-
D .(3)--
3.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则
COE ∠的度数为( )
A .50︒
B .130︒
C .50︒或90︒
D .50︒或130︒
4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )
A .208
B .480
C .496
D .592
5.方程3x +2=8的解是( ) A .3
B .
103
C .2
D .
12
6.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )
A .1010
B .4
C .2
D .1
7.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+
B .321x +
C .22x x -
D .3221x x -+
8.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查
9.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513
B .﹣511
C .﹣1023
D .1025
11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10
C .2.5
D .2
12.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记
作( ) A .0m
B .0.8m
C .0.8m -
D .0.5m -
二、填空题
13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________
14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)
…………
15.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个
b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++
⎫
⎪⎝⎭
元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.
16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需
____元.
17.若3750'A ∠=︒,则A ∠的补角的度数为__________. 18.已知23,9n m
n a
a -==,则m a =___________.
19.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.
20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.
22.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.
23.4是_____的算术平方根.
24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.
三、解答题
25.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.
(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______.
26.如图,点P 是线段AB 上的一点,请在图中完成下列操作. (1)过点P 画BC 的垂线,垂足为H ; (2)过点P 画AB 的垂线,交BC 于Q ; (3)线段 的长度是点P 到直线BC 的距离.
27.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).
28.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分∠BOF ,OE 平分∠COB . (1)求∠BOE 的度数;
(2)写出图中∠BOE 的补角,并说明理由.
29.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A .1.5小时以上;B .1~1.5小时;C .0.5~1小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题: (1)本次一共调查了多少名学生? (2)在图1中将选项B 的部分补充完整;
(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.
30.解方程: (1)2235x x -=+ (2)
2432
142
x x +-=- 四、压轴题
31.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.
()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;
()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2
=?
()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发
生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.
32.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点
P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
33.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.
(1)填空:AB = ,BC = ;
(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?
(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
2.B
解析:B
【解析】
【分析】
由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.
【详解】
解:,故排除A;
=3-,选项B正确;
C. 3-=3,故排除C;
--=3,故排除D.
D. (3)
故选B.
【点睛】
本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.
3.D
解析:D
【解析】
【分析】
⊥,利用垂直定义以及对顶角相等进行分析计算得出选由题意分两种情况过点O作OE AB
项.
【详解】
⊥,如图:
解:过点O作OE AB
由40BOD ∠=︒可知40AOC ∠=︒,
从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】
本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.
4.C
解析:C 【解析】 【分析】
由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】
解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,
16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
5.C
解析:C 【解析】 【分析】
移项、合并后,化系数为1,即可解方程. 【详解】
解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.
6.B
【解析】
【分析】
根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.
【详解】
解:由题意可得,
当x=1时,
第一次输出的结果是4,
第二次输出的结果是2,
第三次输出的结果是1,
第四次输出的结果是4,
第五次输出的结果是2,
第六次输出的结果是1,
第七次输出的结果是4,
第八次输出的结果是2,
第九次输出的结果是1,
第十次输出的结果是4,
……,
∵2020÷3=673…1,
则第2020次输出的结果是4,
故选:B.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.
7.B
解析:B
【解析】
A. 2x2x1
-+是二次三项式,故此选项错误;
B. 3
+是三次二项式,故此选项正确;
2x1
C. 2x2x
-是二次二项式,故此选项错误;
D. 32
-+是三次三项式,故此选项错误;
x2x1
故选B.
8.A
解析:A
【解析】
【分析】
根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;
B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;
C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;
D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,
故选A.
【点睛】
本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.
9.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
10.D
解析:D
【解析】
【分析】
观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.
【详解】
解:观察数据,找到规律:第n个数为(﹣2)n+1,
第10个数是(﹣2)10+1=1024+1=1025
故选:D.
【点睛】
此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.
11.A
解析:A
【解析】
【分析】
分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.
【详解】
①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,
解得:t=2;
(2)当两车相遇后,两车又相距50千米时,
根据题意,得120t+80t=450+50,
解得t=2.5.
综上,t的值为2或2.5,
故选A.
【点睛】
本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.
12.C
解析:C
【解析】
【分析】
首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.
【详解】
+,
解∵水位升高0.6m时水位变化记作0.6m
-,
∴水位下降0.8m时水位变化记作0.8m
故选:C.
【点睛】
本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二、填空题
13.7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解析:7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解得:a=7.
故答案为7.
考点:方程的解.
14.【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,
解析:83n -
【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.
【详解】
解:由题知:右上和右下两个数的和等于中间的数,
∴第4个正方形中间的数字m=14+15=29;
∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,
∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.
故答案为:29;8n-3
【点睛】
本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.
15.33
【解析】
【分析】
根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.
【详解】
解:设6斤重的西瓜卖x 元
解析:33
【解析】
【分析】
根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再
根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝
⎭元”可得出(12+6)斤重西瓜的定价. 【详解】
解:设6斤重的西瓜卖x 元,
则(6+6)斤重的西瓜的定价为:363(21)6
x x x =+++
元, 又12斤重的西瓜卖21元,
∴2x+1=21,解得x=10.
故6斤重的西瓜卖10元.
又18=6+12,
∴(6+12)斤重的西瓜定价为:6121021=3336⨯++
(元). 故答案为:33.
【点睛】
本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 16.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
17.【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵,
∴的补角=180°-=.
故填.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒
解析:14210'︒
【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵3750'A ∠=︒,
∴A ∠的补角=180°-3750'︒=14210'︒.
故填14210'︒.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒是60进制.
18.27
【解析】
【分析】
首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.
【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n ÷a2n −m =81÷3=2
解析:27
【解析】
【分析】
首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.
【详解】
解:∵a n =9,
∴a 2n =92=81,
∴a m =a 2n ÷a 2n−m =81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
19.60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.
【详解】
解:,,
,
平分,
.
故答案为60.
【点睛】
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.
【详解】
解:ABC 90∠=,CBD 30∠=,
ABD 120∠∴=,
BP 平分ABD ∠,
ABP 60∠∴=.
故答案为60.
【点睛】
角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.
20.-5
【解析】
【分析】
根据题意确定出a 的最大值,b 的最小值,即可求出所求.
【详解】
解:,
,
,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a 的最大值,b 的最小值,即可求出所求.
【详解】
解:459<<,
253∴<<,
a 2∴=,
b 3=,
则原式495=-=-,
故答案为5-
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
【解析】 【分析】 原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
22.11cm .
【解析】
【分析】
根据点为线段的中点,可得,再根据线段的和差即可求得的长.
【详解】
解:∵,且,,
∴,
∵点为线段的中点,
∴,
∵,
∴.
故答案为:.
【点睛】
本题考查了两点
解析:11cm .
【解析】
【分析】
根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.
【详解】
解:∵DC DB BC =-,且8DB =,5CB =,
∴853DC =-=,
∵点D 为线段AC 的中点,
∴3AD =,
∵AB AD DB =+,
∴3811()AB cm =+=.
故答案为:11cm .
【点睛】
本题考查了两点间的距离,解决本题的关键是掌握线段的中点.
23.【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
解析:【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
24.-7
【解析】
【分析】
先根据题意求出a 的值,再依此求出b 的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
【点睛】
本题考查探索与表
解析:-7
【解析】
【分析】
先根据题意求出a 的值,再依此求出b 的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
【点睛】
本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.
三、解答题
25.(1)画图见解析,点A1(0,5)、B1(-1,2)、C1(3,2);(2)15.
【解析】
【分析】
(1)将△ABC的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A1B1C1,根据网格特点,找到各点横纵坐标即可找到△A1B1C1三个顶点的坐标;
(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得.
【详解】
(1) △A1B1C1如图所示,点A1(0,5)、B1(-1,2)、C1(3,2);
(2)四边形A1ACC1的面积为:11
5353
22
⨯⨯+⨯⨯=15,
故答案为:15.
【点睛】
本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.
26.(1)详见解析;(2)详见解析;(3)PH.
【解析】
【分析】
利用尺规作出过一点作已知直线的垂线即可解决问题.
【详解】
解:(1)过点P画BC的垂线,垂足为H,如图所示;
(2)过点P画AB的垂线,交BC于Q,如图所示;
(3)线段PH的长度是点P到直线BC的距离.
故答案为PH.
【点睛】
本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
27.﹣32
3
.
【解析】
【分析】
原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】
解:原式=﹣8﹣2
3
+5=﹣3
2
3
.
【点睛】
此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键. 28.(1)30°;(2)∠BOE的补角有∠AOE和∠DOE.
【解析】
【分析】
(1)根据OC平分∠BOF,OE平分∠COB.可得∠BOE=∠EOC=1
2
∠BOC,∠BOC=
∠COF,进而得出,∠EOF=3∠BOE=90°,求出∠BOE;
(2)根据平角和互补的意义,通过图形中可得∠BOE+∠AOE=180°,再根据等量代换得出∠BOE+∠DOE=180°,进而得出∠BOE的补角.
【详解】
解:(1)∵OC平分∠BOF,OE平分∠COB.
∴∠BOE=∠EOC=1
2
∠BOC,∠BOC=∠COF,
∴∠COF=2∠BOE,
∴∠EOF=3∠BOE=90°,
∴∠BOE=30°,
(2)∵∠BOE+∠AOE=180°
∴∠BOE的补角为∠AOE;
∵∠EOC+∠DOE=180°,∠BOE=∠EOC,
∴∠BOE+∠DOE=180°,∴∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;
考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.
29.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.
【解析】
【分析】
(1)根据A类人数和占比即可求出总人数;
(2)用总人数减去A 类,C 类,D 类的人数得到B 类人数,即可补全图形;
(3)用3000乘以C 、D 类人数占比即可得出答案.
【详解】
解:(1)读图可得:A 类有60人,占30%;
则本次一共调查了60÷30%=200人;
(2)“B”有200﹣60﹣30﹣10=100人,如图所示;
(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%; 则3000×(15%+5%)=3000×20%=600人.
因此学校有600人平均每天参加体育锻炼在1小时以下.
【点睛】
本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.
30.(1)x=-7;(2)x=1
【解析】
【分析】
(1)直接移项合并同类项进而解方程得出答案;
(2)直接去分母,再移项合并同类项进而解方程得出答案.
【详解】
(1) 解:2352x x -=+
7x -=
7x =-
(2) 解:242(32)4x x +--=
24644x x +-+=
44x -=-
1x =
本题主要考查解一元一次方程,正确掌握解一元一次方程的方法是解题关键.
四、压轴题
31.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.
【解析】
【分析】
(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;
(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;
Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.
(3)由题意,1PQ AB 2
=
表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.
【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,
A ∴,
B 两点间的距离等于41620--=,线段AB 的中点表示的数为
41662
-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,
∴点P 表示的数为:43t -+,
点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,
∴点Q 表示的数为:162t -,
故答案为43t -+,162t -
()13PQ AB 2= ()43t 162t 10∴-+--=
t 2∴=或6
答:t 2=或6时,1PQ AB 2
= ()4线段MN 的长度不会变化,
点M 为PA 的中点,点N 为PB 的中点,
1PM PA 2∴=,1PN PB 2
=
()1MN PM PN PA PB 2
∴=-=- 1MN AB 102
∴== 【点睛】
本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.
32.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.
【详解】
解:(1)25- ,35
(2)设运动时间为x 秒
13x 2x 2535+=+
解得 x 4=
352427-⨯=
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,
∵25305-+=,
∴点P 所在的位置表示的数为5 .
(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,
∴点P 和点Q 一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
33.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析
【解析】
【分析】
(1)根据数轴上点的位置求出AB 与BC 的长即可,
(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,
(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.
【详解】 解:(1)AB =15,BC =20,
(2)设点N 移动x 秒时,点N 追上点M ,由题意得:
15322x x ⎛⎫=+ ⎪⎝
⎭, 解得15x =,
答:点N 移动15秒时,点N 追上点M .
(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是
25y --、103y -+、107y +,
∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,
∴BC -AB 的值不会随着时间的变化而改变.
【点睛】
本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,。