福建省普通高中毕业班质量检查数学试卷(理科)
福建省普通高中毕业班质量检查理科数学(word版)
2015年福建省普通高中毕业班质量检查理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题),第II 卷第21题为选考题,其他题为必考题。
本试卷共5页,满分150分。
考试时间120分钟。
第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{0log 2}A x x =<<,{32,}x B y y x R ==+∈,则A B ⋂= ( ).{x 24}A x << .{x 14}B x << .{x 12}C x << .{x 4}D x >2. 执行如图所示的程序框图,则输出的结果为( )A .15 B. 16 C. 25 D.36 3. 21()n x x -展开式的二项式系数和为64,则其常数项为( )A .-20 B. -15 C. 15 D. 204.某校为了解本校高三学生学习心理状态,采用系统抽样方法从800人中抽取40人参加测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18.抽到的40人中,编号落入区间[1,200]的人做试卷A,编号落入区间[201,560]的人做试卷B ,其余的人做试卷C. 则做试卷C 的人数为 ( )A .10 B. 12 C. 18 D. 285.已知双曲线C 的中心在原点,焦点在x 轴上,若双曲线C 的一条渐近线的倾斜角等于60︒,则双曲线C 的离心率等于 ( )AD. 2 6. 函数cos(sin )y x =的图象大致是 ( )7.已知集合10A (x,y)30,1x y x y x ⎧⎫+-≤⎧⎪⎪⎪=--≤⎨⎨⎬⎪⎪⎪≥⎩⎩⎭,{}222(,)(2)(2),0B x y x y R R =-+-≤>且A B ⋂≠∅,则R 的最小值为( ).2AB .3C .5D 8. 在ABC ∆中,AB=3 ,AC=4 , BC=5 . 若I 为ABC ∆的内心,则CI CB 的值为( )A . 6 B. 10 C. 12 D. 159. (n N)n A ∈系列的纸张规格如图,其特点是:①012,,,...,n A A A A 所有规格的纸张的长宽比都相同;②0A 对裁后可以得到两张1A ,1A 对裁后可以得到两张2A ,…,1n A -对裁后可以得到两张n A若有每平方厘米重量为b 克的012,,,...,n A A A A 纸各一张,其中4A 纸的较短边的长为a 厘米,记这(1)n +张纸的重量之和为1n S +,则下列论断错误的是( )A. 存在n N ∈,使得21n S b +=B. 存在n N ∈,使得21n S b +=C .对于任意n N ∈,都有21n S b +≤ D. 对于任意n N ∈,都有21n S b +≥10. 定义在(0,)+∞上的可导函数()f x 满足'()()xf x f x x -=,且(1)1f = . 现给出关于函数()f x 的下列结论:①函数()f x 在1(,)e +∞上单调递增;②函数()f x 的最小值为21e -; ③函数()f x 有且只有一个零点; ④对于任意0x >,都有2()f x x ≤其中正确结论的个数是 ( )A. 1 B .2 C. 3 D. 4第II 卷(非选择题共100分)二.填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置11. 已知z C ∈且(1i)i z =+,则z 等于______________________12. 设等差数列{}n a 的前n 项和为S n ,且2412a a +=,则5S 等于__________________13. 在ABC ∆中,6ABC π∠=,AB =3BC =. 若在线段BC 上任取一点D ,则BAD ∠为锐角的概率是________________14. 正方体1111ABCD A B C D -的棱长为2,则三棱锥1B ABC -与三棱锥111B A B C -公共部分的体积是____________15. 定义在R 上的函数()f x 满足:()()f x f x -=,(2)(2)f x f x +=-. 若曲线()y f x =在1x =-处的切线方程为30x y -+= ,则该曲线在5x =处的切线方程为_____三.解答题:本大题共6小题共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分) 已知函数1()sin cos cos 22f x x x x =+ (1) 若tan 2θ=, 求()f θ的值;(2) 若函数()y g x =的图象是由函数()y f x =的图象上所有的点向右平移4π个单位长度而得到,且()g x 在区间(0,m)内是单调函数,求实数m 的最大值.17.(本小题满分13分)如图,四棱锥P ABCD -的底面为直角梯形,90BAD ∠=︒,PD ABCD ⊥平面,3AD AB PD ===,1BC =. 过AD 作一平面分别交PB ,PC 于点E F ,.(1)求证://AD EF ;(2)设13BE BP =,求AE 与平面PBC 所成的角的大小.18. (本小题满分13分)“抢红包”的网络游戏给2015年的春节增添了一份趣味.“抢红包”有多种玩法,小明参加了一种接龙红包游戏:小明在红包里装了9元现金,然后发给朋友A ,并给出金额所在区间[1,9],让A 猜(所猜金额为整数元;下同),如果A 猜中,A 将获得红包里的金额;如果A 未猜中,A 要将当前的红包转发给朋友B ,同时给出金额所在区间[6,9],让B 猜,如果B 猜中,A 和B 可以平分红包里的金额;如果B 未猜中,B 要将当前的红包转发给朋友C ,同时给出金额所在区间[8,9],让C 猜,如果C 猜中,A 、B 和C 可以平分红包里的金额;如果C 未猜中,红包里的资金将退回至小明的帐户.(Ⅰ)求A 恰好得到3元的概率;(Ⅱ)设A 所获得的金额为X 元,求X 的分布列及数学期望;(Ⅲ)从统计学的角度而言,A 所获得的金额是否超过B 和C 两人所获得的金额之和?并说明理由.19.(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F 及椭圆的短轴端点为顶点的三角形是等边三角形,椭圆的右顶点到右焦点的距离为1 .(1) 求椭圆E 的方程;(2) 如图,直线l 与椭圆E 有且只有一个公共点M ,且交y轴于点P ,过点M作垂直于l 的直线交y 轴于点Q .求证:12,,,,F Q F M P 五点共圆.20.(本小题满分14分) 已知函数2*2()()1n nx ax f x a N x -=∈+的图象在点(0,(0))n f 处的切线方程为y x =- (Ⅰ)求a 的值及1()f x 的单调区间;(Ⅱ)是否存在实数k ,使得射线(3)y kx x =≥-与曲线1()y f x =有三个公共点?若存在,求出k 的取值范围;若不存在,说明理由.(Ⅲ)设12,...n x x x ,,为正实数,且12...1n x x x +++=, 证明:12()()...()0n n n n f x f x f x +++≥21. 本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分. 如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换已知曲线C: 223x xy y -+=,2222M ⎛ = - ⎝⎭,且曲线C 在矩阵M 对应的变换的作用下得到曲线'C . (Ⅰ)求曲线'C 的方程 (Ⅱ)求曲线C 的离心率及焦点坐标.(2)(本小题满分7分)选修4-4:极坐标与参数方程在平面直角坐标系xoy 中,点M 的坐标为(1,2)-.在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为cos sin 10ρθρθ+-=.(Ⅰ)判断点M 与直线l 的位置关系;(Ⅱ)设直线l 与抛物线2y x =相交于A ,B 两点,求点M 到A ,B 两点的距离之积.(3)(本小题满分7分)选修4-5: 不等式选讲 设函数()1f x x =+.(Ⅰ)若2()(6)f x f x m m +-≥+对任意x R ∈恒成立,求实数m 的取值范围;(Ⅱ)当14x -≤≤。
福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题(带答案解析)
福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题1.已知集合{}012M =,,,{}2|20N x x x =∈+-≤Z ,则M N =I ( ) A .{}1,0,1- B .{}0,1 C .{}0,1,2 D .{}2,1,0,1-- 2.若x yi +(,)x y ∈R 与31i i +-互为共轭复数,则x y +=( ) A .0 B .3C .-1D .4 3.某旅行社调查了所在城市20户家庭2019年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的众数和中位数分别是( )A .1.4,1.4B .1.4,1.5C .1.4,1.6D .1.62,1.6 4.记n S 为等差数列{}n a 的前n 项和.已知25a =-,416S =-,则6S =( ) A .-14 B .-12 C .-17 D .125.5(3)(2)x x +-的展开式中4x 的系数为( )A .10B .38C .70D .2406.已知函数41()2x x f x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b << 7.松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的5x =,2y =,则输出的n 的值为( )A .4B .5C .6D .78.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( )A .[]1,1-B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1- 9.已知函数()sin 2cos 2f x a x b x =-,0ab ≠.当x ∈R 时()3f x f π⎛⎫≤⎪⎝⎭,则下列结论错误..的是( ) A.a B .012f π⎛⎫= ⎪⎝⎭C .2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭D .42155f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭10.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5n f ()*n N ∈的前2020项的和为( ) A .101051+ B .1010514- C .1010512- D .101051- 11.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BDB .11BC BD ⊥ C .三棱锥11C B CE -的体积为13 D .异面直线1B C 与BD 所成的角为60︒12.若双曲线C :221x y m n+=(0)mn <绕其对称中心旋转3π可得某一函数的图象,则C 的离心率可以是( )A .3B .43CD .213.已知向量(1,1)a =r ,(1,)b k =-r ,a b ⊥r r ,则a b +=r r _________.14.在数列{}n a 中,11a =,23a =,21n n a a +=,则20192020a a +=____________. 15.设F 是抛物线E :23y x =的焦点,点A 在E 上,光线AF 经x 轴反射后交E 于点B ,则点F 的坐标为___________,||4||AF BF +的最小值为__________.16.直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,1AA =点M 是侧面11BCC B 内的动点(不含边界),AM MC ⊥,则1A M 与平面111BCC B 所成角的正切值的取值范围为__________.17.在平面四边形ABCD 中,2ABC π∠=,2DAC ACB ∠=∠,3ADC π∠=.(1)若6ACB π∠=,BC =BD ;(2)若DC =,求cos ACB ∠.18.如图1,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,E 为CD 的中点,以BE 为折痕将BCE ∆折起到PBE ∆的位置,使得平面PBE ⊥平面ABED ,如图2.(1)证明:平面PAB ⊥平面PBE ;(2)求二面角B PA E --的余弦值.19.已知(1,0)F 是椭圆C :22221x y a b+=(0)a b >>的焦点,点31,2P ⎛⎫ ⎪⎝⎭在C 上. (1)求C 的方程;(2)斜率为12的直线l 与C 交于()11,A x y ,()22,B x y 两点,当1212340x x y y +=时,求直线l 被圆224x y +=截得的弦长.20.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有A 材料、B 材料供选择,研究人员对附着在A 材料、B 材料上再结晶各做了50次试验,得到如下等高条形图.(1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV 胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为12,第三个环节生产合格的概率为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标? 附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.已知函数2()sin 2x f x e x ax x =+--.(1)当0a =时,求()f x 的单调区间;(2)若0x =为()f x 的极小值点,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为,4x t y =⎧⎪⎨=-⎪⎩(t 为参数),圆C 的方程为22(1)1y x +-=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程;(2)过O 且倾斜角为α的直线与l 交于点A ,与C 交于另一点B ,若5612ππα≤≤,求||||OB OA 的取值范围. 23.记函数1()212f x x x =++-的最小值为m . (1)求m 的值;(2)若正数a ,b ,c 满足abc m =,证明:9ab bc ca a b c++≥++.参考答案1.B【解析】【分析】用列举法写出集合N ,再根据交集的定义写出M N ⋂.【详解】解:因为{}2|20N x x x =∈+-≤Z所以{}2,1,0,1N =--, 又{}012M =,, {}0,1M N ∴=I故选:B【点睛】本题考查了交集的运算问题,属于基础题.2.C【解析】【分析】 计算3121i i i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121i i i+=+-Q ,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.3.B【解析】【分析】根据众数和中位数的定义解答即可;【详解】解:依题意可得则组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5,故选:B【点睛】本题考查求几个数的众数与中位数,属于基础题.4.B【解析】【分析】设等差数列{}n a 的公差为d ,依题意列出方程组,再根据前n 项和公式计算可得;【详解】解:设等差数列{}n a 的公差为d ,则()14154414162a d S a d +=-⎧⎪⎨⨯-=+=-⎪⎩解得172a d =-⎧⎨=⎩,所以()616616122S a d ⨯-=+=- 故选:B【点睛】本题考查等差数列的通项公式及求和公式的应用,属于基础题.5.A【解析】【分析】首先求出二项式5(2)x -展开式的通项为()5152rr r r T C x -+=-,再令53r -=,54-=r 分别求出系数,由555(3)(2)(2()3)2x x x x x +--=+-即可得到展开式中4x 的系数.【详解】解:因为555(3)(2)(2()3)2x x x x x +--=+-,而5(2)x -展开式的通项为()5152rr r r T C x -+=-,当54-=r 即1r =时,()114425210T C x x =-=-,当53r -=即2r =时,()223335240T C x x =-=故5(3)(2)x x +-的展开式中4x 的系数为()4031010+⨯-= 故选:A【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.6.A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】 解:因为41()222x x x x f x --==-,定义域为R ,()()22x x f x f x --=-=- 故函数是奇函数,又2x y =在定义域上单调递增,2xy -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20<所以()()()0.30.30.320.2log 2f f f >> 即a b c >>故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.7.A【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:当1n =时,152x =,4y =,满足进行循环的条件,当2n =时,454x =,8y =满足进行循环的条件, 当3n =时,1358x =,16y =满足进行循环的条件, 当4n =时,40516x =,32y =不满足进行循环的条件, 故输出的n 值4.故选:A .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D【解析】【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=,()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减,()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==, ∴a 的取值范围为[]2ln 22,1-.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.9.D 【解析】 【分析】依题意,利用辅助角公式得到()()2f x x ϕ=-,且3f π⎛⎫⎪⎝⎭是()f x 的最大值,从而sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ,即可得到()2sin 26f x b x π⎛⎫=- ⎪⎝⎭,从而一一验证可得; 【详解】解:因为()()sin 2cos 22f x a x b x x ϕ=-=-,其中sin ϕ=,cos ϕ=0ab ≠.当x ∈R 时()3f x f π⎛⎫≤ ⎪⎝⎭,所以3x π=是图象的对称轴,此时,函数取得最大值sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ;则1sin 2ϕ==,cos ϕ==,所以a ,故A 正确;()2sin 26f x b x π⎛⎫∴=- ⎪⎝⎭,则2sin 2012126f b πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 17172sin 22sin 22sin 2sin 556563030f b b b b πππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=⨯--=⨯--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,221317172sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即C 正确; 22192sin 22sin 55630f b b ππππ⎛⎫⎡⎤∴=⨯-=⎪⎢⎥⎝⎭⎣⎦4421332sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故42155f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,即D 错误; 故选:D 【点睛】本题考查辅助角公式及三角函数的性质的应用,属于中档题. 10.D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 11.ABD 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一验证即可; 【详解】解:如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-u u u u r ,()11,1,1BD =-u u u u r ,()1,1,0BD =-u u u r ,()11,0,1BA =-u u u r所以()111011110B C BD =-⨯+⨯+-⨯=u u u r u u u r u g ,即11BC BD ⊥u u u r u u ur u ,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=u u u r u u u r g,1B C =u u u rBD =u u u r,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BD θ==u u u r u u u u ur g u u u r r g u ,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =r ,则1·0·0n BA n BD ⎧=⎨=⎩u u u v v u u u v v ,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =r ,则()10111110n B C =⨯+⨯+⨯-=r u u u r g ,即1C n B ⊥r u u u r,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选:ABD【点睛】本题考查空间向量法在立体几何中的应用,属于中档题. 12.AD 【解析】 【分析】利用双曲线旋转后是函数的图象,求出渐近线的斜率,然后求解双曲线的离心率即可.【详解】解:当0m >,0n <时,由题意可知双曲线的渐近线的倾斜角为:6π,所以斜率为:3,可得:13m n =-,所以双曲线的离心率为:2e ==.当0m <,0n >时,由题意可知双曲线的渐近线的倾斜角为:6π,=3n m =-,所以双曲线的离心率为:e ==. 故选:AD . 【点睛】本题考查双曲线的简单性质的应用,属于中档题. 13.2 【解析】 【分析】由a b ⊥r r得0a b ⋅=r r ,算出1k=,再代入算出a b +r r即可.【详解】Q (1,1)a =r ,(1,)b k =-r ,a b ⊥r r,10a b k ∴⋅=-+=r r ,解得:1k =,()0,2a b ∴+=r r,则2a b +=r r .故答案为:2 【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算. 14.43【解析】 【分析】由递推公式可以先计算出前几项,再找出规律,即可得解; 【详解】解:因为11a =,23a =,21n n a a +=,所以131a a =,即31a =,241a a =,所以413a =351a a =,所以51a =, 461a a =,所以63a =L L由此可得数列{}n a 的奇数项为1,偶数项为3、13、3、13L L 所以2019202014133a a +=+= 故答案为:43【点睛】本题考查由递推公式研究函数的性质,属于基础题. 15.3,04⎛⎫ ⎪⎝⎭ 274【解析】 【分析】首先由抛物线的解析式直接得到焦点坐标,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立直线与抛物线方程,可得根与系数的关系,利用1233||4||444AF BF x x ⎛⎫+=+++ ⎪⎝⎭以及基本不等式计算可得; 【详解】解:因为23y x =,23p =,所以32p =,故焦点F 的坐标为3,04⎛⎫⎪⎝⎭,根据抛物线的性质可得B 点关于x 轴对称的点1B 恰在直线AF 上,且1||||B F BF =,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立得2343y k x y x⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,化简的22223930216k x k x k ⎛⎫-++= ⎪⎝⎭, 所以12916x x =,所以121233151527||4||4444444AF BF x x x x ⎛⎫+=+++=++≥= ⎪⎝⎭ 当且仅当124x x =时取等号,当直线1AB 的斜率不存在时,A 点与B 点重合,15||4||52AF BF p +==,综上可得||4||AF BF +的最小值为274故答案为:3,04⎛⎫ ⎪⎝⎭;274. 【点睛】本题考查抛物线的定义标准方程及其性质,直线与抛物线相交问题,焦点弦的相关性质与基本不等式的应用,属于中档题.16.⎤⎥⎝⎦【解析】如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<,由AM MC ⊥,则0AM MC =u u u u r u u u u rg ,即可得到动点M 的轨迹方程,连接1A M ,1B M ,则11A MB Ð为1A M 与平面11BCC B 所成角,从而11111tan A B A MB MB ∠=,即可求出1A M 与平面111BCC B 所成角的正切值的取值范围;【详解】解:如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<则(4,4,AM x z =--u u u u r,(,0,CM x z =-u u u u r,因为AM MC ⊥,所以0AM MC =u u u u r u u u u rg ,()(240x x z -+-=,即()(2224x z -+-=,(0z <<,连接1A M ,1B M,则12B M ≤<以111142MB <≤, 依题意可得11A B ⊥面11BCC B ,则11A MB Ð为1A M 与平面11BCC B所成角,1111114tan 27A B A MB MB MB ⎛⎤∠==∈ ⎥ ⎝⎦故答案为:27⎛⎤⎥ ⎝⎦本题考查空间向量法解决立体几何问题,线面角的计算,属于中档题. 17.(1)BD =2)3cos 4ACB ∠=【解析】 【分析】(1)在Rt ABC ∆中,由已知条件求出相关的边与角,由倍角关系推导求出ADC ∆为等边三角形,再利用余弦定理即求出BD =.(2)由题目已知条件2DAC ACB ∠=∠,可将所要的角转化到ACD ∆中,再将AC 用Rt ABC ∆中边角来表示,利用正弦定理及三角恒等变换求解即可得.【详解】解:(1)在Rt ABC ∆中,由6ACB π∠=,BC =1AB =,3BAC π∠=,2AC =又23DAC ACB π∠=∠=,3ADC π∠=,所以ADC ∆为等边三角形,所以2AD =在ABD ∆中,由余弦定理得,2222cos BD AB AD AB AD BAD =+-⨯⨯∠, 即222212212cos73BD π=+-⨯⨯⨯=,解得BD =(2)设ACB θ∠=,AB x =, 则2DAC θ∠=,DC =,在Rt ABC ∆中,sin sin AB xAC θθ==, 在ACD ∆中,根据正弦定理得,sin sin ACDAC D A CC D =∠∠,sin sin 3xθπ=,sinsin 23sin x πθθ⋅=⋅2sin cos sin xθθθ=⋅解得3cos 4θ=,即3cos 4ACB ∠=【点睛】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证能力和运算求解能力等,考查数形结合思想和化归与转化思想等,体现综合性与应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注.18.(1)证明见解析(2)7【解析】 【分析】(1)依题意可得PE BE ⊥,由面面垂直的性质可得PE ⊥平面ABCD ,从而得到PE AB ⊥,再证AB BE ⊥,即可得到AB ⊥平面PBE ,从而得证;(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,利用空间向量求二面角的余弦值; 【详解】解:(1)依题意知,因为CD BE ⊥,所以PE BE ⊥, 当平面PBE ⊥平面ABED 时,平面PBE ⋂平面ABCD BE =,PE ⊂平面PBE , 所以PE ⊥平面ABCD ,因为AB Ì平面ABCD ,所以PE AB ⊥,由已知,BCD ∆是等边三角形,且E 为CD 的中点, 所以BE CD ⊥,//AB CD ,所以AB BE ⊥,又PE BE E ⋂=,PE ⊂平面PBE ,BE ⊂平面PBE ,所以AB ⊥平面PBE ,又AB Ì平面PAB ,所以平面PAB ⊥平面PBE .(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,则(0,0,0)E ,(0,0,1)P,B,A ,(0,0,1)EP =u u u r,EA =u u u r ,(2,0,0)BA =u u u r,1)PA =-u u u r,设平面PAB 的一个法向量()111,,m x y z =u r ,平面PAE 的一个法向量()222,,n x y z =r由00BA m PA m ⎧⋅=⎨⋅=⎩u u u v vu u u v v得11112020x x z =⎧⎪⎨+-=⎪⎩;令11y =,解得1z =10x =,所以m =u r,由00EP n EA n ⎧⋅=⎨⋅=⎩u u u v vu u u v v得222020z x =⎧⎪⎨+=⎪⎩;令22y =-,解得2x =,20z =,所以2,0)n =-r,cos ,7m n m n m n ⋅====-⋅u r ru r r u r r .. 【点睛】本小题考查线面垂直的判定与性质、二面角的求解及空间向量的坐标运算等基础知识,考查空间想象能力、推理论证及运算求解能力,考查化归与转化思想、数形结合思想等,体现基础性、综合性与应用性,导向对发展数学抽象、逻辑推理、直观想象等核心素养的关注.19.(1)22143x y +=(2【解析】 【分析】(1)由已知可得221a b -=,再点31,2P ⎛⎫⎪⎝⎭在椭圆上得到方程组,解得即可; (2)设直线l 的方程为12y x t =+,联立直线与椭圆,列出韦达定理,由1212340x x y y +=,解得22t =,再由点到线的距离公式及勾股定理计算可得; 【详解】解:(1)由己知得221a b -=, 因点31,2P ⎛⎫⎪⎝⎭在椭圆上,所以221914a b += 所以24a =,23b =所以椭圆C 的方程为:22143x y +=(2)设直线l 的方程为12yx t =+, 联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 得2230x tx t ++-=, ()222431230t t t ∆=--=->,解得24t <,12x x t +=-,2123x x t =-,由1212340x x y y +=,即12121134022x x x t x t ⎛⎫⎛⎫+++=⎪⎪⎝⎭⎝⎭, 所以()21212220x x t x x t +++=(*).将12x x t +=-,2123x x t =-代入(*)式,解得22t =,由于圆心O到直线l的距离为d==,所以直线l被圆O截得的弦长为5l===.【点睛】本小题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想、数形结合思想、函数与方程思想等,体现基础性、综合性与创新性,导向对发展逻辑推理、直观想象、数学运算、数学建模等核心素养的关注. 20.(1)填表见解析;有99%的把握认为试验成功与材料有关(2)定价至少为2.2万元/吨【解析】【分析】(1)写出列联表,根据列联表求出2K的观测值,结合临界值表可得;(2)生产1吨的石墨烯发热膜,所需的修复费用为X万元,易知X可取0,0.1,0.2,0.3,0.4,0.5,然后根据独立重复事件的概率公式计算概率,写出分布列后求出期望即可.【详解】解:(1)根据所给等高条形图,得列联表:2K的观测值2100(4520530)1250507525k⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元. 易知X 可取0,0.1,0.2,0.3,0.4,0.5.202122(0)2312P X C ⎛⎫==⨯= ⎪⎝⎭,212124(0.1)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 222122(0.2)2312P X C ⎛⎫==⨯= ⎪⎝⎭,202111(0.3)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 212112(0.4)2312P X C ⎛⎫==⨯= ⎪⎝⎭,222111(0.5)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 则X 的分布列为:修复费用的期望:111111()00.10.20.30.40.50.263612612E X =⨯+⨯+⨯+⨯+⨯+⨯=. 所以石墨烯发热膜的定价至少为0.211 2.2++=万元/吨,才能实现预期的利润目标. 【点睛】本小题主要考查等高条形图、独立性检验、分布列与期望等基础知识,考查数据处理能力、运算求解能力、应用意识等,考查统计与概率思想等,考查数学抽象、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.21.(1)递增区间为(0,)+∞,递减区间为(0,)+∞(2)12a ≤ 【解析】 【分析】(1)首先求出函数的导函数()cos 2x f x e x '=+-,记()()g x f x '=,则()sin xg x e x '=-,分析()g x 的单调性,即可求出函数的单调性;(2)依题意可得(0)0f '=,记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-,利用导数分析()h x '的单调性,即可得到()cos x h x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点,即()sin 2x g x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-,再对a 分类讨论可得;【详解】解:(1)当0a =时,()cos 2xf x e x '=+-, 记()()g x f x '=,则()sin xg x e x '=-,当0x >时,e 1x >,1sin 1x -≤≤,所以()sin 0xg x e x '=->,()g x 在(0,)+∞单调递增,所以()(0)0g x g >=,因为()()0f x g x '=>,所以()f x 在(0,)+∞为增函数;当0x <时,1x e <,1cos 1x -≤≤,所以()cos 20xf x e x '=+-<, 所以()f x 在(0,)+∞为减函数.综上所述,()f x 的递增区间为(0,)+∞,递减区间为(0,)+∞.·(2)由题意可得()cos 22xf x e x ax '=+--,(0)0f '=. 记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-.下面证明()cos xh x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点:令()()x h x ϕ'=,则()sin xx e x ϕ'=+在,02π⎛⎫- ⎪⎝⎭是增函数,所以()(0)2x πϕϕϕ⎛⎫'''-<< ⎪⎝⎭.又02πϕ⎛⎫'-< ⎪⎝⎭,(0)0ϕ'>, 所以存在1,02x π⎛⎫∈-⎪⎝⎭,()10x ϕ'=,且当1,2x x π⎛⎫∈- ⎪⎝⎭,()0x ϕ'<,()1,0x x ∈,()0x ϕ'>,所以()x ϕ,即()h x '在1,2x π⎛⎫- ⎪⎝⎭为减函数,在()1,0x 为增函数,又02h π⎛⎫'-> ⎪⎝⎭,(0)0h '=,所以()10h x '<, 根据零点存在性定理,存在01,2x x π⎛⎫∈- ⎪⎝⎭,()00h x '= 所以当()0,0x x ∈,()0h x '<,又0x >,()cos 0xh x e x '=->,所以()h x ,即()sin 2xg x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-. ①当120a -≥,12a ≤,()0g x '≥恒成立,所以()g x ,即()f x '为增函数, 又(0)0f '=,所以当()0,0x x ∈,()0f x '<,()f x 为减函数,(0,)x ∈+∞,()0f x '>,()f x 为增函数,0x =是()f x 的极小值点,所以12a ≤满足题意. ②当12a >,(0)120g a '=-<,令()1xx e x =--,0x > 因为0x >,所以()10xu x e '=->,故()u x 在(0,)+∞单调递增,故()(0)0u x u >=,即有1x e x >+ 故2(2)sin 2221sin 220ag a ea a a a a '=-->+--≥,又()sin 2x g x e x a '=--在(0,)+∞单调递增,由零点存在性定理知,存在唯一实数(0,)m ∈+∞,()0g m '=,当(0,)x m ∈,()0g x '<,()g x 单调递减,即()f x '递减,所以()(0)0f x f ''<=,此时()f x 在(0,)m 为减函数,所以()(0)0f x f <=,不合题意,应舍去. 综上所述,a 的取值范围是12a ≤. 【点睛】本小题主要考查导数的综合应用,利用导数研究函数的单调性、最值和零点等问题,考查抽象概括、推理论证、运算求解能力,考查应用意识与创新意识,综合考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想、有限与无限思想以及特殊与一般思想,考查数学抽象、逻辑推理、直观想象、数学运算、数学建模等核心素养.22.(1cos sin 40θρθ+-=;2sin ρθ=(2)13,24⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化; (2)利用极坐标方程将||||OB OA 转化为三角函数求解即可. 【详解】(1)因为,4x t y =⎧⎪⎨=-⎪⎩,所以l40y +-=,又cos x ρθ=,sin y ρθ=,222x y ρ+=,lcos sin 40θρθ+-=,C 的方程即为2220x y y +-=,对应极坐标方程为2sin ρθ=.(2)由己知设()1,A ρα,()2,B ρα,则1ρ=22sin ρα=,所以,)21||12sin sin ||4OB OA ραααρ==⨯+12cos 214αα⎤=-+⎦ 12sin 2146πα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦又5612ππα≤≤,22663πππα≤-≤, 当266ππα-=,即6πα=时,||||OB OA 取得最小值12; 当262ππα-=,即3πα=时,||||OB OA 取得最大值34.所以,||||OB OA 的取值范围为13,24⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力. 23.(1)1m =(2)证明见解析 【解析】 【分析】(1)将函数()f x 转化为分段函数或利用绝对值三角不等式进行求解; (2)利用基本不等式或柯西不等式证明即可. 【详解】解法一:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩当12x ≤-时,1()22f x f ⎛⎫≥-= ⎪⎝⎭, 当1122x -<≤,1()12f x f ⎛⎫≥= ⎪⎝⎭, 当12x >时,1()12f x f ⎛⎫>= ⎪⎝⎭, 所以min ()1m f x ==解法二:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩如图当12x =时,min ()1m f x == 解法三:(1)111()222f x x x x =++-+-111222x x x ⎛⎫⎛⎫≥+--+- ⎪ ⎪⎝⎭⎝⎭ 1112x =+-≥ 当且仅当11022102x x x ⎧⎛⎫⎛⎫+-≤ ⎪⎪⎪⎪⎝⎭⎝⎭⎨⎪-=⎪⎩即12x =时,等号成立.当12x =时min ()1m f x == 解法一:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c c a b ⎛⎫++++≥⎪⎝⎭,因为111()9a b c c a b ⎛⎫++++≥=⎪⎝⎭成立,所以原不等式成立.解法二:(2)因为0a >,0b >,0c >,所以0ab bc ca ++≥>,0a b c ++≥>,又因为1abc =,所以()()9a b c ab bc ac ++++≥=,()()9ab bc ac a b c ++++≥所以9ab bc ca a b c++≥++,原不等式得证.补充:解法三:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c a b c ⎛⎫++++≥⎪⎝⎭,由柯西不等式得:2111()9a b ca b c ⎛⎫++++≥= ⎪⎝⎭成立, 所以原不等式成立. 【点睛】本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.。
高中毕业班质量检查数学理科试题
福建省普通高中毕业班质量检查数学(理科)试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),共8页,全卷满分150分,考试时间120分钟. 参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B).如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B).如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=k n k k n )p (p C --1.球的表面积公式 S =4πR 2,其中R 表示球的半径.球的体积公式 V =34 πR 3,其中R 表示球的半径. 第I 卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
请把正确答案填在题目后面的括号内.1.复数i(1一i)等于( )A .1+iB .1一iC .一1+iD .一1一i2.设全集为R ,A={x |—1<x <1},B={ x | x ≥0},则C R (A ∪B )等于( )A .{x |0≤x <1}B .{x | x ≥0}C .{x |x ≤-1}D .{x |x >-1}3.已知某一随机变量 ξ 的概率分布列如下,且Eξ = 6.3,则a 的值为( )ξ 4 a 9P 0.5 0.1 bA .5B .6C .7D .84.已知A 、B 为球面上的两点,O 为球心,且AB =3,∠AOB =120°,则球的体积为( )A .29π B . π34 C .36π D . π332 5.已知条件p : k =3,条件q :直线y=kx +2与圆x 2+y 2=1相切,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知数列{}n a 的前n 项和为S n ,且S n 是a n 。
与1的等差中项,则a n 等于( )A .1B .-1C .(-1)nD .(-1)n -17.若m 、n 为两条不同的直线,α、β为两个不同的平面,则以下命题正确的是( )A .若m ∥α,n ⊂α,则m ∥nB .若m ∥α,m ⊂β,α∩β=n ,则m ∥nC .若m ∥α,n ∥α,则m ∥nD .若α∩β =m ,m ⊥n ,则n ⊥α8.函数y=A sin(ωx+φ)的周期为2π,其图象的一部分如图所示,则此函数的解析式可以写成( )A .)x (f =sin(2—2x )B .)x (f =sin(2x 一2)C .)x (f =sin(x 一1)D .)x (f =sin(1一x )9.已知函数y=f (x+1)的图象关于点(-1,0)成中心对称,则函数y=f (x )一定是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数lO .已知),x (x x ),x ()x (f x 0340321>++≥=-则方程f (x )=2的实数根的个数是( ) A .0 B .1 C .2 D .311.某学校开设10门选修课程,其中3门是技能类课程,2门是理论类课程.学校规定每位学生应选修4门,且技能类课程和理论类课程每类至多选修1门,则不同的选修方法种数是( )A .50B .100C .11OD .11512.若函数f (x )为奇函数,且在(0,+∞)内是增函数,又f (2)=0,则x)x (f )x (f --<0的解集为( ) A .(-2,0)∪(0,2) B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分。
福建省高中毕业班单科质量检查数学理试题含答案
福建省普通高中毕业班单科质量检查理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|230,|33M x x x N x x =--≥=-<<,则( ) A . M N ⊆ B .N M ⊆ C .MN R = D .M N =∅2. 已知z 是z 的共轭复数,且34z z i -=+,则z 的虚部是( ) A .76 B .76- C . 4 D .-4 3. 函数2ln y x x =+的图象大致为( )A .B .C .D .4. 若,x y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为 ( )A .-4B .2 C.83D .4 5. 已知(),0,αβπ∈,则“1sin sin 3αβ+<”是“()1sin 3αβ+<”的( )A .充分不必要条件B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件6. 已知直线l 过点()1,0A -且与22:20B x y x +-=相切于点D ,以坐标轴为对称轴的双曲线E 过点D ,一条渐近线平行于l ,则E 的方程为( )A .223144y x -=B .22513y x -= C. 223122x y -= D .223122y x -= 7. 5名学生进行知识竞赛.笔试结束后,甲、乙两名参赛者去询问成绩,回答者对甲说:“你们5人的成绩互不相同,很遗憾,你的成绩不是最好的”;对乙说:“你不是最后一名”.根据以上信息,这5人的笔试名次的所有可能的种数是( ) A .54 B .72 C. 78 D .968.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积是 ( )A .72π B .4π C. 92π D .5π 9. 中国古代算书《孙子算经》中有一著名的问题“物不知数”,原题为:今有物,不知其数.三三数之剩二;五五数之剩三;七七数之剩二.问物几何?后来,南宋数学家里秦九韶在其著作《数书九章》中对此类问题的解法作了系统的论述,并称之为“大衍求一术”.下图程序框图的算法思路源于“大衍求一术”,执行该程序框图,若输入的,a b 分别20,17,则输出的c =( )A . 1B . 6 C. 7 D .1110. 已知抛物线的焦点F 到准线l 的距离为p ,点A 与F 在l 的两侧,AF l ⊥且2AF p =,B 是抛物线上的一点,BC 垂直l 于点C 且2BC p =,AB 分别交l ,CF 于点,D E ,则BEF ∆与BDF ∆的外接圆半径之比为( )A .12B 323 D .211. 已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+≠><<⎪⎝⎭,若()203f f π⎛⎫=-⎪⎝⎭,则ω的最小值是( )A . 2B .32 C. 1 D .1212. 已知数列{}{},n n a b 满足11111,2,n n n n n n a b a a b b a b ++===+=+,则下列结论正确的是( )A .只有有限个正整数n 使得2n n a bB .只有有限个正整数n 使得2n n a b > C.数列{}2n n a b 是递增数列 D .数列2n n a b ⎧⎪⎨⎪⎩是递减数列第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.设向量()()1,3,,3a b m ==,且,a b 的夹角为3π,则实数m = . 14.用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是 .15.已知定义在R 上的函数()f x 满足()()112f x f x -++=,且当1x >时,()2x x f x e-=,则曲线()y f x =在0x =处的切线方程是 .16.在三棱锥S ABC -中,ABC ∆是边长为3的等边三角形,3,23SA SB ==,二面角S AB C --的大小为120°,则此三棱锥的外接球的表面积为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和21n n S a =-.{}n b 是公差不为0的等差数列,其前三项和为3,且3b 是25,b b 的等比中项. (1)求,n n a b ; (2)若()112222n n a b a b a b n t +++≥-+,求实数t 的取值范围.18.如图,有一码头P 和三个岛屿,,A B C ,303,90mi ,30PC n mile PB n le AB n mile ===,0120PCB ∠=,090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.19.如图,三棱柱111ABC A B C -中,01111160,4B A A C A A AA AC ∠=∠===,2AB =,,P Q 分别为棱1,AA AC 的中点.(1)在平面ABC 内过点A 作//AM 平面1PQB 交BC 于点M ,并写出作图步骤,但不要求证明.(2)若侧面11ACC A ⊥侧面11ABB A ,求直线11A C 与平面1PQB 所成角的正弦值.20. 已知()()()2222212:11,:10C x y C x y r r ++=-+=>,1C 内切2C 于点,A P是两圆公切线l 上异于A 的一点,直线PQ 切1C 于点Q ,PR 切2C 于点R ,且,Q R 均不与A 重合,直线12,C Q C R 相交于点M . (1)求M 的轨迹C 的方程;(2)若直线1MC 与x 轴不垂直,它与C 的另一个交点为N ,M '是点M 关于x 轴的对称点,求证:直线NM '过定点.21.已知函数()()ln ,f x x x a a R =+∈. (1)若()f x 不存在极值点,求a 的取值范围; (2)若0a ≤,证明:()sin 1xf x e x <+-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,曲线1:2cos C ρθ=,曲线22:sin 4cos C ρθθ=.以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系xOy ,曲线C 的参数方程为1223x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求12,C C 的直角坐标方程;(2)C 与12,C C 交于不同四点,这四点在C 上的排列顺次为,,,P Q R S ,求PQ RS -的值.23.选修4-5:不等式选讲 已知函数()21f x x a x =-+-. (1)当1a =时,解不等式()2f x ≥; (2)求证:()12f x a ≥-.试卷答案一、选择题1-5: CCABA 6-10: DCDCB 11、12:BD二、填空题13. -1 14.6 15. y x =- 16. 21π三、解答题17.解:(1)因为1n =,①所以当1n =时,11121a S a ==-,解得11a =, 当2n ≥时,1121n n S a --=-,②① -②,得122n n n a a a -=-,即12n n a a -=,所以12n n a -=,由数列{}n b 的前三项和为3,得233b =,所以21b =, 设数列{}n b 的公差为d ,则351,13b d b d =+=+,又因为2325b b b =,所以()2113d d +=+,解得1d =或0d =(舍去),所以1n b n =-;(2)由(1),可知,12,1n n n a b n -==-,从而()112n n n a b n -=-⨯,令1122n n n T a b a b a b =+++,即()()122112222212n n n T n n --=⨯+⨯++-⨯+-⨯,③② ×2,得()()231212222212n n n T n n -=⨯+⨯++-⨯+-⨯,④ ③ -④,得()231222212n n n T n --=++++--⨯()()221222212n n n n n -=--⨯=--⨯--, 即()222nn T n =-+,故题设不等式可化为()()222nn n t -≥-,(*)① 当1n =时,不等式(*)可化为2t -≥-,解得2t ≥; ② 当2n =时,不等式(*)可化为00≥,此时t R ∈;③ 当3n ≥时,不等式(*)可化为2n t ≤,因为数列{}2n 是递增数列,所以8t ≤, 综上,t 的取值范围是[]2,8.18.解:(1)在PBC ∆中,090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即090303sin120= 解得1sin 2PBC ∠=, 又因为在PBC ∆中,00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3n mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中,90,30PB AB ==,由余弦定理得,2202212cos 6090302903072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+. 所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +.19.解:(1)如图,在平面11ABB A 内,过点A 作1//AN B P 交1BB 于点N ,连结BQ ,在1BB Q ∆中,作1//NH B Q 交BQ 于点H ,连结AH 并延长交BC 于点M ,则AM 为所求作直线.(2)连结11,PC AC ,∵0111114,60AA AC A C C A A ===∠=,∴11AC A ∆为正三角形.∵P 为1AA 的中点,∴11PC AA ⊥,又∵侧面11ACC A ⊥侧面11ABB A ,且面11ACC A 面111ABB A AA =,1PC ⊂平面11ACC A ,∴1PC ⊥平面11ABB A ,在平面11ABB A 内过点P 作1PR AA ⊥交1BB 于点R ,分别以11,,PR PA PC 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系P xyz -,则()()()()10,0,0,0,2,0,0,2,0,0,4,23P A A C --,()10,0,23C .∵Q 为AC 的中点,∴点Q 的坐标为(0,3-,∴()(110,2,23,0,3AC PQ =-=-.∵011112,60A B AB B A A ==∠=,∴)13,1,0B ,∴()13,1,0PB =,设平面1PQB 的法向量为(),,m x y z =,由100PQ m PB m ⎧=⎪⎨=⎪⎩得33030y z x y ⎧-+=⎪⎨+=⎪⎩, 令1x =,得3,3y z =-=-,所以平面1PQB 的一个法向量为()1,3,3m =--. 设直线11A C 与平面1PQB 所成角为a , 则11111139sin cos ,13AC m AC m AC mα===, 即直线11A C 与平面1PQB 所成角的正弦值为39. 20.解:(1)因为1C 内切于2C 于A ,所以12r -=,解得3r =, 所以2C 的方程为:()2219x y -+=,因为直线,PQ PR 分别切12,C C 于,Q R ,所以12,C Q PQ C R PR ⊥⊥,连结PM , 在Rt PQM ∆与Rt PRM ∆中,,PQ PA PR PM PM ===,所以QM RM =,所以12112121242MC MC MQ C Q MR C Q C M C Q C R C C +=+=++=+=>=, 所以点M 的轨迹C 是以12,C C 为焦点,长轴长为4的椭圆(除去长轴端点),所以M 的轨迹C 的方程为()221043x y y +=≠. (2)依题意,设直线MN 的方程为()10x ty t =-≠,()()1122,,,M x y N x y , 则()11M x y '-且1212,0x x y y ≠+≠, 联立方程组221143x ty x y =-⎧⎪⎨+=⎪⎩, 消去x ,并整理得()2234690t y ty +--=, ()()()222649341441440t t t ∆=--⨯-+=+>, 12122269,3434t y y y y t t +==-++, 直线M N '的方程()211121y y y y x x x x ++=--, 令0y =,得()()()2121122112121212121212121811234114634ty x x y ty y ty y x x y ty y t x x t y y y y y y y y t ---+-++=+===-=-=-+++++,故直线M N '过定点()4,0-.21.解:(1)()f x 的定义域为(),a -+∞,且()()ln x f x x a x a '=+++, 设()()ln x g x x a x a =+++,则()()()2212a x a g x x a x a x a +'=+=+++. ①当2a a -≤-,即0a ≥时,()0g x '>,所以()g x 在(),a -+∞上单调递增;又()()11ln 101g a a=++>+,()2210g e a e a --=--<,即()()210g g e a --<, 所以()g x 在(),a -+∞上恰有一个零点0x ,且当()0,x a x ∈-时,()()0f x g x '=<;当()0,x x ∈+∞时,()()0f x g x '=>;所以()f x 在()0,a x -上单调递减,在()0,x +∞上单调递增,所以0x 是()f x 的极小值点,不合题意.(2)当2a a ->-,即0a <时,令()0g x '=,得2x a =-,当(),2x a a ∈--时,()0g x '<;当()2,x a ∈-+∞时,()0g x '>;即()g x 在(),2a a --上单调递减,在()2,a -+∞上单调递增.①当()()ln 20g a a -=-+≥即2a e -≤-时,()()()20f x g x g a '=≥-≥恒成立, 即()f x 在(),a -+∞上单调递增,无极值点,符合题意.②当()()2ln 20g a a -=-+<,即20e a --<<时,()110g a a -=->, 所以()()210g a g a --<,所以()g x 在()2,a -+∞上恰有一个零点1x , 且当()12,x a x ∈-时,()()0f x g x '=<;当()1,x x ∈+∞时,()()0f x g x '=>; 即()f x 在()12,a x -上单调递减,在()1,x +∞上单调递增,所以1x 是()f x 的极小值点,不合题意.综上,a 的取值范围是(2,e -⎤-∞-⎦;(2)因为0a ≤,x a >-,所以()()0,ln ln x f x x x a x x >=+≤,要证明()sin 1x f x e x <+-,只需证明ln sin 1x x x e x <+-, ① 当01x <≤时,因为sin 10,ln 0xe x x x +->≤,所以ln sin 1x x x e x <+-成立;② 当1x >时,设()sin ln 1x g x e x x x =+--, 则()ln cos 1xg x e x x '=-+-, 设()()h x g x '=,则()1sin x h x e x x'=--, 因为1x >,所以()110h x e '>-->,所以()h x 在[)1,+∞上单调递增,所以()()1cos110h x h e >=+->,即()0g x '>,所以()g x 在[)1,+∞上单调递增,所以()()1sin110g x g e >=+->,即ln sin 1x x x e x <+-,综上,若0a ≤,则()<sin 1xf x e x +-. 22.解:(1)因为cos ,sin x y ρθρθ==,由2cos ρθ=得22cos ρρθ=,所以曲线1C 的直角坐标方程为()2211x y -+=,由2sin 4cos ρθθ=得22sin 4cos ρθρθ=,所以曲线2C 的直角坐标方程为:24y x =.(2)不妨设四个交点自下而上依次为,,,P Q R S ,它们对应的参数分别为1234,,,t t t t . 把1223x t y ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =, 得234242t t ⎛⎫=+ ⎪⎝⎭,即238320t t --=, 则()()21843324480∆=--⨯⨯-=>,1483t t +=,把12232x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入()2211x y -+=, 得221321122t t ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,即20t t +=, 则210∆=>,231t t +=-, 所以()()()21432314811133PQ RS t t t t t t t t -=---=+-+=+=. 23.解:(1)当1a =时,不等式()2f x ≥等价于不等式1212x x -+-≥, 当12x <时,不等式可化为1122x x -+-≥,解得0x ≤,所以0x ≤, 当112x ≤≤时,不等式可化为1212x x -+-≥,解得2x ≥,这种情况无解. 当1x >时,不等式可化为1212x x -+-≥,解得43x ≥,所以43x ≥. 综上,当1a =时,不等式()2f x ≥的解集为(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭. (2)证明:()21f x x a x =-+-122x a x =-+-12a x x ≥-+-1122a x x a ≥-+-≥-. 所以不等式得证.。
2020年福州市高中毕业班质量检测(理科数学) 试卷
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
{ } { } 1. 已知集合= M x x24 = ,N x 2x < 4 ,则 M N =
A.{x x − 2}
B.{x − 2x < 2} C.{x − 2x2}
D.{x 0 < x < 2}
准考证号
姓名
.
(在此卷上答题无效)
秘密★启用前
2020 年福州市高中毕业班质量检测
数学(理科)试卷
(完卷时间:120 分钟;满分:150 分) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第 Ⅱ卷 4 至 6 页. 注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致. 2. 第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如 需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用 0.5 毫米黑色签字笔 在答题卡上书写作答.在试题卷上作答,答案无效. 3. 考试结束,考生必须将试题卷和答题卡一并交回.
( ) 已知椭圆 C
:
x2 a2
+
y2= b2
1(a > b > 0) 的焦距为 2
2 ,且过点
2,1 .
(1)求 C 的方程;
(2)若直线 l 与 C 有且只有一个公共点, l 与圆 x2 + y2 = 6 交于 A,B 两点,直线
OA,OB 的斜率分别记为 k1, k2 ,试判断 k1 ⋅ k2 是否为定值,若是,求出该定值;否则,请
2019年4月福建省高中毕业班质量检查测试理科数学(解析版)
16.答案: 26 解析:如图,设 P1(x1, y1) 为双曲线上一点,y y1 分别与渐近线 y 3x 、y 轴交于 P2 (x2 , y1), H (0, y1) ,
则线段 P1P2 绕 y 轴旋转一周所得圆环的面积为 S1
2
2
HP1 HP2
(x12
x22 ) ,其中
x12
3
(2)由(1)知, a2 3, a3 7 ,所以 b3 a2 3, b7 a3 7 ,………………………………7 分
设{bn}的公差为 d ,则 b7 b3 4d 4, d 1.…………………………………………………8 分
c2
由椭圆的定义得: PF1 PF2 2c 2
2c 2a ,所以 E 的离心率为 e a 22
2
2 1.
10.如图,AB 是圆锥 SO 的底面圆 O 的直径,D 是圆 O 上异于 A, B 的任意一点,以 AO 为直径的圆与 AD
的另一个交点为 C , P 为 SD 的中点.现给出以下结论:
B.{x |1 x 2}
C.{x |1 x ≤ 2}
D.{x | x ≥ 2}
1.答案:C
解析: A {x | x 1}, B {x | 2 ≤ x ≤ 2} ,所以 A B {x |1 x ≤ 2}.
2.若复数 z 满足 (z 1)i 1 i ,则 z ( )
A. i
B.1 i
2019 年 3 月福建省高中毕业班质量检查测试 理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.已知集合 A {x | y ln(x 1)}, B {x | x2 4 ≤ 0} ,则 A B ( )
福建省质检数学(理)(含答案)word版
2017年福建省普通高中毕业班质量检查理 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题),第II 卷第21题为选考题,其他题为必考题.本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式 V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面上,复数(2i)i z =-+的对应点所在象限是 A .第一象限B .第二象限C .第三象限D .第四象限2.平面向量()2,1=a ,(),2m =-b ,若a 与b 共线,则m 的值为( ) A .1- B .4- C .1 D .43.双曲线22221(0,0)x y a b a b-=>>的渐近线方程是20x y ±=,则其离心率为( )A B .2C D .54.若集合2{|20}A x x x =--<,{|2}B x x a =-<<, 则“A B ≠∅ ”的充要条件是 A . 2a >- B .2a ≤- C .1a >- D .1a ≥-5.某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x的值是A .2B .92 C .32D .3 6.已知{}n a 是公差为2的等差数列,且134,,a a a 成等比数列,则数列{}n a 的前9项和等于A .0B .8C .144D .1627.执行如图所示的程序框图,若输出的结果是8,则输入的数是A .2或22B .22或22-C .2-或22-D .2或22- 8.设0>a ,若关于x 的不等式51≥-+x ax 在)∞+∈,1(x 恒成立, 则a 的最小值为A . 16B . 9C .4D . 29.有3个男生和3个女生参加某公司招聘,按随机顺序逐个进行面试,那么任何时候等待面试的女生人数都不少于男生人数的概率是A .12B .14C .124D .114410.定义在R 上的函数()f x 及其导函数()f x ' 的图象都是连续不断的曲线,且对于实数,()a b a b <,有()0,()0f a f b ''><.现给出如下结论:①00[,],(=0x a b f x ∃∈);②00[,],(()x a b f x f b ∃∈>);③00[,],(()x a b f x f a ∀∈≥);④00[,],(()()()x a b f a f b f x a b '∃∈->-). 其中结论正确的个数是A . 1B . 2C . 3D . 4第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.()2321d xx -+=⎰ .12.523)1(xx +展开式的常数项是 .13.圆C 过坐标原点,圆心在x 轴的正半轴上.若圆C 被直线0x y -=截得的弦长为22,则圆C 的方程是__________.14.在平面直角坐标系中,不等式组20,20,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(0>a )表示的平面区域的面积为5,直线mx-y+m=0过该平面区域,则m 的最大值是 .15.对于非空实数集A ,记*{,}A y x A y x =∀∈≥.设非空实数集合P M ⊆,若1>m 时,则P m ∉. 现给出以下命题:①对于任意给定符合题设条件的集合M 、P ,必有**M P ⊆; ②对于任意给定符合题设条件的集合M 、P ,必有*M P ⋂≠∅; ③对于任意给定符合题设条件的集合M 、P ,必有*M P ⋂=∅;④对于任意给定符合题设条件的集合M 、P ,必存在常数a ,使得对任意的*b M ∈,恒有*a b P +∈, 其中正确的命题是 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分13分)阅读下面材料:根据两角和与差的正弦公式,有sin()sin cos cos sin αβαβαβ+=+------①sin()sin cos cos sin αβαβαβ-=-------②由①+② 得()()sin sin 2sin cos αβαβαβ++-=------③令,A B αβαβ+=-= 有,22A B A Bαβ+-== 代入③得 sin sin 2sin cos 22A B A BA B +-+=. (Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin 22A B A B A B +--=-; (Ⅱ)若ABC ∆的三个内角,,A B C 满足cos 2cos 21cos 2A B C -=-,试判断ABC ∆的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)17. (本小题满分13分)在直角梯形ABCD 中,AD //BC ,22BC AD AB ===90ABC ∠=,如图(1).把ABD ∆沿BD 翻折,使得平面BCD ABD 平面⊥. (Ⅰ)求证:CD AB ⊥;(Ⅱ)若点M 为线段BC 中点,求点M 到平面ACD 的距离;(Ⅲ)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60 ?若存在,求出BCBN的值;若不存在,说明理由.18. (本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为ξ,求ξ的分布列及数学期望E (ξ). 19. (本小题满分13分)已知12(1,0),(1,0)F F -为平面内的两个定点,动点P 满足12PF PF +=记点P 的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)设点O 为坐标原点,点A ,B ,C 是曲线Γ上的不同三点,且0OA OB OC ++=.(ⅰ)试探究:直线AB 与OC 的斜率之积是否为定值?证明你的结论;(ⅱ)当直线AB 过点1F 时,求直线AB 、OC 与x 轴所围成的三角形的面积. 20.(本小题满分14分)设函数)(x f 的图象是由函数21cos sin 3cos )(2-+=x x x x g 的图象经下列两个步骤变换得到: (1)将函数)(x g 的图象向右平移12π个单位,并将横坐标伸长到原来的2倍(纵坐标不变),得到函数()h x 的图象;(2)将函数()h x 的图象上各点的纵坐标缩短为原来的1(0)2m m <<倍(横坐标不变),并将图象向上平移1个单位,得到函数)(x f 的图象. (Ⅰ)求)(x f 的表达式;(Ⅱ)判断方程x x f =)(的实根的个数,证明你的结论;(Ⅲ)设数列}{n a 满足)(,011n n a f a a ==+,试探究数列}{n a 的单调性,并加以证明.21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换 已知向量11⎛⎫⎪-⎝⎭在矩阵⎪⎪⎭⎫ ⎝⎛=101m M 变换下得到的向量是⎪⎪⎭⎫⎝⎛-10. (Ⅰ)求m 的值;(Ⅱ)求曲线02=+-y x y 在矩阵1M-对应的线性变换作用下得到的曲线方程.(2)(本小题满分7分) 选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. 已知点M 的极坐标为(,)4π,曲线C的参数方程为1,(x y ααα⎧=⎪⎨=⎪⎩为参数). (Ⅰ)求直线OM 的直角坐标方程;(Ⅱ)求点M 到曲线C 上的点的距离的最小值. (3)(本小题满分7分) 选修4—5:不等式选讲 设实数,a b 满足29a b +=.(Ⅰ)若93b a -+<,求x 的取值范围; (Ⅱ)若,0a b >,且2z a b =,求z 的最大值.2017年福建省普通高中毕业班质量检查 理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.C ; 2.B ; 3.A ; 4.C ; 5.C ; 6.A ; 7.D ; 8.C ; 9.B ; 10.B 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11.4 ; 12.10; 13.()2224x y -+=; 14.43; 15.①④.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.满分13分.解法一:(Ⅰ)证明:因为cos()cos cos sin sin αβαβαβ+=-,------①cos()cos cos sin sin αβαβαβ-=+,------②……………………………………………2分①-② 得cos()cos()2sin sin αβαβαβ+--=-.------③………………………………3分令,A B αβαβ+=-=有,22A B A Bαβ+-==, 代入③得cos cos 2sin sin 22A B A BA B +--=-.………………………………………6分 (Ⅱ)由二倍角公式,cos 2cos 21cos 2A B C -=-可化为22212sin 12sin 112sin A B C --+=-+,……………………………………………9分 所以222sin sin sin A C B +=.……………………………………………10分设ABC ∆的三个内角A,B,C 所对的边分别为,,a b c ,由正弦定理可得222a cb +=.…………………………………………12分根据勾股定理的逆定理知ABC ∆为直角三角形.……………………………………………13分 解法二:(Ⅰ)同解法一.(Ⅱ)利用(Ⅰ)中的结论和二倍角公式,cos 2cos 21cos 2A B C -=-可化为()()22sin sin 112sin A B A B C -+-=-+,……………………………………………8分 因为A,B,C 为ABC ∆的内角,所以A B C π++=,所以()()()2sin sin sin A B A B A B -+-=+. 又因为0A B π<+<,所以()sin 0A B +≠, 所以()()sin sin 0A B A B ++-=.从而2sin cos 0A B =.……………………………………………10分 又sin 0A ≠,所以cos 0B =,故2B π∠=.……………………………………………12分所以ABC ∆为直角三角形. ……………………………………………13分17. 本小题主要考查直线与直线、直线与平面、平面与平面等基础知识,考查空间想象能力、推理论证能力、运算求解能力等,考查化归与转化思想.满分13分.解法一:(Ⅰ)由已知条件可得2,2,BD CD ==BD CD ⊥.………………………………2分 ∵平面BCD ABD 平面⊥,BD BCD ABD =⋂平面平面. ∴BD A CD 平面⊥.……………………………………3分又∵ABD AB 平面⊂,∴CD AB ⊥.……………………………………4分(Ⅱ)以点D 为原点,BD 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,如图.由已知可得(1,0,1),(2,0,0),(0,2,0),(0,0,0),A B C D(1,1,0)M .∴(0,2,0),(1,0,1)CD AD =-=--.………………6分设平面ACD 的法向量为),,(z y x =, 则⊥⊥,∴0,0,y x z =⎧⎨+=⎩令1x =,得平面ACD 的一个法向量为)1,0,1(-=,∴点M 到平面ACD的距离n MCd MC⋅== .……………………………………………8分(Ⅲ)假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60.……………………9分设,01BN BC λλ=<<,则(22,2,0)N λλ-, ∴(12,2,1)AN λλ=--,又∵平面ACD 的法向量)1,0,1(-=且直线AN 与平面ACD 所成角为60,∴0sin 60AN n AN n⋅==,……………………………………………11分 可得01282=-+λλ, ∴2141-==λλ或(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60,此时41=BC BN .…………13分 解法二:(Ⅰ)同解法一.(Ⅱ)由已知条件可得AD A ⊥B,AB AD ==121=⋅=∆AD AB S ABD . 由(Ⅰ)知BD A CD 平面⊥,即CD 为三棱锥C-ABD 的高,又CD=2, ∴3231=⋅=∆-ABD ABD C S CD V , 又∵点M 为线段BC 中点,∴ 点M 到平面ACD 的距离等于点B到平面ACD 的距离的21,…………………………6分 ∴312121===---ABD C ADC B ADC M V V V , ∵AD CD ⊥,,∴221=⋅=∆DC AD S ACD , 设点M 到平面ACD 的距离为d ,则1133ADC d S ∆⋅=,即1133d ⨯=解得d =22,∴设点M 到平面ACD 的距离等于22.…………………………………8分 (Ⅲ)同解法一. 解法三:(Ⅰ)同解法一.(Ⅱ)∵点M 为线段BC 中点,∴ 点M 到平面ACD 的距离等于点B到平面ACD 的距离的21,………………………………6分 由已知条件可得AD A ⊥B ,由(Ⅰ)知CD AB ⊥, 又AD CD D = ,∴ CD AB A 平面⊥, ∴点B到平面ACD 的距离等于线段AB 的长. ∵2=AB ,∴设点M 到平面ACD 的距离等于22……………………………………………8分 (Ⅲ)同解法一.18.本小题主要考查频率分布直方表、随机变量的分布列、数学期望等基础知识,考查数据处理能力、运算求解能力以及应用用意识,考查必然与或然思想等.满分13分.解:(Ⅰ) 众数为22.5微克/立方米, 中位数为37.5微克/立方米.……………………………………4分(Ⅱ)去年该居民区PM2.5年平均浓度为7.50.122.50.337.50.252.50.267.50.182.50.140.5⨯+⨯+⨯+⨯+⨯+⨯=(微克/立方米).…………………6分因为40.535>,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准, 故该居民区的环境需要改进.……………………………………………8分(Ⅲ)记事件A 表示“一天PM2.5的24小时平均浓度符合环境空气质量标准”,则9()10P A =.………………9分 随机变量ξ的可能取值为0,1,2.且9(2,)10B ξ . 所以2299()()(1)(0,1,2)1010kk k P k C k ξ-==-=,…………………………………………11分 所以变量ξ的分布列为…………………………………………12分11881012 1.8100100100E ξ=⨯+⨯+⨯=(天),或92 1.810E nP ξ==⨯=(天). ……………………13分19.本小题考查椭圆的标准方程与性质、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等.满分13分.解法一:(Ⅰ)由条件可知, 点P 到两定点12(1,0),(1,0)F F -的距离之和为定值 所以点P 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆.…………………………………………2分又a =1c =,所以1b =,故所求方程为2212x y +=.…………………………………………4分(Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y .由0OA OB OC ++=,得1230x x x ++=,1230y y y ++=.…………………………5分(ⅰ)可设直线AB 的方程为y kx n =+(0)k ≠,代入2222x y +=并整理得,222(12)4220k x knx n +++-=,依题意,0∆>,则 122412kn x x k +=-+,121222()212ny y k x x n k +=++=+, 从而可得点C 的坐标为2242(,)1212kn n k k -++,12OCk k =-. 因为12AB OC k k ⋅=-,所以直线AB 与OC 的斜率之积为定值.……………………………8分(ⅱ)若AB x ⊥轴时,(1,),(1,22A B --,由0OA OB OC ++= , 得点(2,0)C ,所以点C 不在椭圆Γ上,不合题意. 因此直线AB 的斜率存在.……………………………9分由(ⅰ)可知,当直线AB 过点1F 时, 有n k =,点C 的坐标为22242(,)1212k kk k-++. 代入2222x y +=得,4222221682(12)(12)k k k k +=++,即22412k k =+,所以2k =±. ……………………………11分(1)当2k =时,由(ⅰ)知,12OC k k ⋅=-,从而2OC k =-.故AB 、OC 及x 轴所围成三角形为等腰三角形,其底边长为1,且底边上的高1224h =⨯=,所求等腰三角形的面积11248S =⨯⨯=. (2)当2k =时,又由(ⅰ)知,12OC k k ⋅=-,从而2OC k =, 同理可求直线AB 、OC 与x. 综合(1)(2),直线AB 、OC 与x轴所围成的三角形的面积为8.…………………13分 解法二:(Ⅰ)同解法一.(Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y .由0OA OB OC ++= 得:1230x x x ++=,1230y y y ++=.………………………5分(ⅰ)因为点11(,)A x y ,22(,)B x y 在椭圆上,所以有:221122x y +=,222222x y +=,两式相减,得12121212()()2()()0x x x x y y y y +-++-=, 从而有1212121212y y y y x x x x -+⋅=--+. 又123y y y +=-,33OC y k x =, 所以12AB OC k k ⋅=-,即直线AB 与OC 的斜率之积为定值.………………………………8分 (ⅱ)同解法一.20.本题考查三角恒等变化、三角函数的图象与性质、零点与方程的根、数学归纳法等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想、特殊与一般思想等.满分14分.解:(Ⅰ)()211cos 21cos cos 22222x g x x x x x +=-=+- …………………2分1cos 22sin 226x x x π⎛⎫==+ ⎪⎝⎭…………………………3分 ()sin h x x ∴=,…………………………4分()sin 1f x m x =+.…………………………5分(Ⅱ)方程()f x x =有且只有一个实根. …………………………6分理由如下:由(Ⅰ)知()sin 1f x m x =+,令()()sin 1F x f x x m x x =-=-+,因为()010F =>,又因为102m <<,所以3102222F m πππ⎛⎫=-+<-< ⎪⎝⎭. 所以()0F x =在0,2π⎛⎫ ⎪⎝⎭至少有一个根. …………………………7分 又因为()'1cos 1102F x m x m =-<-<-<, 所以函数()F x 在R 上单调递减,所以函数()F x 在R 上有且只有一个零点,即方程()f x x =有且只有一个实根. …………………………9分(Ⅲ)因为()110,sin 1,n n n a a f a m a +===+211,a a =>所以又3 sin11a m =+,因为012π<<,所以0sin11<<,所以321a a >=. 由此猜测1(2)n n a a n ->≥,即数列{}n a 是单调递增数列. …………………………11分以下用数学归纳法证明:,n N ∈且2n ≥时,10n n a a ->≥成立.(1)当2n =时,211,0a a ==,显然有210a a >≥成立.(2)假设(2)n k k =≥时,命题成立,即10(2)k k a a k ->≥≥.…………………………12分 则1n k =+时,()1sin 1k k k a f a m a +==+, 因为102m <<,所以()111sin 11122k k k a f a m a m π--==+<+<+<. 又sin x 在()0,2π上单调递增,102k k a a π-≤<<,所以1sin sin 0k k a a ->≥,所以1sin 1sin 1k k m a m a -+>+,即111sin sin 1()0k k k k a m a f a a +-->+==≥,即1n k =+时,命题成立. …………………………13分综合(1) ,(2),,n N ∈且2n ≥时, 1n n a a ->成立.故数列{}n a 为单调递增数列. …………………………14分21.(1)(本小题满分7分)选修4-2:矩阵与变换本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.潢分7分.解:(Ⅰ)因为⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛1111101m m , 所以⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--1011m ,即m =1.…………………………………………3分(Ⅱ)因为⎪⎪⎭⎫ ⎝⎛=1011M ,所以11101M --⎛⎫= ⎪⎝⎭.…………………………………4分 设曲线02=+-y x y 上任意一点(,)x y 在矩阵1M -所对应的线性变换作用下的像是(,)x y ''.由1101x x x y y y y '--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭, ……………………………………………5分 所以,x y x y y '-=⎧⎨'=⎩得,x x y y y ''=+⎧⎨'=⎩代入曲线02=+-y x y 得2y x ''=.………………………6分 由(,)x y 的任意性可知,曲线02=+-y x y 在矩阵1M -对应的线性变换作用下的曲线方程为x y =2. ………………7分(2)(本小题满分7分)选修4-4:坐标系与参数方程本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查数形结合思想.满分7分.解:(Ⅰ)由点M的极坐标为(,)4π得点M 的直角坐标为(,4)4,所以直线OM 的直角坐标方程为y x =.…………………………………………3分(Ⅱ)由曲线C的参数方程1,(x y ααα⎧=⎪⎨=⎪⎩为参数)化为普通方程为2)1(22=+-y x ,……………………………5分圆心为(1,0),A,半径为r =由于点M 在曲线C 外,故点M 到曲线C 上的点的距离最小值为25-=-r MA .…………7分(3)(本小题满分7分)选修4-5:不等式选讲本小题主要考查绝对不等式、不等式证明等基础知识,考查推理论证能力, 考查化归与转化思想.满分7分.解:(Ⅰ)由29a b +=得92b a -=,即|6|2||b a -=. 所以93b a -+<可化为33a <,即1a <,解得11a -<<.所以a 的取值范围11a -<<.…………………………………………4分(Ⅱ)因为,0a b >, 所以23332()()32733a ab a b z a b a a b +++==⋅⋅≤===,…………………………………6分 当且仅当3a b ==时,等号成立.故z 的最大值为27.…………………………………………7分。
福建省福州市高三数学高中毕业班质量检查试卷 理.doc
福州市高中毕业班质量检查数学理科试卷(满分150分,考试时间1)参考公式:样本数据x 1,x 2,… ,x n 的标准差锥体体积公式V=31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V=Sh24S R =π,343V R =π 其中S 为底面面积,h 为高其中R 为球的半径一.选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是是正确的, 将正确答案填写在答题卷相应位置.) 1.如果复数z =(a 2-3a +2)+(a -1)i 为纯虚数,则实数a 的值 ( ).A.等于1或2B.等于1C.等于2D.不存在 2.曲线f (x )=x 3+x -2在0P 点处的切线平行于直线y =4x -1,则P 0点的坐标为( ) A.(1,0)或(-1,-4) B.(0,1) C.(1,0) D.(-1,-4)3. 已知数列{}n a 为等差数列,且1713212,tan()a a a a a π++=+则的值为( )B. C. D.4. 给定下列四个命题:①分别与两条异面直线都相交的两条直线一定是异面直线; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A. ①和②B. ②和③C. ③和④D. ②和④ 5.某学校开展研究性学习活动,某同学获得一组实验数据如下表:俯视图左视图主视图对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )A.y =2x -2B.y =(12)xC.y =log 2xD.y =12(x 2-1)6.设22)1(,3005,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为( )A. 80B. C.25 D.1727. 已知12,a a 均为单位向量,那么131,22a ⎛⎫= ⎪⎪⎝⎭是()123,1a a +=的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.某程序框图如图所示,则该程序运行后输出的S 的值为( ) A.1 B.12C.14D.189.已知F 1、F 2为椭圆2212516x y +=的左、右焦点,若M 为椭圆上 一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.A.0B.1C.2D.410.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为( ).A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)二.填空题(本大题共5小题,每小题4分,共将正确答案填写在答题卷相应位置.)11.二项式10112x ⎛⎫- ⎪⎝⎭的展开式中第六项的系数等于__________(用数字作答)12. 在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .13.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如右图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 .(第8题)D ABFC14.在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2f x x ax b π=+-+有零点的概率为 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0—1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行. 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……………………………………三、解答题(本大题共6小题,共80分,解答应写在答题卷相应位置,要写出文字说明、证明过程或演算过程.)16.(本小题满分13分) 已知函数1()cos 2f x x x ππ=+, x R ∈. (Ⅰ)求函数()f x 的最大值和最小值;(Ⅱ)设函数()f x 在[1,1]-上的图象与x 轴的交点从左到右分别为M 、N ,图象的最高点为P,求PM 与PN 的夹角的余弦. 17.(本小题满分13分)“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的. (Ⅰ)求出在1次游戏中玩家甲胜玩家乙的概率;(Ⅱ)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列及其期望.18.(本小题满分13分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直, BE//CF ,BC ⊥CF ,AD =EF =2,BE =3,CF =4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60°. 19.(本小题满分13分)已知点M(k,l )、P (m,n ),(klmn ≠0)是曲线C 上的两点,点M 、N 关于x 轴对称,直线MP 、NP 分别交x 轴于点E(x E ,0)和点F (x F ,0),(Ⅰ)用k 、l 、m 、n 分别表示E x 和F x ;(Ⅱ)当曲线C 的方程分别为:222(0)x y R R +=> 、22221(0)x y a b a b+=>>时,探究E F x x ⋅的值是否与点M 、N 、P 的位置相关;(Ⅲ)类比(Ⅱ)的探究过程,当曲线C 的方程为22(0)y px p =>时,探究E x 与F x 经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).本小题满分14分)设函数f (x )=e x +sinx,g (x )=ax,F (x )=f (x )-g (x ). (Ⅰ)若x =0是F (x )的极值点,求a 的值;(Ⅱ)当 a =1时,设P (x 1,f (x 1)), Q (x 2, g (x 2))(x 1>0,x 2>0), 且PQ //x 轴,求P 、Q 两点间的最短距离; (Ⅲ):若x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围. 21.(本小题满分14分)本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换已知二阶矩阵M 有特征值3λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点(1,2)-变换成(9,15). 求矩阵M .(2)(本小题满分7分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,已知曲线C 的参数方程是22sin ,2cos x y αα=+⎧⎨=⎩(α是参数).现以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,写出曲线C 的极坐标方程. (3)(本小题满分7分)选修4-5:不等式选讲 解不等式2142x x +-->.福州市高中毕业班质量检查数学理科试卷参考答案和评分标准一.选择题 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C 9.C 10.C 二.填空题 11.638- 12.3 13.6 14.1-4π 15.21n-三.解答题16.解:(Ⅰ)∵1()cos 22f x x x ππ=+=sin()6x ππ+.-----------------------------2分∵x R ∈ ∴1sin()16x ππ-≤+≤,∴函数()f x 的最大值和最小值分别为1,—1.---------------4分 (Ⅱ)解法1:令()sin()06f x x ππ=+=得,6x k k Z πππ+=∈,∵[1,1]x ∈- ∴16x =-或56x = ∴15(,0),(,0),66M N - -----------------------6分由sin()16x ππ+=,且[1,1]x ∈-得13x = ∴ 1(,1),3P -----------------------------8分∴11(,1),(,1),22PM PN =--=- ------------------------------------------10分∴cos ,||||PM PNPM PN PM PN ⋅<>=⋅35= .---------------------------------------13分解法2:过点P 作PA x ⊥轴于A ,则||1,PA = 由三角函数的性质知1||12MN T ==, ---------------6分||||2PM PN ===,-----------------------------------------------------------8分由余弦定理得222||||||cos ,2||||PM PN MN PM PN PM PN +-<>=⋅---------------------------10分=521345524⨯-=⨯.---13分解法3:过点P 作PA x ⊥轴于A ,则||1,PA =由三角函数的性质知1||12MN T ==,----------------------6分||||2PM PN ===----------------------------------------8分在Rt PAM ∆中,||cos ||PA MPA PM ∠===分 ∵PA 平分MPN ∠ ∴2cos cos 22cos 1MPN MPA MPA ∠=∠=∠-23215=⨯-=.------------------------------------------------------13分 17.解:(Ⅰ)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头,石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,--------------------3分玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率3193P ==.--------------------6分 (Ⅱ)X 的可能取值分别为0,1,2,3.()303280327P X C ⎛⎫==⋅= ⎪⎝⎭,()1213121213327P X C ⎛⎫⎛⎫==⋅⋅=⎪ ⎪⎝⎭⎝⎭, ()212312623327P X C ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()333113327P X C ⎛⎫==⋅=⎪⎝⎭.--------------------10分 X 的分布列如下:-------------------11分0123127272727EX =⨯+⨯+⨯+⨯=(或:1~(3,)3X B ,1313EX np ==⨯=).------------------13分18.解:方法一:(Ⅰ)证明:在△BCE 中,BC ⊥CF ,BC=AD =3,BE =3,∴EC= ∵在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE ………………3分 由已知条件知,DC ⊥平面EFCB ,∴DC ⊥EF ,又DC 与EC 相交于C ,……………………………………5分∴EF ⊥平面DCE ……………………6分(Ⅱ)过点B 作BH ⊥EF 交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC=BC, AB ⊥BC ,得AB ⊥平面BEFC ,从而AH ⊥EF .所以∠AHB 为 二面角A-EF-C 的平面角.……8分在R t △CEF 中,因为EF =2,CF =4.EC=∴∠CEF =60°,由CE ∥BH ,得∠BHE =60°,又在Rt △BHE 中,BE =3,∴sin 2BH BE BEH =⋅∠=…………10分 由二面角A-EF-C 的平面角∠AHB=60°,在Rt △AHB 中,解得9tan 2AB BH AHB =⋅∠=, 所以当92AB =时,二面角A-EF-C 的大小为60°……………………13分 方法二:(Ⅰ)同解法一(Ⅱ)如图,以点C 为坐标原点,以CB ,CF 和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C-xyz .……………………7分设AB=a (a >0),则C (0,0,0),A,0,a ),B0,0),E3,0),F (0,4,0).从而(3,1,0),(0,3,),EF AE a =-=-………………9分设平面AEF 的法向量为(,,)n x y z =,由0,0EF n AE n ⋅=⋅=得,30y y az ⎧+=⎪⎨-=⎪⎩,取x =1,则y z ==,即(1,3,n =,…………………………11分A B EFCHD不妨设平面EFCB 的法向量为(0,0,)BA a =,由条件,得1|cos ,|2||||n BA n BA n BA a ⋅<>===解得92a =.所以当92AB =时,二面角A-EF-C 的大小为60°.………………13分 19.解:(Ⅰ)依题意N (k,-l ),且∵klmn ≠0及MP 、NP 与x 轴有交点知:……2分M 、P 、N 为不同点,直线PM 的方程为()n ly x m n m k-=-+-,……3分 则E nk ml x n l -=-,同理可得F nk mlx n l+=+.……5分 (Ⅱ)∵M,P 在圆C :x 2+y 2=R 2上,222222m R n k R l⎧=-∴⎨=-⎩,222222222222222()()E F n k m l n R l R n l x x R n l n l ----⋅===--(定值). ∴E F x x ⋅的值是与点M 、N 、P 位置无关. ……8分同理∵M,P 在椭圆C :22221(0)x y a b a b+=>>上,2222222222a n m a b a lk a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩,2222222222222222222()()E F a l a n n a a l n k m l b b x x a n l n l ----⋅===--(定值). ∴E F x x ⋅的值是与点M 、N 、P 位置无关. ………11分 (Ⅲ)一个探究结论是:0E F x x +=. ………13分 证明如下:依题意, E nk ml x n l -=-,F nk mlx n l+=+. ∵M,P 在抛物线C :y 2=2px (p >0)上,∴n 2=2pm,l 2=2pk.2222222()2(22)0E F n k ml pmk pmk x x n l n l --+===--.∴E F x x +为定值.:(Ⅰ)F (x )= e x +sinx -ax,'()cos xF x e x a =+-.因为x =0是F (x )的极值点,所以'(0)110,2F a a =+-==.………2分又当a =2时,若x <0, '()cos 0xF x e x a =+-<;若 x >0, '()cos 0xF x e x a =+->.∴x =0是F (x )的极小值点, ∴a=2符合题意. ………4分(Ⅱ) ∵a =1, 且PQ //x 轴,由f (x 1)=g (x 2)得:121sin xx e x =+,所以12111sin xx x e x x -=+-. 令()sin ,'()cos 10xxh x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈[0,+∞)时,h (x )的最小值为h (0)=1.∴|PQ|mi n =1. ………9分 (Ⅲ)令()()()2sin 2.xxx F x F x e e x ax ϕ-=--=-+-则'()2cos 2.xxx e ex a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--.因为'()2cos 0x xS x e e x -=+-≥当x ≥0时恒成立, ………11分所以函数S (x )在[0,)+∞上单调递增, ………12分 ∴S (x )≥S (0)=0当x ∈[0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈[0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在[0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时F (x )≥F(-x )恒成立. ………13分[)[)[)[)(]00002'()0,'()0,(0,),0'()0.()0,(0)0(0,)()0(14)()00,2.a x x x x x x x x x x F x F x x a a ϕϕϕϕϕϕ><+∞∴∈+∞<=∴∈<--≥∈+∞⋯∴>∞⋯⋯当时,又在单调递增,总存在使得在区间,上导致在递减,而,当时,,这与对恒成立不符,不合题意.综上取值范围是-,2分21.(1)解:设M =a b cd ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=311⎡⎤⎢⎥⎣⎦=33⎡⎤⎢⎥⎣⎦,故3,3.a b c d +=⎧⎨+=⎩……………3分a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=915⎡⎤⎢⎥⎣⎦,故29,215.a b c d -+=⎧⎨-+=⎩……………5分 联立以上两方程组解得a =1-,b =4,c =3-,d =6,故M =1436-⎡⎤⎢⎥-⎣⎦. ………7分 (2)解:曲线C 的直角坐标方程是22(2)4x y -+=,……3分 因为222x y ρ+=,cos y ρθ=,…5分故曲线C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.……7分 (3)解:令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥ .......3分 作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭,........6分 所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,........7分。
福建省高三数学毕业班质量检查(二)试题 理 新人教A版.doc
福建省普通高中毕业班质量检查理科数学(二)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数21i+等于 A. 1-iB. 1+iC. -iD. i2. 设函数,0,(),0,x x f x x x ⎧≥⎪=⎨-<⎪⎩ 若()(1)2f a f +-=,则a 等于A .– 3B .±3C .– 1D .±13. 给出如下几个结论:①命题,sin cos 2x x x ∃∈+=R 的否定是,sin cos 2x x x ∃∈+≠R ; ②命题1,sin 2sin x x x ∀∈+≥R 的否定是1,sin 2sin x x x∃∈+<R ;③对于1(0,),tan 22tan x x xπ∀∈+≥;④,sin cos 2x x x ∃∈+=R . 其中正确结论的个数有A1 B .2 C .3 D .4 4. 右图是2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和中位数分别为A. 84,84B. 84,86C. 85,84D. 85,865. 从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有A .140种B .120种C .35种D .34种6. 已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+-等于A.5-B.10-C. 310-D. 25-7. 已知直线2201x y a x y -+=+=与圆交于A 、B 两点,且向量,OA OB u u u r u u u r满足||||OA OB OA OB +=-u u u r u u u r u u u r u u u r,其中O 为坐标原点,则实数a 的值为A .1B .0C .1±D .-18. 如图,圆O :222x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则第9题图点A 落在区域M 内的概率是 A 、24πB 、34πC 、22πD 、32π9. 已知y x ,满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x ,记目标函数y x z +=2的最大 值为7,最小值为1,则a b ca++等于 A . 2 B .1 C . -1 D . -210. 已知定义域为D 的函数()f x ,如果对任意的x D ∈,存在正数k ,有|()|||f x k x ≤成立,则称函数()f x 是D 上的“倍约束函数”,已知下列函数:①()2f x x =;②()sin()4f x x π=+;③()1f x x =-;④2()1xf x x x =++;其中是“倍约束函数”的是A .①③④ B.①② C.③④ D.②③④第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题4分,共20分.将答案填在题中横线上. 11. 二项式3521()x x -的展开式中的常数项为______. 12. 给出下面的程序框图,则输出的结果为________. 13.已知某几何体的三视图如右(单位:cm) 则该几何体的表面积是______, 14.给出下列关于互不相同的直线m ,n ,l 和平面,αβ的四个命题:① ,,,m l A A m l m αα⊂=∉I 则与不共面;② l 、m 是异面直线,//,//,,,l m n l n m n ααα⊥⊥⊥且则; ③ 若,,,//,//,//l m l m A l m ααββαβ⊂⊂=I 则;④ 若//,//,//,//l m l m αβαβ则. 其中假命题是 .15. 由9个正数组成的矩阵⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a aa a a 中,每行中的三个数成等差数列,且131211a a a ++,232221a a a ++,333231a a a ++成等比数列.给出下列结论:①第2列中的12a ,22a ,32a 必成等比数列;②第1列中的11a ,21a ,31a 不一定成等比数列;③23213212a a a a +≥+;④若9个数之和等于9,则1a 22≥.其中正确的序号有 (填写所有正确结论的序号).三、 解答题:本大题共6个小题.共80分.解答应写出文字说明,证明过程或演算步骤.第12题图正视图侧视图俯视图4 43 13题图16. (本小题满分13分)已知()f x =a •b ,其中向量a (sin 2,2cos ),x x = b (3,cos )x =,(∈x R). (1) 求()f x 的最小正周期和最小值;(2) 在△ ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若34=⎪⎭⎫⎝⎛A f ,a =213,b =8,求边长c 的值. [来源:学§科§网]17. (本小题满分13分)如图l ,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =600,E 是BC 的中点.如图2,将△ABE 沿AE 折起,使二面角B —AE —C 成直二面角,连结BC ,BD ,P 是棱BC 的中点.(1)在图2中求证:AE ⊥BD ;(2)EP 是否平行平面ABD ? 并说明理由.(3)求直线EB 与平面BCD 所成的角θ的余弦值.18.(本小题满分13分)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x 的分布列和期望.A B C D E 第17题图1 A B D E P 第17题图2 0.0050 0.00430.0032 频率组距 18题图19.(本小题满分13分)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF uuu r =λFB u u u r(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M.(1)证明FM →·AB →为定值;(2)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.20.(本小题满分14分)已知(xxx g e x x ax x f ln )(],,0,ln )(=∈-=,其中e 是自然常数,a ∈R (1)讨论1=a 时,)(x f 的单调性,并求极值; (2)求证:在(1)的条件下,证明 21)()(+>x g x f ; (3)是否存在实数a ,使)(x f 的最小值是3?若存在,求出a 的值;若不存在,说明理由.21.(选做题,本题共3个小题,每小题7分.考生只须从中任选两个小题作答.若三个小题都作答,评卷时仅依顺序评阅第1、2两个小题,并将这两小题的累计得分作为本选做题的最终得分.本选做题最终得分满分14分.) (1)(选做题:矩阵与变换.本小题满分7分.)为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图:现在加密方式为:把发送的数字信息X 写为“a 11 a 21 a 12 a 22”的形式,先左乘矩阵A=1422⎡⎤⎢⎥-⎣⎦,再左乘矩阵B =625514855⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,得到密文Y ,现在已知接收方得到的密文是4,12,32,64,试破解该密码.(2)(选做题:坐标系与参数方程.本小题满分7分.)已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t⎧=-+⎪⎨⎪=⎩(t 为参数). (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. (3)(选做题:不等式选讲.本小题满分7分)解不等式|x -1|+|x +2|≥5。
2019年福州市普通高中毕业班质量检测数学(理科)试卷及评分细则
2
15.3
16.
, 0 e
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分 12 分) (1)解:由角 A 、 B 、 C 成等差数列, 所以 2B A+C ,················································································································· 1 分 又因为 A+B +C = , 所以 B
(2)若 a 0 , x1 , x2 0, e ,不等式 f ( x1 ) g ( x2 ) 恒成立,求实数 m 的取值范围.
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做第一个 题目计分. 22. [选修 4 4 :坐标系与参数方程] (本小题满分 10 分)
数”高.为了了解甲、乙两小区租户的幸福指数高低, 随机抽取甲、乙两小区的租户各 100 户进行调查.甲
1 的租户“幸福指 3
1 的租户“幸 3
3 ,3, 6 , 6, 9 ,9, 12 , 小区租户的月收入以 0,
15 (单位:千元)分组的频率分布直方图如上: 12,
乙小区租户的月收入(单位:千元)的频数分布表如 下: 月收入 户数
3 . 2
第 2 页 共 4 页
18. (本小题满分 12 分) 如图,四棱锥 P ABCD , AB // CD , BCD 90 , AB 2 BC 2CD 4 , △ PAB 为 等 边 三 角 形 , 平 面 PAB 平面 ABCD , Q 为 PB 中点. (1) 求证: AQ 平面 PBC ; (2)求二面角 B PC D 的余弦值. 第 18 题 19.(本小题满分 12 分) 最近,中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018 年 7 月,大部 分一线城市的房租租金同比涨幅都在 10%以上. 某部 门研究成果认为,房租支出超过月收入 福指数”低,房租支出不超过月收入
三月福州市普通高中毕业班质量检查数学(理科)试卷.docx
2016年三月福州市普通高中毕业班质量检查数学(理科)试卷(完卷时间120分钟;满分150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.) 1. 已知复数z 满足2zi i x =+()x R ∈,若z 的虚部为2,则z =( ).A .2B .22C .5D .32.已知命题:p “,10xx e x ∃∈--≤R ”,则p ⌝为 ( ) A . ,10xx e x ∃∈--≥R B .,10xx e x ∃∈-->RC .,10x x e x ∀∈-->RD . ,10xx e x ∀∈--≥R3.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x 的取值范围是( )A .[0,2)B .[2,7]C .[2,4]D . [0,7]4.若2cos 2sin()4παα=-,且()2παπ∈,,则cos 2α的值为( )A .78-B .158-C .1D .1585.若实数,x y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩目标函数2t x y =-的最大值为2,则实数a 的值是( ) A . ﹣2 B .2 C .1D .66.如图是一个空间几何体的三视图,则该几何体的表面积是( )A . 321++B .322++C .323++D . 324++7.64(1)(1)x x -+的展开式中2x 的系数是( ) A . 4-B .3- C .3D .48.已知抛物线2:8C y x =与直线()()20y k x k =+>相交于,A B 两点,F 为C 的焦点,若2FA FB =,则k = ( ) A .223B .13C .23D .239.已知32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若函数()()g x f x k =-有两个零点,则两零点所在的区间为( ).A .(,0)-∞B .(0,1)C .()1,2D .(1,)+∞10.已知三棱锥O ABC -底面ABC 的顶点在半径为4的球O 表面上,且6,23,43AB BC AC ===,则三棱锥O ABC -的体积为( ) A . 4 3B .123C .183D .36311.设12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若双曲线右支上存在一点P ,使22()0OP OF F P →→→+⋅=(O 为坐标原点),且123PF PF =,则双曲线的离心率为( )A .212+ B .21+C .312+D .31+12.已知偶函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x <时有22()()f x xf x x '+>,则不等式2(2014)(2014)4(2)0x f x f ++--<的解集为( ) A .(),2012-∞-B .()2016,2012--C .(),2016-∞-D .()20160-,第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上.)13.在等比数列{}n a 中,378a a =,466a a +=,则28a a +=14.已知在ABC ∆中,4AB = ,6AC =,7BC =其外接圆的圆心为O , 则AO BC ⋅=u u u r u u u r________.15. 以下命题正确的是: .①把函数3sin(2)3y x π=+的图象向右平移6π个单位,可得到3sin 2y x =的图象; ②四边形ABCD 为长方形,2,1,AB BC O ==为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种;④在某项测量中,测量结果ξ服从正态分布N (2,σ2)(σ>0).若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.16.已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,(3)(sin sin )()sin b A B c b C +-=-,且3a =,则ABC ∆面积的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 的前n 项和n S 满足231n n S a =-,其中*n N ∈. (I )求数列{}n a 的通项公式;(II )设23nn n a b n n=+,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(I )试估计该校高三学生视力在5.0以上的人数;(II )为了进一步调查学生的护眼习惯,学习小组成员进行分层抽样,在视力4.2 4.4: 和5.0 5.2:的学生中抽取9 人,并且在这9人中任取3人,记视力在4.2 4.4:的学生人数为X ,求X 的分布列和数学期望. 19.(本小题满分12分)已知:矩形11ABB A ,且12AB AA = ,C C ,1分别是11B A 、B A 的中点,D 为C C 1中点,将矩形11ABB A沿着直线C C 1折成一个60o的二面角,如图所示.DC BB 1C 1A 1A(Ⅰ)求证: 1AB ⊥1A D ;(Ⅱ)求1AB 与平面11A B D 所成角的正弦值. 20.(本小题满分12分)已知以A 为圆心的圆64)2(22=+-y x 上有一个动点M ,)0,2(-B ,线段BM 的垂直平分线交AM 于点P ,点P 的轨迹为E .(Ⅰ)求轨迹E 的方程;(Ⅱ)过A 点作两条相互垂直的直线21,l l 分别交曲线E 于G F E D ,,,四个点,求FG DE +的取值范围.21.(本小题满分12分)已知函数()ln af x x x=+,a R ∈,且函数()f x 在1x =处的切线平行于直线20x y -=.(Ⅰ)实数a 的值;(Ⅱ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0001()x mf x x +<成立,求实数m 的取值范围. 本题有(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (22)(本小题满分10分)选修4-1:几何证明讲 如图,已知AB 为圆O 的一条直径,以端点B 为圆心的圆交直线AB 于CD 两点,交圆O 于,E F 两点,过点D 作垂直于AD 的直线,交直线AF 于H 点.C 1CB 1BA 1A(Ⅰ)求证:,,,B D H F 四点共圆;(Ⅱ)若2,22AC AF ==,求BDF ∆外接圆的半径. (23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的极坐标方程为:24(cos sin )6ρρθθ=+-.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点(,)P x y 是圆C 上动点,试求x y +的最大值,并求出此时点P 的直角坐标. (24)(本小题满分10分)选修4-5:不等式选讲已知,m n 都是实数,0m ≠,()12f x x x =-+-.(I)若()2f x >,求实数x 的取值范围;(II)若()m n m n m f x ++-≥对满足条件的所有,m n 都成立,求实数x 的取值范围.2016年福州市普通高中毕业班质量检查数学(理科)答案第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.) 1.B 2.C 3.D 4.D 5.B 6.C 7.B 8.A 9.D 10. A 11. D 12.B第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置上.) 13.9 14.10 15.①③④ 16.934三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)解:(I )∵*31()22n n S a n N =-∈, ① 当11311,22n S a ==-,∴11a =,………………………………2分当2n ≥,∵113122n n S a --=-, ②①-②:13322n n n a a a -=-,即:13(2)n n a a n -=≥ ………………………………4分又∵11a =,23a = , ∴13n na a +=对*n N ∈都成立,所以{}n a 是等比数列, ∴1*3()n n a n N -=∈ .………………………………6分(II )∵23nn n a b n n=+,∴23n b n n=+,……………………………9分 ∴111113(1)2231n T n n =-+-++--L ,∴133(1)311n T n n =-=-++,即31n n T n =- .……………………………12分 18.(本小题满分12分)解:(I )设各组的频率为(1,2,3,4,5,6)i f i =,23.0,26.0,27.0,07.0,03.054321=====f f f f f ,所以视力在0.5以上的频率为14.0)23.026.027.007.003.0(1=++++-,估计该校高三学生视力在5.0以上的人数约为14014.01000=⨯人. ……………………………4分(II )依题意9人中视力在4.2 4.4: 和5.0 5.2:的学生分别有3人和6人, X 可取0、1、2、3363920(0)84C P X C ===, 21633945(1)84C C P X C ===, 12633918(2)84C C P X C ===, 33391(3)84C P X C ===.……………………………10分 X 的分布列为X 0 1 2 3P2084 4584 1884 184X 的数学期望2045181()0123184848484E X =⨯+⨯+⨯+⨯= .…………………12分 19.(本小题满分12分)(Ⅰ)解法一:连结AB 、11A B ,∵ C C ,1分别是矩形11ABB A 边11B A 、B A 的中点, ∴1AC CC ⊥,1BC CC ⊥ ,AC BC C ⋂= ∴1CC ⊥面ABC∴ACB ∠为二面角A CC A ''-- 的平面角,则60OACB ∠= ∴ABC ∆为正三角形,即几何体111C B A ABC -是正三棱柱. ∴四边形11A ABB 为正方形∴B A AB 11⊥,…………………………………2分 取BC 中点O ,连结AO ,则BC AO ⊥.∵正三棱柱111C B A ABC -中,平面ABC ⊥平面11B BCC , ∴AO ⊥平面11B BCC ,∵⊂BD 平面11B BCC ,∴AO ⊥BD在正方形11B BCC 中,∴BD O B ⊥1…………………………………3分 ∵O O B AO =⋂1,∴BD ⊥面O AB 1,∴BD ⊥1AB . ∴1AB ⊥平面D AB 1.∴ 1AB ⊥1A D .…………………………………6分 (Ⅰ)解法二:连结AB 、11A B ,∵ C C ,1分别是矩形11ABB A 边11B A 、B A 的中点, ∴1AC CC ⊥,1BC CC ⊥ ,AC BC C ⋂= ∴1CC ⊥面ABC∴ACB ∠为二面角A CC A ''-- 的平面角,则60OACB ∠= ∴ABC ∆为正三角形,即几何体111C B A ABC -是正三棱柱. 取BC 中点O ,连结AO 则BC AO ⊥,∵正三棱柱111C B A ABC -中,平面ABC ⊥平面11B BCC , ∴AO ⊥平面11B BCC …………………………1分取11C B 中点1O ,以O 为原点,OA OO OB ,,1的方向为,,x y z 轴的正方向建立空间直角坐标系,不妨设12AA =,则)0,0,1(B ,)0,1,1(-D ,)3,0,0(A ,)3,2,0(1A ,)0,2,1(1B则1(1,23)AB =-u u u r ,1(1,1,3)A D =---u u u u r ,……………………………4分 ∴11(1,1,3)(1,23)1230AB A D ⋅=---⋅-=--+=u u u r u u u u r, ∴11AB A D ⊥u u u r u u u u r∴1AB ⊥1A D .…………………………………6分 (Ⅱ)解: 设平面D A B 11的法向量为),,(z y x n = ∵)3,0,1(11-=B A ,)3,1,1(1---=D A ∵11B A n ⊥,D A n 1⊥∴⎪⎩⎪⎨⎧==0.0.111D A n B A n ……………………………………………8分 ∵30,30,x z x y z ⎧-=⎪⎨---=⎪⎩ ∴23,3y z x z⎧=-⎪⎨=⎪⎩ 令1z = 得(3,23,1)n =-r 为平面D A B 11的一个法向量.………………………10分由(I )得1(1,2,3)AB =-u u u r1AB 与平面11A B D 所成角的正弦值11·|n|AB |n AB =u u u r u u u u r =3433432 2.482--==64.1AB 与平面11A B D 所成角的正弦值为64.…………………………………………12分 21.(本小题满分12分)解(Ⅰ)连接PB ,依题意得PM PB =,所以8==+PM PA PB 所以点P 的轨迹E 是以B A ,为焦点,长轴长为4的椭圆, 所以4=a ,2=c ,32=b所以E 的轨迹方程式1121622=+y x . …………………………4分 (Ⅱ) 当直线21,l l 中有一条直线的斜率不存在时,1486=+=+FG DE当直线1l 的斜率存在且不为0时,设直线1l 的方程)2(-=x k y ,设D ),(11y x ,),(22y x E联立⎪⎩⎪⎨⎧=+-=11216)2(22y x x k y ,整理得2222(34)1616480k x k x k +-+-=…………6分 21221634k x x k +=+,2221434816kk x x +-= 所以=DE 2212(1)()k x x +-2122124)(1x x x x k -+⋅+=2243)1(24kk ++=…………8分 设直线2l 的方程为)2(1--=x ky ,所以2234)1(24kk FG ++= 所以)43)(34()1(1682222k k k FG DE +++=+…………9分 设12+=k t ,所以1>t ,所以2112168tt FG DE -+=+ 因为1>t ,所以41102≤-<t t ,所以FG DE +的取值范围是96[,14)7.………12分 21.(本小题满分12分)解:(Ⅰ)()f x 的定义域为(0,)+∞, …………………1分 ∵21()af x x x '=-,函数()f x 在1x =处的切线平行于直线20x y -=. ∴(1)12f a '=-=∴1a =-…………………………………………4分解:(Ⅱ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0001()x mf x x +<成立, 构造函数11()()ln mh x x mf x x m x x x x=+-=+-+在[]1,e 上的最小值小于零. 2222211(1)(1)()1m m x mx m x x m h x x x x x x ---+--'=---==………6分①当e m ≥+1时,即1m e ≥-时,)(x h 在[]1,e 上单调递减,…………………8分所以()h x 的最小值为(e)h ,由01)(<-++=m e me e h 可得112-+>e e m ,因为1112->-+e e e ,所以112-+>e e m ; ………………10分 ②当11≤+m ,即0≤m 时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由011)1(<++=m h 可得2-<m ; ……11分 ③当e m <+<11,即10-<<e m 时, 可得()h x 最小值为)1(m h +, 因为0ln(1)1m <+<,所以,0ln(1)m m m <+<2)1ln(2)1(>+-+=+m m m m h此时,0)1(<+m h 不成立.综上所述:可得所求m 的范围是:112-+>e e m 或2-<m . ……………12分 本题有(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(22)(本小题满分10分)选修4-1:几何证明讲证明:(I) AB Q 为圆O 的一条直径,BF FH DH BD ∴⊥⊥,,,B D H F ∴四点共圆 ……………………………………4分解:(II) AH 与圆B 相切于点F ,由切割线定理得2AF AC AD =⋅,即()2222AD =⋅, 解得4AD =,所以()11,12BD AD AC BF BD =-===, 又AFB ADH ∆∆:,则DH AD BF AF=,得2DH =,……………………………………7分 连接BH ,由(1)知BH 为BDF ∆的外接圆直径,223BH BD DH =+=,故BDF ∆的外接圆半径为32.……………………………………10分 (23)(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)因为24(cos sin )6ρρθθ=+-,所以22446x y x y +=+-,所以224460x y x y +--+=,即22(2)(2)2x y -+-=为圆C 的普通方程.…………………………………4分 所以所求的圆C 的参数方程为22cos 22sin x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数) .………………………6分(Ⅱ)由(Ⅰ)可得, 42(sin cos )42sin()4x y πθθθ+=++=++ …………………………7分 当 4πθ=时,即点P 的直角坐标为(3,3)时, ……………………………9分 x y +取到最大值为6. …………………………………10分(24)(本小题满分10分)选修4-5:不等式选讲 解:(I)⎪⎩⎪⎨⎧>-≤<≤-=2,3221,11,23)(x x x x x x f由2)(>x f 得⎩⎨⎧≤>-1223x x 或⎩⎨⎧>->2322x x , 解得21<x 或25>x . 故所求实数x 的取值范围为),25()21,(+∞⋃-∞.……5分 (II )由)(x f m n m n m ≥-++且0m ≠得 )(x f m nm n m ≥-++ 又∵2=-++≥-++m nm n m m nm n m …………………………7分∴2)(≤x f .∵2)(>x f 的解集为),25()21,(+∞⋃-∞,∴2)(≤x f 的解集为]25,21[,∴所求实数x 的取值范围为]25,21[.…………………………10分。
福建省福州市普通高中毕业班综合质量检测理科数学试题试题解析
福建省福州市普通高中毕业班综合质量检测理科数学试题&试题解析★祝考试顺利★第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合{}4A x x =,{}24210B y y y =+-<,则A B =(2) (A )∅ (B )(]7,4--(C )(]7,4-(D )[)4,3-答案:D解析:A =[-4,4],B =(-7,3),所以,AB =[)4,3-(3) 设复数12,z z 在复平面内对应的点关于实轴对称,12i z =+,则12z z = (4) (A )1i + (B )34i 55+(C )41i 5+(D )41i 3+答案:B解析:复数12,z z 在复平面内对应的点关于实轴对称,它们互为共轭复数,又12i z =+ 所以,22z i =-,1222z i z i +==-34i 55+ (5) 要得到函数()cos 2f x x =的图象,只需将函数()sin 2g x x =的图象 (6) (A )向左平移12个周期(B )向右平移12个周期(7) (C )向左平移14个周期(D )向右平移14个周期答案:C解析:函数()sin 2g x x =的最小正周期为T =π, 因为sin[2()]sin(2)cos 242x x x ππ+=+=,所以,向左平移14个周期。
(8) 设等差数列{}n a 的公差0d ≠,且2a d =-,若k a 是6a 与+6k a 的等比中项,则k =(9) (A )5 (B )6 (10) (C )9 (D )11答案:C解析:2(2)(3)k a a k d k d =+-=-,63a d =,6(3)k a k d +=+,依题意,得:66k k a a a +=,即:2[(3)]3(3)k d d k d -=⨯+,解得k =9。
(11) 如图为某几何体的三视图,则其体积为 (12) (A )4π3+(B )π43+(C )24π33+ (D )2π43+答案:A解析:由三视图可知,该几何体为半个圆柱与一个四棱锥组成的,如图所示,半圆柱的体积为:211122V ππ=⨯⨯⨯=, 四棱锥的体积为:21422133V =⨯⨯⨯=,所以,该几何体体积为:4π3+(13) 执行右面的程序框图,如果输入的168,112m n ==,则输出的,k m的值分别为 (14) (A )4,7 (15) (B )4,56(16) (C )3,7 (17) (D )3,56 答案:C解析:由于168,112m n ==皆为偶数,进入循环体, 第1步:k =1,m =84,n =56; 第2步:k =2,m =42,n =28; 第3步:k =3,m =21,n =14;这时m =21为奇数,退出第一循环体,显然m ≠n 进入第二循环体, 执行第二循环体第1次:d =7,m =14,n =7; 执行第二循环体第2次:d =7,m =7,n =7; 此时m =n ,退出循环,输出k =3,m =7。
福建省普通中学高中毕业班数学理科质量检查试卷 人教版
福建省普通中学高中毕业班数学理科质量检查试卷 人教版 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页。
全卷满分150分,考试时间120分钟。
2007年4月7日参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ).如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ).如果事件A 在一次试验中发生的概率是P ,那么它在n 次独立重复试验中恰好发生k次的概率k n k k n n P P C k P --=)1()(.球的表面积公式24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,在答题卡上相应题目答题区域内作答。
1.若全集R U =,}20|{<<=x x A ,}1|||{≤=x x B ,则B A C U ⋂)(为A .}01|{<≤-x xB .}11|{≤≤-x xC .}21|{≤≤x xD .}01|{≤≤-x x2.设等比数列}{n a 的前三项为2,32,62,则该数列的第四项为A .1B .82C .92D .1223.定义在R 上的函数)(x f 满足)()3(x f x f -=+π及)()(x f x f =-,则)(x f 可以是 A .x x f 31sin 2)(= B .x x f 3sin 2)(= C .x x f 31cos 2)(= D .x x f 3cos 2)(= 4.复数i i m z -+=1(R m ∈,i 为虚数单位)在复平面上对应的点不可能位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限5.已知1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,M 为双曲线上的点,若21MF MF ⊥,︒=∠6012F MF ,则双曲线的离心率为A .13-B .26 C .13+ D .213+6.正三棱锥ABC P -内接于球O ,球心O 在底面ABC 上,且3=AB ,则球的表面积为 A .πB .π2C .π4D .π9 7.条件p :24π<α<π,条件q :x x f α=tan log )(在),0(+∞内是增函数,则p 是q 的 A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥≥330y x y x ,则22y x +的最小值是 A .3 B .1 C .23 D .21 9.已知函数⎪⎩⎪⎨⎧<+≥-=)0(11)0(3)(2x x x x x f ,则不等式1)(>x f 的解集为 A .0|{<x x 或}2>x B .2|{>x x 或0<x 且}1-≠xC .01|{<<-x x 或}2>xD .2|{-<x x 或01<<-x 或}2>x10.已知函数2)(+-+-=a x a x x f 的反函数)(1x f -的图象的对称中心为)5,1(-,则实数a 的值是A .-3B .1C .5D .711.从6名学生中选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中甲、乙两人不能从事A 种工作,则不同的选派方案共有A .96种B .180种C .240种D .280种12.已知函数x x f x 2log )31()(-=,正实数a 、b 、c 成公差为正数的等差数列,且满足0)()()(<c f b f a f ,若实数d 是方程0)(=x f 的一个解,那么下列四个判断: ①a d <;②b d >;③c d <;④c d >中有可能成立的个数为A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,在答题卡上的相应题目的答题区域内作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年福建省普通高中毕业班质量检查理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其他题 为必考题。
本试卷共5页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上。
2.考生作答时,将答案答在答题卡上。
请按照题号在各题的答题区域(黑色线框)内 作答,超出答题区域书写的答案无效。
在草稿纸、试题卷上答题无效。
3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号; 非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
5.保持答题卡卡面清洁,不折叠、不破损。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知x R ∈,i 不虚数单位,若()()12i x i 43i -+=-,则x 的值等于 A .6-B .2-C .2D .6 2. 设向量()a 4sin ,3=α ,()b 2,3cos =α,且a ∥b ,则锐角α为A .6π B .4π C .3πD .512π 3. “k 1=”是“线x y k 0-+=与圆22x y 1+=相交”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 函数()y ln 1x =-的图像大致为B5. 设α、β为不重合的平面,m 、n 为不重合的直线,则下列命题正确的是 A .若α⊥β,n αβ= ,m n ⊥,则m ⊥αB .若m ⊂α,n ⊂β,m ∥n ,则α∥βC .若m ∥α,n ∥β,m ⊥n ,则α⊥βD .若n ⊥α,n ⊥β,m ⊥β,则m ⊥α6.关于函数y sin 2x =图像的对称性,下列说法正确的是 A .关于直线x 3π=对称 B .关于直线x 6π=对称C .关于点,03π⎛⎫⎪⎝⎭对称D .关于点,06π⎛⎫⎪⎝⎭对称7. 右图是计算函数2x ,x 1y 0,1x 2x ,x 2⎧-≤-⎪=-<≤⎨⎪>⎩的值的程序框图,在①、②、③处应分别填入的是 A .y x =-,y 0=,2y x = B .y x =-,2y x =,y 0= C .y 0=,2y x =,y x =-D .y 0=,y x =-, 2y x =8. 已知直线2a x y 20+==与直线()2bx a 1y 10-+-=互相垂直,则ab 的最小值为 A .5 B .4 C .2 D .19. 已知函数()f x 满足()()f x f x π+=π-,且当()x 0,∈π时,()f x x cos x =+, 则()f 2,()f 3,()f 4的大小关系是 A .()()()f 2f 3f 4<< B .()()()f 2f 4f 3<<C .()()()f 4f 3f 2<<D .()()()f 3f 4f 2<<10.()n1x +的展开式中,k x 的系数可以表示从n 个不同物体中选出k 个的方法总数。
下列 各式的展开式中8x 的系数恰能表示从重量分别为1、2、3、…、10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是A .()()()()23101x 1x 1x 1x ++++ B .()()()()1x 12x 13x 110x ++++C .()()()()23101x 12x 13x 110x ++++D .()()()()22323101x 1x x 1x xx 1x xx x +++++++++++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分。
把答案填在答题卡相应位置。
11.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点。
已知恰有 200个点落在阴影部分,据此,可估计阴影部分的面积是 _____________。
12.已知x ,y 满足约束条件y x x y 1y 1≤⎧⎪+≤⎨⎪≥-⎩,则x 2x y =-的最大值是_____13.如图,直线y 1=与曲线2y x 2=-+所围图形的面积是_________。
14.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a 4b sin A =,则cos B =______。
15.已知椭圆1C 的中心在原点、焦点在x 轴上,抛物线2C 小明从曲线1C 、2C ()x ,y 。
由于记录失误,使得其中恰有一个点既不在椭圆1C 上,也不在抛物线2C 上。
小明的记1三、解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分13分)在等比数列{}n a 中,1a 2=,4a 16=。
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令*n 2n 2n 11b ,n N log a log a +=∈⋅,求数列{}n b 的前n 项和n S 。
甲、乙两位学生参加数学竞赛培训。
现分别从他们在培训期间参加的若干次预赛成绩中 随机抽取8次,记录如下: 甲 82 81 79 78 9588 93 84乙 92 95 80 75 8380 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E ξ。
18.(本小题满分13分) 四棱锥P -ABCD 的底面与四个侧面的形状和大小如图所示。
(Ⅱ)在四棱锥P -ABCD 中,若E 为PA 的中点,求证:BE ∥平面PCD ;(Ⅲ)在四棱锥P -ABCD 中,设面PAB 与面PCD 所成的角为θ()090︒<θ≤︒,求cos θ的值19.(本题满分13分)已知椭圆C 的离心率e =,长轴的左右端点分 别为()1A 2,0-,()2A 2,0。
(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。
试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。
B已知函数()f x ax ln x ,a R =+∈(Ⅰ)求函数()f x 的极值;(Ⅱ)对于曲线上的不同两点()111P x ,y ,()222P x ,y ,如果存在曲线上的点()00Q x ,y ,且102x x x <<,使得曲线在点Q 处的切线 ∥12P P ,则称 为弦12P P 的伴随切线。
特别地,当()()012x x 1x 01=λ+-λ<λ<时,又称 为12P P 的λ-伴随切线。
(ⅰ)求证:曲线y f (x)=的任意一条弦均有伴随切线,并且伴随切线是唯一的; (ⅱ)是否存在曲线C ,使得曲线C 的任意一条弦均有12-伴随切线?若存在,给出一条这样的曲线 ,并证明你的结论; 若不存在 ,说明理由。
21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分。
如果多做,则按所做的前两题计分。
作答时,先用2B 铅笔在答题卡上把所选题目对应 的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换已知a R ∈,矩阵 1 2A a 1⎛⎫=⎪⎝⎭对应的线性变换把点()P 1,1变成点()P 3,3', 求矩阵A 的特征值以及属于每个特征值的一个特征向量。
(2)(本小题满分7分)选修4-4:坐标系与参数方程已知直线 经过点()M 1,3,且倾斜角为3π,圆C 的参数方程为x 15cos y 5sin =+θ⎧⎨=θ⎩(θ是参数)。
直线 与圆C 交于1P 、2P 两点,求1P 、2P 两点间的距离。
(3)(本小题满分7分)选修4-5:不等式选讲解不等式:2x 1x 2x 1++-<+。
2009年福建省普通高中毕业班质量检查 理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分。
11、9 12、5 13、431415、22x y 1126+=三、解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分13分)在等比数列{}n a 中,1a 2=,4a 16=。
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令*n 2n 2n 11b ,n N log a log a +=∈⋅,求数列{}n b 的前n 项和n S 。
16、本小主要考查等比数列、数列求和等基础知识,考查运算求解能力。
满分13分 解:(Ⅰ) 设等比数列{}n a 的公比为q 。
依题意,得1341a 2a a q 16=⎧⎪⎨==⎪⎩ ………………………………………………2分解得q 2=,………………………………………………………………4分∴数列{}n a 的通项公式:n 1n n a 222-=⨯=。
…………………………7分(Ⅱ) 由(Ⅰ)得2n log a n =,2n 1log a n 1+=+。
()n 111b n n 1n n 1==-++。
………………………10分∴n 12n S b b b =+++ 111111223n n 1⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭1n1n 1n 1=-=++。
………………………… 13分17、(本小题满分13分)甲、乙两位学生参加数学竞赛培训。
现分别从他们在培训期间参加的若干次预赛成绩中 随机抽取8次,记录如下: 甲 82 8179 78 95 88 93 84乙 92 9580 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E ξ。