六年级数学素材期末专项复习解决问题应用题(精编版)带答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学素材期末专项复习解决问题应用题(精编版)带答案解析
一、苏教小学数学解决问题六年级下册应用题
1.一个圆锥形沙堆,底面周长是12.56米,高1.5米。
将这些沙铺在宽10米的道路上,铺 4厘米厚,可以铺多少米?
2.某学校安排学生宿舍,如果每间住12人,那么有34人没有宿舍;如果每间住14人,则空出4间宿舍。
那么有多少间宿舍?有学生多少人?
3.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计)
4.一个近似圆锥的,高2.4m,底面周长31.4m,每立方米沙重1.7吨,如果用一辆载重8吨的车运输,多少次可以运完?
5.
(1)请你在如图的圆中画一小圆,使得大圆和小圆的面积比是4:1.
(2)如果这个大圆的比例尺是1:200,请测量出所需数据并计算大圆的实际周长.(测量时保留整厘米数)
6.一个圆柱形的容器,底面周长是62.8厘米,容器里面水面高0.8分米,现把一个小圆柱体和一个与圆柱等底、高是圆柱一半的圆锥放入容器中,结果圆锥完全浸没在水中,圆
柱有在水面之上,容器内的水比放入前上升了3厘米,求圆柱和圆锥的体积?
7.小明调制了两杯蜂蜜水。
第一杯用了30毫升蜂蜜和360毫升水。
第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?
8.如图,圆柱形(甲)瓶子中有2厘米深的水,长方体(乙)瓶子里水深6.28厘米,将乙瓶中的水全部倒入甲瓶,甲瓶的水深是多少厘米?
9.鸡兔同笼,有25个头,80条腿,鸡兔各多少只?
10.在一幅比例尺是1:18000000的地图上,量得甲、乙两地的距离是6厘米。
张师傅凌晨4时从甲地出发,平均每时行驶90千米,到达乙地时是几时?
11.一堆圆锥形小麦,量得它的底面周长是12.56米,高是1.2米,如果每立方米小麦重
0.6吨,这堆小麦重多少吨?(用“四舍五入”法保留一位小数)
12.会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?
13.一堆圆锥形黄沙,底面周长是25.12m,高1.5m,每立方米的黄沙重2t,这堆沙重多少吨?
14.一瓶装满的矿泉水,内直径是6cm,明明喝了一些,瓶里剩下水的高度是8cm,把瓶盖拧紧后倒置放平,无水部分高是10cm,这瓶矿泉水原有多少水?
15.学校组织篮球比赛,春明在这场篮球赛中一共投中10个球,因为他投中的球中有2分球,也有3分球,所以得到24分。
春明在这场篮球赛中投中的2分球和3分球各是多少个?
16.下图,是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆。
(1)这个大棚的种植面积是多少平方米?
(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?
(3)大棚内的空间约有多大?
17.一列动车在高速铁路上行驶的时间和路程如图。
(1)看图填写下表。
时间/小时3
路程/千米800
________比例。
(3)照这样的速度,行1800千米需要________小时。
18.一个底面半径是10厘米的圆柱体杯子中装有水,水里浸没一个底面半径是5厘米的圆锥体铅锤。
把铅锤从杯中取出后,杯里的水面下降了1厘米。
圆锥体铅锤的高是多少厘
米?
19.一节空心混凝土管道的内直径是60厘米,外直径是80厘米,长300厘米,浇制100节这种管道需要多少立方米的混凝土?
20.在比例尺是1∶100的平面图上量得一间房子长8厘米,宽6厘米,这间房子实际的占地面积是多少平方米?
21.一台压路机的前轮是圆柱形,轮宽2米,半径0.6米.前轮转动一周,轧路的面积是多少平方米?
22.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
23.在12张球桌上同时进行乒乓球比赛,双打的比单打的多6人,进行单打比赛和双打比赛的乒乓球桌各有多少张?
24.在学校篮球比赛中,李军2分球加3分球共投进8个,共得19分,他2分球和3分球各投进多少个?
25.一个底面直径是2dm的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的。
现将一个铁块完全浸没在水中,水面上升了5cm,这时水面距杯口还有4cm。
这个铁块的体积是多少?这个杯子的容积是多少升?
26.近年来,中国的建筑行业蓬勃发展,基建事业不断发展。
2020年1月份新冠肺炎疫情爆发,医院床位紧张。
1月23日,由中建三局牵头,武汉建工、武汉市政、汉阳市政等企业参建在武汉知音湖畔5万平方米的滩涂坡地上,指挥7500名建设者和近千台机械设备,承诺用十天时间建成一所可容纳1000张床位的救命医院——火神山医院。
9天的时间,一座医院平地而起,第10天就开始启用,与疫情赛跑,与时间博弈,火神山医院的建立,是“中国速度"的又一个奇迹。
在施工现场有一个圆锥形石子堆,底面周长为12.56米,高是18分米,用这些石子铺满一条长16米、宽3米的地面,能铺多厚?
27.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。
制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
28.根据题意列方程,不解答。
我国明代著名数学家程大位的《算法统宗》一书中,记载了一些诗歌形式的算题,其中有一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完。
试问大、小和尚各多少人?
29.下面的图象表示斑马和长颈鹿的奔跑情况。
(1)长颈鹿的奔跑路程与奔跑时间是否成正比例关系,为什么?
(2)估计一下,两种动物18分钟各跑多少千米?
(3)从图象上看,斑马跑得快还是长颈鹿跑得快,为什么?
30.为了抗旱,小平家挖了一个底面半径5m、深2m的圆柱形蓄水池,并且用水泥涂抹水池的内壁与底部,防止漏水。
一场暴雨过后,小平沿水池边缘走了一圈,并测得池中水深1.2m。
(1)涂抹水泥的面积是多少平方米?
(2)池中水的体积是多少?
31.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
32.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
33.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…
.
(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
34.学校要建一个长60m、宽50m的长方形活动场地,请你画出活动场地的平面图。
计算:
画图:
35.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
36.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
37.一辆压路机的前轮是圆柱形,轮宽1.5米,直径是1.2米,前轮转动100周,压路的面积是多少平方米?
38.—个棱长是6分米的正方体。
(1)它的表面积是多少?
(2)如果把它削成一个最大的圆柱体,圆柱体的体积是多少?
(3)如果把它削成一个最大的圆锥体,削去的体积是多少立方分米?
39.一个底面半径是6cm的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9cm的圆锥形铅锥,当铅锥从水中取出后,水面下降了0.5cm,这个圆锥的底面积是多少平方厘米?
40.儿童节,爸爸送给高兴一个圆锥形的玩具(如图)。
如果要用一个长方体的盒子包装它,这个盒子的表面积至少多少平方厘米?
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题六年级下册应用题
1.解:半径:12.56÷3.14÷2
=4÷2
=2(米)
体积: ×3.14×22 ×1.5
=×3.14×4×1.5
=3.14×4×0.5
=12.56×0.5
=6.28(立方米)
4cm=0.04m
可以铺:
6.28÷10÷0.04
=0.628÷0.04
=15.7(米)
答:可以铺15.7米。
【解析】【分析】已知圆锥的底面周长,可以求出圆锥的底面半径,C÷π÷2=r,然后求出圆
锥的体积,V=πr2h,最后用圆锥沙堆的体积÷铺的宽度÷铺的厚度=铺的长度,据此列式解答。
2.解:宿舍:(14×4+34)÷(14-12)=45(间)
学生:45×12+34=574(人)或(45-4)×14=574(人)
答:那么有45间宿舍,有学生574人。
【解析】【分析】此题按鸡兔同笼的思路分析:如果每间住14人,就会空出4间宿舍;据此求出4间宿舍如果都住满的人数;如果每间住12人,就会有34人没有宿舍住;据此求出总人数差;再求出每间宿舍人数差;总人数差除以每间宿舍人数差就是宿舍数;最后求出总人数。
3.解:水的体积=3.14×(40÷2)2×50
=3.14×400×50
=62800(立方厘米)
鱼缸体积=40×30×50=60000(立方厘米)
因为62800>60000,所以水会溢出。
【解析】【分析】圆柱的体积=π×底面半径的平方×高,长方体的体积=长×宽×高,代入数值分别计算出体积,再将两个数值进行比较即可得出答案。
4.解:×3.14×(31.4÷3.14÷2)2×2.4×1.7÷8
=×3.14×25×2.4×1.7÷8
=62.8×1.7÷8
=106.76÷8
=13(次)……2.76(吨)
所以需要13+1=14(次)。
答:如果用一辆载重8吨的车运输,14次可以运完。
【解析】【分析】圆锥的体积=×π×底面半径(底面周长÷π÷2)的平方×圆锥的高,再用圆锥的体积×每立方米沙重的吨数求出沙的总吨数,最后用沙的总吨数÷每辆车载沙的吨数,若商为整数则商为总共运送的次数;若有余数,则商+1为总共运送的吨数。
5.(1)解:量得大圆的半径为2厘米,则小圆的半径为2÷2=1厘米,
如此小圆和大圆的面积比就为12:22=1:4,据此画图如下:
(2)解:量得大圆的半径为2厘米,则其实际长度为:
2÷ =400(厘米)=4(米)
所以大圆的实际周长为3.14×4×2=25.12(米)
答:大圆的实际周长为25.12米。
【解析】【分析】(1)两个圆的面积之比等于半径的平方之比,据此作答即可;
(2)大圆实际的半径=大圆的图上半径÷比例尺,所以大圆的之际周长=π×r×2。
6.解:62.8÷3.14÷2=10(厘米)
3.14×102×3
=3.14×100×3
=314×3
=942(立方厘米)
1﹣=
942÷(1+6× )
=942÷5
=188.4(立方厘米)
188.4×6=1130.4(立方厘米)
答:圆柱的体积是1130.4立方厘米,圆锥的体积是188.4立方厘米。
【解析】【分析】水面升高部分水的体积就是没入水中的圆锥和圆柱(1-)的体积之和。
这样先求出水面上升3厘米的水的体积。
因为圆柱和圆锥等底,圆锥的高是圆柱高的一
半,那么圆柱的体积是圆锥体积的6倍,所以没入水中的圆柱的体积是圆锥体积的(6×)倍,也就是4倍,那么用没入水中的圆柱和圆锥的体积和除以(1+4)即可求出圆锥的体积,进而求出圆柱的体积即可。
7.解:设第二杯应加入蜂蜜x毫升。
30:360=x:500
360x=30×500
360x=15000
x=15000÷360
x≈41.7
答:第二杯应加入蜂蜜41.7毫升。
【解析】【分析】第一杯中蜂蜜质量:水的质量=第二杯中蜂蜜质量:水质量,据此列比例,然后根据比例的基本性质和等式性质解比例。
8.解:乙瓶中水的体积:10×10×6.28=100×6.28=628(立方厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶增加的深度:628÷【3.14×(10÷2)²】
=628÷78.5
=8(厘米)
将乙瓶中的水全部倒入甲瓶,甲瓶水的总高度:2+8=10(厘米)
答:将乙瓶中的水全部倒入甲瓶,甲瓶的水深是10厘米。
【解析】【分析】此题属于典型的“等积变形”问题,用“长方体(乙)瓶中水的体积÷圆柱形(甲)瓶的底面积”求出甲瓶增加的深度,再用“原来的深度+增加的深度=总深度”,列式解答即可。
9.解:25×4-80=20(条腿)
鸡:20÷(4-2)=10(只)
兔:25-10=15(只)
答:鸡10只,兔15只。
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以用假设法解答,假设全部是兔,则一共有25×4=100条腿,比实际多了100-80=20条腿,每只兔比每只鸡多4-2=2条腿,一
共多的腿数÷2=鸡的只数,然后用鸡和兔的总只数-鸡的只数=兔的只数,据此列式解答。
10.解:6÷=108000000(厘米)=1080(千米),
1080÷90=12(小时),
4时+12小时=16时。
答:到达乙地时是16时。
【解析】【分析】根据题意可知,先求出甲、乙两地的实际距离,图上距离÷比例尺=实际距离,再用路程÷速度=时间,求出路上行驶的时间,最后用出发的时刻+路上行驶的时间=到达的时刻,据此列式解答。
11.解:圆锥的底面半径=12.56÷3.14÷2
=4÷2
=2(米)
3.14×22×1.2××0.6
=3.14×4×1.2××0.6
=3.14×1.6×0.6
=5.024×0.6
≈3.0(吨)
答:这堆小麦重3.0吨。
【解析】【分析】这堆小麦的重量=小麦的体积即圆锥的体积(π×底面半径的平方×圆锥的
高×)×每立方米小麦的重量,圆锥的底面半径=圆锥的底面周长÷π÷2,代入数值计算即可得出答案。
12.解:3.14×0.6×6×10×0.5
=1.884×6×10×0.5
=11.304×10×0.5
=113.04×0.5
=56.52(千克)
答:刷这些柱子要用油漆56.52千克。
【解析】【分析】根据题意可知,先求出1根圆柱形柱子的侧面积,依据公式:S=Ch,然后乘10,求出10根圆柱形柱子的侧面积,最后用每平方米用油漆的质量×要粉刷的面积=刷这些柱子要用油漆的质量,据此列式解答。
13.解:25.12÷3.14÷2=4(米)
3.14×4×4×1.5÷3=25.12(立方米)
25.12×2=50.24(吨)
答:这堆沙重50.24吨。
【解析】【分析】底面周长÷3.14÷2=底面半径;3.14×底面半径的平方×高÷3=圆锥体积;圆锥体积×2=这堆沙的重量。
14.解:3.14×(6÷2)2×(8+10)
=3.14×9×18
=28.26×18
=508.68(立方厘米)
答:这瓶矿泉水原有508.68立方厘米水。
【解析】【分析】根据题意可知,正放时,有水部分的圆柱体积是现在剩余水的体积,倒置时空白圆柱部分的体积是喝掉水的体积,两者相加就是原来水的体积,据此列式解答。
15.解:设投中3分球x个,则2分球有(10-x)个。
3x+2(10-x)=24
3x+20-2x=24
x=24-20
x=4
10-4=6(个)
答:春明在这场篮球赛中投中的2分球有6个,3分球有4个。
【解析】【分析】此题属于鸡兔同笼问题,设投中3分球x个,则2分球有(10-x)个,根据得分是24分列出方程,解方程求出3分球的个数,进而求出2分球的个数即可。
16.(1)2×15=30(平方米)
答:这个大棚的种植面积是30平方米。
(2)3.14×2×15÷2
=3.14×15
=47.1(m2)
3.14×()2=3.14(m2)
47.1+3.14=50.24(m2)
答:覆盖在这个大棚上的塑料薄膜约有50.24平方米。
(3)解:3.14×()2×15=47.1(立方米)
47.1÷2=23.55(立方米)
答:大棚内的空间约有23.55平方米。
【解析】【分析】(1)大棚的种植面积是长方形,长是15米,宽是2米,根据长方形面积公式计算;
(2)塑料薄膜的面积是一个整圆的面积,加上圆柱侧面积的一半,根据公式计算即可;(3)大棚内的空间是圆柱体积的一半,用底面积乘高再除以2即可求出空间的大小。
17.(1)
时
间/
34
小
时
路
600 800
程/
千
米
(3)9
【解析】【解答】(2)路程÷时间=200(一定),行驶的时间和路程成正比例;
(3)1800÷200=9(小时)。
故答案为:(2)正;(3)9。
【分析】(1)图中横轴表示时间,竖轴表示路程,根据图形直接判断3小时行驶的路程,800千米需要的时间;
(2)根据时间和路程相对应的数据确定路程和时间的比值一定,二者就成正比例关系;(3)用路程除以速度即可求出行驶的时间。
18.解:3.14×102×1÷÷(3.14×52)
=3.14×300÷3.14÷25
=300÷25
=12(厘米)
答:圆锥体的高是12厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆柱的体积公式计算出1
厘米高水的体积,也就是圆锥铅锤的体积。
圆锥的高=体积÷÷底面积,根据公式计算圆锥的高即可。
19. 300厘米=3米
60÷2=30(厘米)=0.3(米)
80÷2=40(厘米)=0.4(米)
3.14×(0.4×0.4-0.3×0.3)×3×100=3.14×0.07×300=65.94(立方米)
答:浇制100节这种管道需要65.94立方米的混凝土。
【解析】【分析】空心混凝土管道的底面积×高=一节的体积;一节的体积×100节=浇制100节这种管道需要的混凝土体积。
20.解:8÷=800(厘米)=8(米)
6÷=600(厘米)=6(米)
8×6=48(平方米)。
答:这间房子实际的占地面积是48平方米。
【解析】【分析】此题主要考查了比例尺的应用,已知图上距离和比例尺,要求实际距离,图上距离÷比例尺=实际距离,分别求出实际的长与宽,然后用长×宽=长方形的面积,据此列式解答。
21.解:3.14×0.6×2×2
=3.14×2.4
=7.536(平方米)
答:轧路的面积是7.536平方米。
【解析】【分析】前轮转动一周,轧路的面积就是求圆柱的侧面积,圆柱的侧面积=底面周长×高;底面周长=2×π×半径。
22.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
23.解:双打:
(12×2+6)÷(2+4)
=30÷6
=5(张)
单打:12-5=7(张)
答:进行单打比赛的乒乓球桌有7张,进行双打比赛的乒乓球桌有5张。
【解析】【分析】假设都是单打的,则总人数是12×2,在加上双打比单打多的6人就是总人数,用总人数除以(2+4)即可求出双打的张数,进而求出单打的张数即可。
24.解:2分球:(3×8-19)÷(3-2)=5(个)
3分球:8-5=3(个)
答:2分球投进5个,3分球投进3个。
【解析】【分析】本题先假设全是3分球,然后根据出现的分数差,可推算出2分球的个数。
2分球的个数=(共投进8个×3-实际得分)÷分数差,3分球的个数=共投进8个-2分球的个数。
25.解:2dm=20cm
(20÷2)2×3.14×5=1570cm3
(5+4)÷(1-)=15cm
15÷5×1570=4710cm3=4.71升
答:这个铁块的体积是1570cm3,这个杯子的容积是4.71升。
【解析】【分析】先把单位进行换算,即2dm=20cm,那么这个铁块的体积=(玻璃杯的底面直径÷2)2×π×水面上升的高度;玻璃杯的高度=(水面上升的高度+水面上升后水面距杯口的距离)÷(1-原来水占杯子容量的几分之几),所以这个杯子的容积=玻璃杯的高度÷水面上升的高度×铁块的体积。
26.解:18分米=1.8米
12.56÷3.14÷2=2(米)
3.14×22×1.8×÷16÷3
=3.14×4×0.6÷16÷3
=3.14×2.4÷16÷3
=7.536÷16÷3
=0.157(米)
答:能铺0.157米厚。
【解析】【分析】用圆锥的底面周长除以3.14再除以2即可求出底面半径,然后根据圆锥的体积公式计算出石子的体积,再根据长方体的体积公式用石子的体积除以地面的长再除以地面的宽即可求出能铺的厚度。
27.解:3.14×16×10+30×30
=502.4+900
=1402.4(cm2)
答:制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
28.解:假设全是大和尚,
(100×3-100)÷(3-)
=200÷
=75(人)
100-75=25(人)
答:大和尚有25人,小和尚有75人。
【解析】【分析】小和尚3人分1个,每人分个,所以假设全是大和尚,小和尚的人数=(和尚的总人数×大和尚每人分馒头的个数-一共有馒头的个数)÷大、小和尚每人分馒头的个数之差,大和尚的人数=和尚的总人数-小和尚的人数,据此作答即可。
29.(1)解:20:25=0.8,4:5=0.8
答:长颈鹿的奔跑路程与奔跑时间成正比例关系,因为奔跑路程与奔跑时间的比值一定。
(2)解:估计长颈鹿18分钟跑14千米,斑马18分钟跑22千米。
(3)解:从图像上看,斑马跑得快,因为同样跑24千米,斑马用20分钟,长颈鹿用30
分钟。
【解析】【分析】(1)写出长颈鹿奔跑的路程与时间的比,看比值是否相等,如果比值相等,二者就成正比例关系;
(2)先找出18分钟的时间,然后找出18分钟对应的路程即可确定二者各跑多少千米;(3)路程相同,谁用时少谁就跑得快。
30.(1)解:3.14×52+3.14×(5×2)×2=141.3(平方米)
答:涂抹水泥的面积是141.3平方米。
(2)解:3.14×52×1.2=94.2(立方米)=94200升
答:池中水的体积是94200L。
【解析】【分析】(1)涂抹水泥的面积=圆柱的底面积+侧面积=πr2+πdh=πr2+π(r×2)h,据此代入数值解答即可,π一般取3.14;
(2)池中水的体积=底面积×水深=πr2×水深,1立方米=1000升,据此代入数值解答即可。
31.(1)解:填表如下:
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
32.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
33.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。
故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。
【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。
34.解:计算:60m=6000cm,50m=5000cm,
6000×=6(cm),5000×=5(cm),
画图:
【解析】【分析】先确定比例尺,然后把实际距离的长和宽都换算成厘米,用实际长度乘比例尺求出图上距离,然后根据图上距离画出图形即可。
35.解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。
36.解:底面周长:25.12÷2=12.56(厘米)
底面半径:12.56÷3.14÷2
=4÷2
=2(厘米)
两个底面积和:3.14×22×2
=12.56×2
=25.12(平方厘米)
侧面积:12.56×8
=100.48(平方厘米)
表面积:25.12+100.48=125.6(平方厘米)
答:原来圆柱的表面积是125.6平方厘米。
【解析】【分析】底面周长=增加的表面积÷增加的高,底面半径=底面周长÷2π,底面积=π底面半径2,侧面积=底面周长×高,圆柱的表面积=两个底面面积和+侧面的面积,据此解答即可。
37.解:3.14×1.2×1.5×100
=314×1.8
=565.2(平方米)
答:压路的面积是565.2平方米。
【解析】【分析】压路的面积=圆柱的侧面积×前轮转动周数,圆柱的侧面积=π×直径×轮宽。
38.(1)解:6×6×6
=36×6
=216(平方分米)
答:它的表面积是216平方分米。
(2)解:3.14×(6÷2)²×6
=3.14×9×6
=28.26×6
=169.56(立方分米)
答:圆柱体的体积是169.56立方分米。
(3)解:圆锥的体积:
×3.14×(6÷2)²×6
= ×3.14×9×6
=9.42×6
=56.52(立方分米);
正方体的体积:
6×6×6
=36×6
=216(立方分米)
削去的体积:216-56.52=159.48(立方分米)
答:削去的体积是159.48立方分米。
【解析】【分析】(1)已知正方体的棱长,要求正方体的表面积,正方体的表面积=棱长×棱长×6,据此列式解答;
(2)如果把正方体削成一个最大的圆柱体,圆柱的底面直径是正方体的棱长,圆柱的高是正方体的棱长,要求圆柱的体积,用公式:圆柱的体积=底面积×高,据此列式解答;(3)将一个正方体削成一个最大的圆锥体,圆锥的底面直径是正方体的棱长,圆锥的高
是正方体的棱长,先求出圆锥的体积,圆锥的体积公式:V=πr2h,然后求出正方体的体积,最后用正方体的体积-圆锥的体积=削去的体积,据此列式解答。
39.解:V=πr²h
=3.14×6²×0.5
=56.52(立方厘米)
S=3V÷h
=56.52×3÷9
=18.84(平方厘米)
答:这个圆锥的底面积是18.84平方厘米。
【解析】【分析】下降的水的形状是圆柱,圆柱的体积=底面积×高,圆柱的体积也是铅锥的体积,铅锥的体积×3÷铅锥的高=铅锥的底面积,据此解答。
40.解:6×6×2+6×10×4
=72+240
=312(平方厘米)
答:这个盒子的表面积至少312平方厘米。
【解析】【分析】盒子的底面边长至少是6cm,高至少是10cm,根据长方体表面积公式计算盒子的表面积即可。