2020-2021备战中考数学圆与相似的综合热点考点难点及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021备战中考数学圆与相似的综合热点考点难点及详细答案
一、相似
1.如图①,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧,满足BP=BE,连接AP,CE.
(1)求证:△ABP≌△CBE.
(2)连接AD、BD,BD与AP相交于点F,如图②.
①当时,求证:AP⊥BD;
②当 (n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.
【答案】(1)证明:BC⊥直线l1,
∴∠ABP=∠CBE.
在△ABP和△CBE中,
(2)①证明:如图,延长AP交CE于点H.
∵△ABP≌△CBE,
∴∠PAB=∠ECB,
∴∠PAB+∠AEH=∠ECB+∠AEH=90°,
∴∠AHE=90°,
∴AP⊥CE.
∵,即P为BC的中点,直线l1∥直线l2,
∴△CPD∽△BPE,
∴,
∴DP=EP.
∴四边形BDCE是平行四边形,∴CE∥BD.
∵AP⊥CE,∴AP⊥BD.
②解:∵,∴BC=nBP,
∴CP=(n-1)BP.
∵CD∥BE,
∴△CPD∽△BPE,
∴.
令S△BPE=S,则S2=(n-1)S,
S△PAB=S△BCE=nS,S△PAE=(n+1)S.
∵,
∴S1=(n+1)(n-1)S,
∴.
【解析】【分析】(1)由已知条件用边角边即可证得△ABP≌△CBE;
(2)①、延长AP交CE于点H,由(1)知△ABP≌△CBE,所以可得∠PAB=∠ECB,而∠∠ECB+∠BEC=,所以可得∠PAB+∠BEC=,即∠AHE=,所以AP⊥CE;已知
=2,则点P为BC的中点,所以易证得BE=CD,由有一组对边平行且相等的四边形是平行四边形可得四边形BDCE是平行四边形,由平行四边形的性质可得CE∥BD,再根据平行线的性质即可求得AP⊥BD;
②方法与①类似,由已知条件易证得△CPD∽△BPE,则可得对应线段的比相等,然后可将△PAD的面积和△PCE的面积用三角形BPE的面积表示出来,则这两个三角形的比值即可求解。

2.如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC 于点G.
(1)求证:△EFG∽△AEG;
(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.
【答案】(1)证明:∵ ED=BD,
∴∠B=∠BED.
∵∠ACB=90°,
∴∠B+∠A=90°.
∵ EF⊥AB,
∴∠BEF=90°.
∴∠BED+∠GEF=90°.
∴∠A=∠GEF.
∵∠G是公共角,
∴△EFG∽△AEG
(2)解:作EH⊥AF于点H.
∵在Rt△ABC中,∠ACB=90°,BC=2,AC=4,
∴tanA= = ,
∴在Rt△AEF中,∠AEF=90°,tanA= = ,
∵△EFG∽△AEG,
∴ ,
∵ FG=x,
∴ EG=2x,AG=4x.
∴ AF=3x.
∵ EH⊥AF,
∴∠AHE=∠EHF=90°.
∴∠EFA+∠FEH=90°.
∵∠AEF=90°,
∴∠A+∠EFA=90°,
∴∠A=∠FEH,
∴ tanA =tan∠FEH,
∴在Rt△EHF中,∠EHF=90°,tan∠FEH= = ,∴ EH=2HF,
∵在Rt△AEH中,∠AHE=90°,tanA= = ,∴ AH=2EH,
∴ AH=4HF,
∴ AF=5HF,
∴ HF= ,
∴EH= ,
∴y= FG·EH= x· = 定义域:(0<x≤ )
(3)解:当△EFD为等腰三角形时,
①当ED=EF时,则有∠EDF=∠EFD,
∵∠BED=∠EFH,
∴∠BEH=∠AHG,
∵∠ACB=∠AEH=90°,
∴∠CEF=∠HEF,即EF为∠GEH的平分线,
则ED=EF=x,DG=8−x,
∵anA= ,
∴x=3,即BE=3;
②若FE=FD, 此时FG的长度是 ;
③若DE=DF, 此时FG的长度是 .
【解析】【分析】(1)因为ED=BD,所以∠B=∠BED.根据等角的补角相等可得∠A=∠GEF,而∠G是公共角,所以由相似三角形的判定可得△EFG∽△AEG;
(2)作EH⊥AF于点H.∠AEF=∠ACB=90°,∠A是公共角,所以可得AEF ACB,所以可得比例式,,由(1)得△EFG∽△AEG,所以可得比例式,,因为FG=x,所以EG=2x,AG=4x.则AF=3x,由同角的余角相等可得∠A=∠FEH,所以tanA =tan∠FEH,在Rt△EHF中,∠EHF=90°,tan∠FEH=,所以EH=2HF,在Rt△AEH中,同理可得AH=2EH,所以AH=4HF,AF=5HF,HF=x ,则EH= x ,△EFG
的面积y= FG·EH=x· x=,自变量的取值范围是0<x≤ ;
(3)当△EFD为等腰三角形时,分三种情况讨论:
①当ED=EF时,则有∠EDF=∠EFD,易得FG=3;
②若FE=FD, 易得FG=;
③若DE=DF, 易得FG=.
3.如图,AB为的直径,C为上一点,D为BA延长线上一点,.
(1)求证:DC为的切线;
(2)线段DF分别交AC,BC于点E,F且,的半径为5,
,求CF的长.
【答案】(1)解:如图,连接OC,
为的直径,





,即,
为的切线
(2)解:中,,,,,
,,
∽,

设,,
中,,

舍或,
,,

设,




∽,

,,
【解析】【分析】(1)要证DC为⊙O 的切线,需添加辅助线:连半径OC,证垂直,根据直径所对的圆周角是直角,可得出∠ BCO + ∠ OCA = 90°,再利用等腰三角形的性质,可得出∠ B = ∠BCO ,结合已知,可推出∠OCD=90°,然后利用切线的判定定理,可证得结论。

(2)根据已知圆的半径和sinB的值,可求出AB、BC的值,再证明△CAD ∽△BCD,得出对应边成比例,得出AD与CD的比值,利用勾股定理求出AD、CD的长,再利用∠CEF=45°去证明CE = CF ,然后证明△ CED ∽△ BFD ,得出对应边成比例,求出CF的长。

4.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;②推断: AG∶BE的值为:
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2 ,则BC=________.
【答案】(1)证明:∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形
(2)解:连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=cos45°= 、 =cos45°= ,
∴ = ,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG= BE
(3)
【解析】【解答】(1)②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为:;
( 3 )∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC= a,
则由得,
∴AH= a,
则DH=AD﹣AH= a,CH= = a,
∴由得,
解得:a=3 ,即BC=3 ,
故答案为:3 .
【分析】(1)①根据正方形的性质得出∠BCD=90°,∠BCA=45°,根据垂直的定义及等量代换得出∠CEG=∠CFG=∠ECF=90°,根据三个角是直角的四边形是矩形得出四边形CEGF是矩形,根据三角形的内角和得出∠CGE=∠ECG=45°,根据等角对等边得出EG=EC,根据有一组邻边相等的矩形是正方形即可得出四边形CEGF是正方形;②根据正方形的性质得出GE∥∥CD,根据平行于同一直线的两条直线互相平行得出GE∥AB,根据平行线分线段成比例定理得出GC∶EC=AG∶BE,根据等腰直角三角形的边之间的关系得出GC∶EC=,从而得出答案;
(2)连接CG,由旋转性质知∠BCE=∠ACG=α,根据余弦函数的定义得出
,,从而判断出△ACG∽△BCE,根据相似三角形对应边的比等于相似比即可得出结论线段AG与BE之间的数量关系为AG= BE ;
( 3 )根据∠CEF=45°,点B、E、F三点共线,由邻补角定义得出∠BEC=135°,根据△ACG∽△BCE,得出∠AGC=∠BEC=135°,故∠AGH=∠CAH=45°,然后判断出△AHG∽△CHA,根据相似三角形对应边成比例得出AG∶AC=GH∶AH=AH∶CH,设BC=CD=AD=a,则AC= a,根据比例式得出关于AH的方程,求解AH的值,根据DH=AD ﹣AH表示出DH,根据勾股定理表示出CH,根据前面的比例式得出关于a的方程,求解得出a的值,从而得出BC的值。

5.在平面直角坐标系中,抛物线经过点,、,,其中、
是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,
∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
6.如图,点E,F分别在矩形ABCD的边AB,BC上,连接EF,将△BEF沿直线EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如图1,当∠BEF=45°时,EH的延长线交DC于点M,求HM的长;
(2)如图2,当FH的延长线经过点D时,求tan∠FEH的值;
(3)如图3,连接AH,HC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.
【答案】(1)解:如图1中,
当时,易知四边形是正方形,
∵,,
,,

四边形是矩形,


.
(2)解:如图2中,连接 .
在中,,,

在中,
设,则,,
在中,,


(3)解:如图3中,连接,作于 .
,,




,,当的面积最小时,四边形的面积最小,
当与重合时,点到直线的距离最小,最小值,
的面积的最小值,
四边形的面积的最小值为 .
【解析】【分析】(1)当∠BEF=45°时,易知四边形EBFH是正方形,求出EM,EH的长即可解决问题.(2)如图2中,连接DE.利用勾股定理求出DE,DH,设BF=FH=x,在Rt△DFC 中,利用勾股定理即可解决问题.(3)如图3中,连接AC,作EM⊥AC于M.利用相似三角
形的性质求出EM,由S四边形AHCD=S△ACH+S△ADC, S△ACD= ×6×8=24,推出当△ACH的面积最小时,四边形AHCD的面积最小,可知当EH与EM重合时,点H到直线AC的距离最小,由此即可解决问题.
7.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【答案】(1)解:∵PD平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE
(2)解:如图,过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵PD平分∠APB,AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC= ,
∴cos∠BDF=cos∠APC= ,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=DF,
∴四边形ADFE是菱形,此时点F即为M点,
∵cos∠BAC=cos∠APC= ,
∴sin∠BAC= ,
∴,
∴DG= ,
∴菱形ADME的面积为:DG•AE=2× = .
【解析】【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相
似三角形的性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得
AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC= ,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
8.在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,求HQ的长.
(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;
(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.
【答案】(1)解:如图1中,
在△ABC中,∵∠ACB=90°,AB=25,BC=15,
∴AC==20,设HQ=x,
∵HQ∥BC,
∴,
∴AQ=x,
∵S△ABC=9S△DHQ,
∴ ×20×15=9× ×x× x,
∴x=5或﹣5(舍弃),
∴HQ=5,
故答案为5.
(2)解:如图2中,
由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,
∴∠AEF=∠MFE,
∴∠AEF=∠AFE,
∴AE=AF,
∴AE=AF=MF=ME,
∴四边形AEMF是菱形.
(3)解:如图3中,
设AE=EM=FM=AF=4m,则BM=3m,FB=5m,
∴4m+5m=25,
∴m=,
∴AE=EM=,
∴EC=20﹣=,
∴CM=,
∵QG=5,AQ=,
∴QC=,设PQ=x,
当时,△HQP∽△MCP,
∴,
解得:x=,
当=时,△HQP∽△PCM,

解得:x=10或,
经检验:x=10或是分式方程的解,且正确,
综上所,满足条件长QP的值为或10或.
【解析】【分析】(1)利用勾股定理求出AC,设HQ=x,根据S△ABC=9S△DHQ,构建方程即可解决问题;(2)想办法证明四边相等即可解决问题;(3)设AE=EM=FM=AF=4m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.
二、圆的综合
9.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.
(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;
(2)当⊙M与x轴相切时,求点Q的坐标;
(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.
【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8
.
【解析】(1)解:连接AM、BM,
∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点
∴AM=BM=PM=QM= 1
2 PQ,
∴A、B、P、Q四点在以M为圆心的同一个圆上。

(2)解:作MG⊥y轴于G,MC⊥x轴于C,
∵AM=BM
∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5
∴在点P运动的过程中,点M到x轴的距离始终为4.5
则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,
当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,
HB=9-3=6,设OP=HQ=x
由△BOP∽△QHB,得x2=3×6=8,x=3 2
∴点Q的坐标为(32,9)
(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)
∴M1M2=9
2
-3=
3
2
, Q1Q2=6-4=2
线段QM扫过的图形为梯形M1M2Q2Q1
其面积为:1
2
×(
3
2
+2)×4.5=
63
8
.
【解析】
【分析】
根据已知可得出三角形APQ和三角形BPQ都是直角三角形,再根据这个条件结合题意直接解答此题.
【详解】
(1)解:连接AM、BM,
∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= PQ,
∴A、B、P、Q四点在以M为圆心的同一个圆上。

(2)解:作MG⊥y轴于G,MC⊥x轴于C,
∵AM=BM
∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5
∴在点P运动的过程中,点M到x轴的距离始终为4.5
则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,
当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,
HB=9-3=6,设OP=HQ=x
由△BOP ∽△QHB ,得x 2=3×6=8,x =3
∴点Q 的坐标为(3 ,9) (3)解:由相似可得:当点P 在P 1(2,0)时,Q 1(4,9)则M 1(3,4.5)
当点P 在P 2(3,0)时,Q 2(6,9),则M 2(4.5,4.5)
∴M 1M 2= -3= , Q 1Q 2=6-4=2
线段QM 扫过的图形为梯形M 1M 2Q 2Q 1
其面积为:×(
+2)×4.5=.
【点睛】 本题主要考查学生根据题意能找到三角形APQ 和三角形BPQ 都是直角三角形,而且考验学生对相似三角形性质的运用,掌握探索题目隐含条件是解决此题的关键.
10.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;
()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;
()3如图3,在()2的条件下,当DG 3CE 4
=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.
【答案】(1)证明见解析(2)证明见解析(3)37
【解析】
【分析】
(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;
(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;
(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;
【详解】
()1证明:如图1中,
O Q e 与CE 相切于点C ,
OC CE ∴⊥,
OCE 90∠∴=o ,
D E 90∠∠∴+=o ,
2D 2E 180∠∠∴+=o ,
AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,
AOD 2E 180∠∠∴+=o .
()2证明:如图2中,作OR AF ⊥于R .
OCF F ORF 90∠∠∠===o Q ,
∴四边形OCFR 是矩形,
AF//CD ∴,CF OR =,
A AOD ∠∠∴=,
在AOR V 和ODG V 中,
A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,
AOR ∴V ≌ODG V ,
OR DG ∴=,
DG CF ∴=,
()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .
设DG 3m =,则CF 3m =,CE 4m =,
OCF F BTE 90∠∠∠===o Q ,
AF//OC//BT ∴,
OA OB =Q ,
CT CF 3m ∴==,
ET m ∴=,
CD Q 为直径,
CBD CND 90CBE ∠∠∠∴===o , E 90EBT CBT ∠∠∠∴=-=o ,
tan E tan CBT ∠∠∴=,
BT CT ET BT
∴=, BT 3m m BT
∴=, BT 3m(∴=负根已经舍弃),
3m tan E 3∠∴== E 60∠∴=o ,
CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,
H E 60∠∠∴==o ,
MON 2HCN 60∠∠∴==o ,
OM ON =Q ,
OMN ∴V 是等边三角形,
MN ON ∴=,
QM OB OM ==Q ,
MOQ MQO ∠∠∴=,
MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,
ON NP 141125∴==+=, CD 2ON 50∴==,MN ON 25==,
在Rt CDN V 中,2222CN CD DN 501448=-=-=,
在Rt CHN V 中,CN 48tan H 3HN HN
∠===, HN 163∴=,
在Rt KNH V 中,1KH HN 832==,3NK HN 242
==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,
HM HK MK 837∴=+=+.
【点睛】
本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.
11.如图1,在Rt △ABC 中,AC=8cm ,BC=6cm ,D 、E 分别为边AB 、BC 的中点,连结DE ,点P 从点A 出发,沿折线AD ﹣DE 运动,到点E 停止,点P 在AD 上以5cm/s 的速度运动,在DE 上以1cm/s 的速度运动,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN .设点P 的运动时间为t (s ).
(1)当点P 在线段DE 上运动时,线段DP 的长为_____cm .(用含t 的代数式表示) (2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S 与t 的函数关系式,并写出t 的取值范围.
(3)如图2,若点O 在线段BC 上,且CO=1,以点O 为圆心,1cm 长为半径作圆,当点P 开始运动时,⊙O 的半径以0.2cm/s 的速度开始不断增大,当⊙O 与正方形PQMN 的边所在直线相切时,求此时的t 值.
【答案】(1)t ﹣1;(2)S =﹣
38t 2+3t +3(1<t <4);(3)t =103
s . 【解析】
分析:(1)根据勾股定理求出AB ,根据D 为AB 中点,求出AD ,根据点P 在AD 上的速度,即可求出点P 在AD 段的运动时间,再求出点P 在DP 段的运动时间,最后根据DE 段运动速度为1c m/s ,即可求出DP ;
(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;
(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.
详解:(1)由勾股定理可知:AB =
22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,
∴DE =12AC =4,AD =12
AB =5, ∴点P 在AD 上的运动时间=
55
=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm . 故答案为t ﹣1.
(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.
当正方形的边长大于DP 时,重叠部分为五边形,
∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,
解得:t >1,∴1<t <4.
∵△DFN ∽△ABC ,∴
DN FN =AC BC =86=43
. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344
t -(), ∴FM =3﹣
344t -()=34
t , S =S 梯形FMHD +S 矩形DHQP , ∴S =
12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38
t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:
当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,
∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.
∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,
∴1+0.2t=5﹣t,解得:t=10
3
s.
②当圆与MN相切时,r=CM.
由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,
∴1+0.2t=8﹣t,解得:t=35
6
s.
∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=35
6
s(舍).
综上所述:当t=10
3
s时,⊙O与正方形PQMN的边所在直线相切.
点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.
12.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.
(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?
(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?
(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?
【答案】(1)52
2
-
;(2)52
-;(3)
2042
3
-
【解析】
分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;
(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;
(3)求出相切的时间,进而得出B点移动的距离.
详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,
如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,
设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,
由切线长定理可知C′E=C′D,
设C′D=x,则C′E=x,
∵△ABC是等腰直角三角形,
∴∠A=∠ACB=45°,
∴∠A′C′B′=∠ACB=45°,
∴△EFC′是等腰直角三角形,
∴2x,∠OFD=45°,
∴△OFD也是等腰直角三角形,
∴OD=DF,
∴2x+x=1,则2-1,
∴CC′=BD-BC-C′D=5-1-2-1)2,
∴点C 运动的时间为522-; 则经过522
-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,
A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,
∵CC′=2t ,DD′=t ,
∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,
由切线长定理得C′E=C′D′=4-t ,
由(1)得:4-t=2-1,
解得:t=5-2,
答:经过5-2秒△ABC 的边与圆第一次相切;
(3)由(2)得CC ′=(2+0.5)t=2.5t ,DD′=t ,
则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,
由切线长定理得C′E=C′D′=4-1.5t ,
由(1)得:4-1.5t=2-1,
解得:t=10223
-, ∴点B 运动的距离为2×1022-=2042-.
点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.
13.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P有_______个;
(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.
【答案】(1)无数;(2)(0,370,37
+3)0﹤m﹤2 3 .
【解析】
试题分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=1
2
∠ACB=1
2
×60°=30°,∴使∠APB=30°的点P
有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=1
2
AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG22
AC AG
-
=22
42
-
=23,∴点C的坐标为(3,23).
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,23),∴CD=3,OD=23.
∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,∴DP2=22
43
-=7.
∵点C为圆心,CD⊥P1P2,∴P1D=P2D=7,∴P1(0,23+7),P2(0,23﹣7).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=
2
AE
得:当AE
最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,
PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=2
3
,∴m的取值范围是
2
3
m
<<.
点睛:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
14.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
【答案】(1)见解析;(2)①1;②3.
【解析】
试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;
(2)①依据正方形的四条边都相等可知AD=OA;
②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.
试题解析:解:∵AM⊥AB,
∴∠OAD=90°.
∵OA=OC,OD=OD,AD=DC,
∴△OAD≌△OCD,
∴∠OCD=∠OAD=90°.
∴OC⊥CD,
∴CD是⊙O的切线.
(2)①∵当四边形OADC是正方形,
∴AO=AD=1.
故答案为:1.
②∵四边形OECB是菱形,
∴OE=CE.
又∵OC=OE,
∴OC=OE=CE.
∴∠CEO=60°.
∵CE∥AB,
∴∠AOD=60°.
在Rt△OAD中,∠AOD=60°,AO=1,
∴AD=.
故答案为:.
点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.
15.如图1,等腰直角△ABC中,∠ACB=90°,AC=BC,过点A,C的圆交AB于点D,交BC 于点E,连结DE
(1)若AD=7,BD=1,分别求DE,CE的长
(2)如图2,连结CD,若CE=3,△ACD的面积为10,求tan∠BCD
(3)如图3,在圆上取点P使得∠PCD=∠BCD(点P与点E不重合),连结PD,且点D 是△CPF的内心
①请你画出△CPF,说明画图过程并求∠CDF的度数
②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.
【答案】(1)DE=1,CE=32;(2)tan ∠BCD=
14
;(3)①135°;②2. 【解析】
【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;
(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;
(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出
114522
DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为
2c . 【详解】
(1)由图可知:
设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:
AC 2+BC 2=AB 2,
∵AB=AD+BD ,AD=7,BD=1,
∴x 2+x 2=82,
解得:x=2.
∵⊙O 内接四边形,∠ACD=90°,
∴∠ADE=90°,
∴∠EDB=90°,
∵∠B=45°,
∴△BDE 是等腰直角三形.
∴DE=DB ,
又∵DB=1,
∴DE=1,
又∵CE=BC-BE ,
∴CE=42232-=.
(2)如图所示:
在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=
12
y , 又∵CE=3,∴BC=3+y ,
∵S △ACB =S ACD +S DCB , ∴
()1114242103y y 222
⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).
∴EM=1,
CM=CE+ME=1+3=4,
又∵∠BCD=∠MCD ,
∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=
DM CM =14, ∴tan ∠BCD=14
. (3)①如下图所示:
过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .
∵∠CAD=45°,
∴∠CPD=∠CAD=45°,
又∵点D 是CPF ∆的内心,
∴PD 、CD 、DF 都是角平分线,
∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD
∴∠CPF=90°
∴∠PCF+∠PFC=90°
∴114522
DCF CFD PCF PFC ∠+∠=
∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,
即∠CDF 的度数为135°.
②如下图所示
过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,
∵点D 是△PCF 的内心,
∴DM=DN=DK ,
又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,
∴∠DCF+∠CFD=45°,
又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,
∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,
∴∠PCF+∠PFC=90°,
∴∠CPF=90°.
在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,
∴四边形PKDN 是矩形,
又∵KD=ND ,
∴四边形PKDN 是正方形.
又∵∠MBD=∠BDM=45°,
∠BDM=∠KDP ,
∴∠KDP=45°.
∵PC=a ,PF=b ,PD=c ,
∴PN=PK=
C 2,
∴NF=b c 2-,CK=a c 2
-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,
∴CF=
a b +,
又∵S △PCF =S △PDF +S △PDC +S △DCF ,
∴1111
ab a c b c (a b 222222=⨯+⨯++-)×c 2

化简得:)2a b c c +-------(Ⅰ),
又∵若(c )(c )=8
化简得:()2
ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,
解得:c =c =-

2==, 即△CPF 的内切圆半径长为2.
【点睛】
本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.
16.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.
【答案】AB =3.
【解析】
【分析】
作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r
,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可.
【详解】
作DE ⊥AC ,BF ⊥AC ,
∵BC =CD , ∴BC CD =u u u r u u u r , ∴∠CAB =∠DAC ,
∵∠DAB =120°,
∴∠DAC =∠CAB =60°,
∵DE ⊥AC ,
∴∠DEA =∠DEC =90°,
∴sin60°=4DE ,cos60°=4
AE , ∴DE =3AE =2,
∵AC =7,
∴CE =5,
∴DC ()2223537+=
∴BC 37,
∵BF ⊥AC ,
∴∠BFA =∠BFC =90°,
∴tan60°=BF AF
,BF 2+CF 2=BC 2, ∴BF
, ∴()22
2
7AF +-=, ∴AF =2或AF =
32, ∵cos60°=AF AB
, ∴AB =2AF ,
当AF =2时,AB =2AF =4,
∴AB =AD ,
∵DC =BC ,AC =AC ,
∴△ADC ≌△ABC (SSS ),
∴∠ADC =∠ABC ,
∵ABCD 是圆内接四边形,
∴∠ADC+∠ABC =180°,
∴∠ADC =∠ABC =90°,
但AC 2=49,2222453AD DC +=+
=,
AC 2≠AD 2+DC 2,
∴AB =4(不合题意,舍去), 当AF =
32
时,AB =2AF =3, ∴AB =3.
【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.。

相关文档
最新文档