正多边形和圆教案
人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)正多边形和圆(第1课时)
24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。
正多边形与圆教案
1. 让学生了解正多边形的定义及其性质。
2. 让学生掌握正多边形与圆的关系。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 正多边形的定义及性质。
2. 正多边形与圆的关系。
3. 正多边形的计算与应用。
三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。
2. 教学难点:正多边形的计算与应用。
四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。
2. 利用几何画板软件,直观展示正多边形与圆的关系。
3. 结合实际例子,让学生运用正多边形的知识解决实际问题。
五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。
2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。
3. 讲解:讲解正多边形的计算方法,并举例说明。
4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。
6. 作业布置:布置适量作业,巩固所学知识。
1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。
2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。
3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。
七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。
2. PPT课件:用于讲解正多边形的性质和计算方法。
3. 练习题:用于巩固学生对正多边形的理解和应用能力。
八、教学进度安排1. 第1周:介绍正多边形的定义及性质。
2. 第2周:讲解正多边形与圆的关系。
3. 第3周:讲解正多边形的计算方法。
4. 第4周:实际问题中的应用练习。
九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。
2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。
3. 评估作业难度,确保作业能够有效巩固所学知识。
十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。
2. 介绍正多边形的相关历史背景和文化意义。
24.3 正多边形和圆教案
课题24.3 正多边形和圆授课人 安远县濂江中学 刘志超教学目标知识技能 使学生理解正多边形概念,初步掌握正多边形与圆的关系. 数学思考使学生丰富对正多边形的认识,发展学生的形象思维.问题解决 教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题,发展学生的实践能力和创新精神.情感态度通过认识与探究正多边形到实际应用等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学重点理解掌握正多边形的半径、中心角、边心距、边相关概念及其中的关系.教学难点 探索正多边形和圆的关系.授课类型 新授课课 时第一课时教具多媒体教 学 活 动教学步骤师生活动设计意图 回顾与思考((积木展示) 问题: 1. 在这个摩天轮上你找到了哪几种形状的积木?. 2. 什么样的多边形是正多边形? 3.你对正多边形有多少了解?4.学生思考:菱形是正多边形吗?矩形是正多边形吗? 师生活动:教师引导学生进行解答,并适时作出补充和讲解.回顾以前学习过的且对本节课的学习有基础作用的知识,为学习新知打下基础.活动一: 创设情境 导入新课(1)请再观察摩天轮,你还能找出正多边形吗? (2)把正多边形的边数增多,它的形状有何特点?师生活动:教师实物展示及几何画板软件演示,引导学生观察、思考,学生讨论、交流,发表各自见解.教师关注:①学生能否从图案中找出正多边形;②学生能否从动画中发现正多边形和圆的关系.创设情境,激发学生主动将圆的知识与正多边形联系起来,激发学生积极探索,调动学生学习积极性. 活动二: 1.探究新知问题1:将一个圆分为五等份,依次连接各分点得到一个五边形,这五边形一定是正多边形吗?如果是,请你证明这个结论. 师生活动:教师演示作图并引导学生从正多边形的定义入手证明,引导学生观察、分析,教师指导学生完成证明过程. 教师在学生思考、交流的基础上板书证明过程.问题2:如果将圆n 等分,依次连接各顶点得到一个n 边形,这个n 边形一定是正n 边形吗?师生活动:学生思考,小组内交流、讨论,教师根据学生回1.将结论由特殊推广到一般,符合学生的认知规律,并交给学生一种研究问题的方法. 2.教学中,实践探究交流新知答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接正多边形呢?如果是为什么?请说明,不是,举出反例.师生活动:学生讨论,思考回答,教师进行总结讲解.教师重点关注:学生能否利用正多边形的定义进行判断;学生能否由圆内接正多边形各边相等得到弦相等,及弦所对的弧相等;学生能否列举反例说明各角相等的圆内接多边形不一定是正多边形.2.应用新知活动一:教师演示课件,给出正多边形的中心、半径、中心角等概念.教师提出问题:(1)正五边形的5条半径把它分割成几个三角形?它们有什么关系?(2)正n边形的n条半径有什么关系?(3)正多边形的中心角怎么计算?(4)正多边形的中心角、内角、外角有什么关系?师生活动:学生在教师的引导下,结合图形,得到结论.活动二:举手抢答(1)圆内接正十边形的中心角是_____度.(2)如果一个圆内接正多边形的中心角是120°,那么这是个正____边形.师生活动:学生应用定义进行角度计算抢答,训练中心角的计算能力.活动三:边心距定义的生成教师提出问题:(1)正三边形半径R=2,请求出边BC.(引出边心距定义)(2)画出正三边形的所有边心距,这些边心距相等吗?有几个直角三角形?正n边形呢?(3)正多边形的边长a与边心距r、半径R有什么等量关系?师生活动:由学生计算作图引出边心距定义,学生在教师的引导下,结合图形,得到结论.活动四:正多边形相关线段、角度的综合(1)圆内接正四边形ABCD,∠BOC=________度;(2)若半径为R,①求边BC(用含R的式子表示);②求边心距OE(用含R的式子表示).(3)圆内接正六边形ABCDEF,∠BOC=________度,你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?师生活动:学生思考,动手验证,教师引导,得出结论.使学生明确圆内正多边形必须满足各边相等,各角相等,培养学生严谨的态度和思维批判性.3.学生通过对半径的探究了解正多边形,进而对正多边形问题中各类角的关系知其所以然,为角度计算问题立好根基.4.通过对边心距的探究,让学生进一步得到正多边形内外心重合,以及解决正多边形问题转化为解直角三角形问题.活动三:开放训练体现应用【应用举例】(课件展示)例1:如图,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长.活动一:正多边形的周长问题探究(1)教师引导学生画出图形,进行分析,完成例题的解答.(2)提出问题:边长为a的正n边形的周长又怎么求?师生活动:小组讨论探究,成果展示,得出一般性的结论.活动二:正边形的面积探究(1)要求地基的面积,你又有什么办法?(2)解决正多边形计算的关键你认为在于什么?师生活动:小组讨论,进行面积求法开放探究,教师参与学生交流后小组成果展示,师生共同归纳计算办法.【拓展提升】1.正六边形ABCDEF内接于⊙O,则∠BEC的度数是_______.题1图题2图题3图2.将正六边形ABCDEF补成如图所示的矩形MNPQ,已知矩形的边NP=8,求BC.3.如图,M,N分别是正六边形AB,BC上的点,且BM=CN.(1)求∠MON的度数;(2)试说明四边形OMBN的面积与正六边形面积之间的关系.师生活动:学生讨论,成果展示,教师引导体会其中的数形结合、方程、化归思想.1.将正多边形的中心、半径、中心角、边心距等一些量集中在一个三角形中研究,可以利用勾股定理进行计算,进而能够求得正多边形的所有量.2.教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题.3通过对面积开放性探究,将正六边形与正三边形结合,了解正多边形的对称性.活动四:课堂总结反思1.课堂总结:(1)谈一谈这节课中,你有哪些收获?解决问题的方法是什么?(2)解决问题的方法是什么?2.布置作业:教科书第108---109页1,6题.巩固、梳理所学知识,对学生进行鼓励、进行思想教育.【板书设计】24.3正多边形和圆各边相等一、圆等弧各角相等提纲挈领,重点突出正多边形内角 半径R, 边心距四、周长l= na 【教学反思】 )180.n ︒22()2a R+=。
人教版九年级数学上册《正多边形和圆》教学案
正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。
2.学法:学生主动探究研究发现法。
3.教具:三角尺、圆规、投影仪(或小黑板)。
教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。
人教版数学九年级上册24.3.2《正多边形和圆》教案
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
正多边形和圆教案
正多边形和圆教案【教学目标】1. 理解正多边形和圆的定义和特点。
2. 掌握计算正多边形的周长和面积的方法。
3. 掌握计算圆的周长和面积的方法。
【教学重点】1. 正多边形和圆的定义和特点。
2. 正多边形的周长和面积计算。
3. 圆的周长和面积计算。
【教学准备】1. 教师准备:投影仪或黑板、粉笔。
2. 学生准备:几何工具。
【教学过程】一、导入(5分钟)1. 教师出示图形,让学生回顾正多边形和圆的定义。
2. 学生回答正多边形和圆的特点。
二、正多边形(15分钟)1. 教师板书正多边形的定义和性质。
(1)定义:所有边相等,所有角相等的多边形称为正多边形。
(2)性质:内角和公式为180°×(n-2),其中n表示正多边形的边数。
2. 教师出示图形,引导学生计算正多边形的周长和面积。
(1)周长计算:正多边形的周长等于边长乘以边数。
(2)面积计算:正多边形的面积等于边长的平方乘以正多边形的边数,再除以4乘正切180°/n。
三、圆(20分钟)1. 教师板书圆的定义和性质。
(1)定义:平面上的一组点,到圆心的距离都相等的图形。
(2)性质:圆心角的度数等于它所对应的弧的度数。
2. 教师出示图形,引导学生计算圆的周长和面积。
(1)周长计算:圆的周长等于直径乘以π(π取近似值3.14)。
(2)面积计算:圆的面积等于半径的平方乘以π。
四、小结(5分钟)教师总结正多边形和圆的定义、特点以及计算方法。
【教学延伸】1. 学生可以用几何工具绘制正多边形和圆来加深理解。
2. 学生可以通过解决相关练习题来熟练应用计算方法。
【教学反思】本节课通过引导学生理解正多边形和圆的定义和特点,以及掌握计算它们的周长和面积的方法,培养了学生的几何计算能力。
在教学过程中,可适当增加生动的示例和实例计算,以提高学生的学习兴趣和思维能力。
九年级数学上册《正多边形和圆》教案、教学设计
a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。
正多边形和圆(教案、教学反思、导学案)
24.3正多边形和圆【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知1.正多边形和圆的关系问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°(n-2)n3.正多边形和圆有关的计算问题例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB 的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.24.3正多边形和圆一、新课导入1.导入课题:情景:欣赏下面图片.问题:什么叫正多边形?图中有哪些正多边形?正多边形与圆有哪些关系?2.学习目标:(1)理解正多边形及其半径、边长、边心距、中心角等概念.(2)会进行特殊的与正多边形有关的计算,会画某些正多边形.3.学习重、难点:重点:正多边形的有关概念与计算.难点:正多边形的有关计算.二、分层学习1.自学指导:(1)自学内容:教材第105页至第106页的内容.(2)自学时间:6分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①什么叫正多边形?矩形是正多边形吗?菱形呢?正方形呢?各边相等、各角也相等的多边形叫做正多边形.矩形和菱形不是正多边形,正方形是正多边形.②正多边形是轴对称图形吗?是中心对称图形吗?是轴对称图形,不一定是中心对称图形.③以正六边形为例,指出右图中正多边形的中心、半径、中心角和边心距.中心:点O.半径:OC、OE、OF.中心角:∠EOF.边心距:OM.④正n 边形的每个内角都为()n ?n -︒2180,每个外角都为n ︒360,中心角为n︒360. ⑤有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(保留小数点后一位).解:作OM ⊥BC 于M.连接OB 、OC,∵ABCDEF 是正六边形,∴△OBC 为正三角形,∴∠MOC=12∠BOC=30°,OB=BC=OC. ∴l =6BC =6OB =6×4=24(m ).在Rt △OMC 中,∵∠MOC=30°,∴MC=12OC=2m. ∴OM=OC 2-MC 2=23m.∴()OBC S BC OM m ==⨯⨯=2114234322. ∴()正六边形OBC S S .m ==≈26243416.即地基的周长为24m,面积约为41.6m2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生完成自学参考提纲的情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)正多边形的相关概念.(2)正n 多边形的对称性.(3)填表:1.自学指导:(1)自学内容:教材第107页的内容.(2)自学时间:4分钟.(3)自学要求:阅读并画图,推理以强化理解.(4)自学参考提纲:①两种六等分圆周的方法中,第一种方法的依据是作相等的圆心角;第二种方法的依据是在圆上作相等的弧.②分别在所给的圆中画出正三角形、正方形和正六边形.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生是否明白画图的依据.②差异指导:根据学情进行指导.(2)生助生:生生互动,交流、研讨.4.强化:正多边形的画法.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、动手情况及学习效果和存在问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.(2)等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法中正确的是( C )A.各边都相等的多边形是正多边形B.正多边形既是轴对称图形,又是中心对称图形C.各边都相等的圆内接多边形是正多边形D.各角都相等的圆内接多边形是正多边形2.(10分)如果一个正多边形的每个外角都等于36°,则这个多边形的中心角等于(A )A.36°B.18°C.72°D.54°3.(10分) 如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使直角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是(A )A.4B.5C.6D.74.(20分) 如图,要拧开一个边长为a=6mm 的正六边形螺帽,扳手张开的开口b 至少为多少?解:如图,∠ABC=120°.AB =a,AC =b.过B 作BD ⊥AC 于点D,则AD=DC=12b. 在Rt △ABD 中,∠BAC=30°,∴BD=12AB=3mm. ∴AD AB BD =-=-=22226333(mm ).∴b=2AD=63mm.即扳手张开的开口b 至少要63mm.5.(20分) 如图,正方形的边长为4cm ,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:设正八边形的边长为x cm,则xx -⎛⎫⨯= ⎪⎝⎭22422.即x2+8x-16=0.解得x=-1424,x=--2424(舍去).∴剪去的四个小三角形的面积为()()⎡⎤--⎢⎥⨯⨯=-⎢⎥⎣⎦24424144832222cm2.∴正八边形的边长为()-424cm,面积为()()cm⨯--=-2444832232232.二、综合应用(20分)6.(20分) 如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.(1)求证:△BCF≌△CDM;(2)求∠BPM的度数.(1)证明:∵ABCDE是正五边形,∴BC=CD,∠BCD=∠CDM,又CF=DM,∴△BCF≌△CDM.(2)解:由(1)知∠FBC=∠MCD,∴∠BPM=∠FBC+∠BCM=∠MCD+∠BCM=∠BCF=35×180°=108°.三、拓展延伸(10分)7.(10分) 一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是(B)A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4。
九年级数学: 24.3 正多边形和圆教案
24.3正多边形和圆教案一、【教材分析】1.通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;2.通过正多边形有关概念的教学培养学生的阅读理解能力.二、【教学流程】边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.教师提出问题学生相互讨论思考1.如何画这个图形的外接圆?2.圆与正多边形顶点以及位置关系是怎么样的?3.如何利用圆画正多形:作相等的弧外接圆与内接圆的区别和联系?在教师和和学生的探讨中解决问题:在动手操作与实践中认识问题对问题的一种升华认识对问题的梳理认识尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.2.利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm的正五边形(1)画法(2)步骤3. 巩固训练教材P106 练习1、2、3 P108 探究题、练习.教师提出问题学生独立思考解答并板书师生探讨分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径可选做,学生独立完成一种成果的展示探讨正多边形的画法补偿提高1.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.让学生课堂讨论分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,应用圆的对称性就能圆满解决此题对不同能力学生的升华认识_h_F_D_E_C_B_A_N_GFDECBAOM解:(1)由AB ·CG =AC ·BC 得h=8610AC BC AB ⨯=g =4.8(2)当x =2.4时,S DEFN 最大(3)当S DEFN 最大时,x =2.4,此时,F 为BC 中点,在Rt △FEB 中,EF =2.4,BF =3. ∴BE =22223 2.4DE EF -=-=1.8 ∵BM =1.85,∴BM >EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x =2.4时,DE =5∴AD =3.2,由圆的对称性知满足条件的另一设计方案,如图所示:小结:三、【板书设计】24.3 正多边形和圆1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.四、【教后反思】《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形.通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.。
圆与正多边形教案
正多边形与圆教案一田小华第一课时一.学习目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;二.教学重难点学习重点:正多边形的概念及正多边形与圆的关系。
学习难点:利用直尺与圆规作特殊的正多边形。
三.自学提纲了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。
四.教学过程:1.情境创设:我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形及所有边相等的正多边形提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?拓展:如果圆内接正三角形,正方形有什么性质二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念正多边形的概念:(学生读出,并及时理解)(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.定理:此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法,我们拿正五边形来做事例分析书上的例题P33拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA.(图形师生共同作图)(1)求证:五边形ABCDE是正五边形.探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。
这个圆与正五边形什么关系?活动二用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。
活动四利用直尺与圆规作特殊的正多边形问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正八边形正三角形、正十二边形?拓展2:各内角都相等的圆内接多边形是否为正多边形?五、课堂练习课本P34练习1,2和P35习题3,4六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。
正多边形和圆教案
正多边形和圆(一)教案斯家场中学吴华平教材分析学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。
在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。
接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。
让学生体会到化归思想在研究问题中的重要性。
培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。
教学目标知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
能运用正多边形的知识解决圆的有关计算问题。
数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。
解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。
情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。
重点难点教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
教学难点:探索正多边形与圆的关系。
教学过程:一、观察图案,提出问题(设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。
)问题l:观看教科书图24。
3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。
你能从这些图案中找出正多边形来吗?教师引导学生回忆、理解正多边形的概念。
问题2:菱形,矩形,正方形是正多边形吗?问题3:通过观察图案,你们知道正多边形和圆有什么关系吗?问题4:给你一个圆,怎样就能做出一个正多边形来?(教师引导学生观察、思考,学生分组讨论、交流,发表各自见解)此问题比较抽象,是本节课的难点。
正多边形和圆教案
正多边形和圆教案一、教学目标:1. 知识与技能:(1)理解正多边形的定义及其性质;(2)掌握圆的定义及其基本性质;(3)能够运用正多边形和圆的知识解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,培养学生的逻辑思维能力和团队协作能力;(2)学会用图形软件绘制正多边形和圆,提高学生的动手实践能力。
3. 情感、态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生珍惜自然资源,爱护环境的美好情感。
二、教学重点与难点:1. 教学重点:(1)正多边形的定义及其性质;(2)圆的定义及其基本性质;(3)正多边形和圆在实际问题中的应用。
2. 教学难点:(1)正多边形边数与圆周率的关系;(2)圆的面积公式的推导。
三、教学准备:1. 教具准备:(1)正多边形和圆的模型;(2)多媒体教学设备;(3)绘图软件。
2. 学生准备:(1)掌握基本的几何知识;(2)具备一定的观察和思考能力。
四、教学过程:1. 导入新课:(1)利用模型展示正多边形和圆;(2)引导学生观察和思考,激发学生的兴趣和好奇心。
2. 自主探究:(1)让学生通过观察、思考、交流,总结正多边形的定义及其性质;(2)引导学生探索圆的定义及其基本性质;(3)组织学生讨论正多边形和圆在实际问题中的应用。
3. 教师讲解:(1)讲解正多边形边数与圆周率的关系;(2)讲解圆的面积公式的推导。
4. 实践操作:(1)让学生利用绘图软件绘制正多边形和圆;(2)引导学生运用正多边形和圆的知识解决实际问题。
5. 课堂小结:(1)回顾本节课所学内容,加深学生对正多边形和圆的认识;(2)强调正多边形和圆在实际问题中的应用价值。
五、课后作业:1. 完成教材上的相关练习题;2. 收集生活中的正多边形和圆的实例,下节课分享。
教学反思:本节课通过观察、思考、交流等环节,让学生掌握了正多边形和圆的基本知识,培养了学生的动手实践能力。
正多边形和圆教案
正多边形和圆教案第一章:正多边形的定义和性质1.1 教学目标:了解正多边形的定义和性质能够计算正多边形的边数和内角大小1.2 教学内容:正多边形的定义:一个多边形,如果所有边的长度相等,并且所有的内角也相等,这个多边形就是正多边形。
正多边形的性质:正多边形的边数等于360度除以每个内角的度数;每个内角的度数等于(180度×(边数-2))/边数。
1.3 教学活动:引入正多边形的概念,让学生通过观察图形来理解正多边形的定义。
通过示例,引导学生学习正多边形的性质,并能够运用性质计算正多边形的边数和内角大小。
1.4 作业:练习计算不同边数的正多边形的边数和内角大小。
第二章:圆的定义和性质2.1 教学目标:了解圆的定义和性质能够计算圆的周长和面积2.2 教学内容:圆的定义:一个平面上所有点与一个给定点(圆心)的距离相等的点的集合。
圆的性质:圆的周长等于2πr,其中r是圆的半径;圆的面积等于πr²。
2.3 教学活动:引入圆的概念,让学生通过观察图形来理解圆的定义。
通过示例,引导学生学习圆的性质,并能够运用性质计算圆的周长和面积。
2.4 作业:练习计算不同半径的圆的周长和面积。
第三章:正多边形和圆的关系3.1 教学目标:了解正多边形和圆的关系能够将正多边形转化为圆的方程3.2 教学内容:正多边形和圆的关系:正多边形可以看作是圆的一种特殊情况,即圆的半径等于正多边形的边长。
正多边形转化为圆的方程:设正多边形的边长为a,半径为r,则正多边形的方程可以表示为(x-r)²+(y-r)²=r²。
3.3 教学活动:引导学生思考正多边形和圆的关系,让学生通过观察图形来理解两者之间的联系。
通过示例,引导学生学习如何将正多边形转化为圆的方程。
3.4 作业:练习将不同边数的正多边形转化为圆的方程。
第四章:正多边形和圆的面积计算了解正多边形和圆的面积计算方法能够计算正多边形和圆的面积4.2 教学内容:正多边形和圆的面积计算方法:正多边形的面积可以看作是圆的面积的一部分,即正多边形的面积等于圆的面积乘以正多边形内角度数的比值。
24.3正多边形和圆教案
实践活动环节,学生们分组讨论和实验操作都表现得非常积极。他们通过亲自动手,不仅加深了对正多边形和圆的理解,还学会了如何将这些知识应用于实际问题。但同时,我也发现有些小组在讨论过程中,讨论主题偏离了教学内容。为了防止这种情况再次发生,我将在下次活动中明确讨论主题和目标,并在讨论过程中适时引导,确保教学效果。
5.培养学生的团队合作意识,课堂讨论与小组活动中,学会倾听、交流、协作,共同完成学习任务,提高人际沟通能力。
三、教学难点与重点
1.教学重点
a.正多边形的定义及性质:理解正多边形的定义,掌握其内角、外角、对角线的性质,以及正多边形与圆的关系。
-举例:讲解正五边形的性质,如内角和、外角、对角线数量等。
b.正多边形面积的计算方法:掌握正多边形面积的求解公式,并能应用于实际问题。
-举例:引导学生通过画图和计算,探究正多边形内角与外角的关系,如正五边形的内角为108°,外角为72°。
b.正多边形面积公式的推导与应用:推导正多边形面积公式,并应用于解决复杂问题。
-举例:引导学生通过分割法或三角剖分法,推导正六边形面积公式,并解决实际面积计算问题。
c.正多边形与圆的对称性质在实际问题中的应用:学会将对称性质应用于设计、建筑等领域。
二、核心素养目标
1.培养学生的几何直观能力,通过观察和分析正多边形与圆的关系,提高空间想象力和图形感知能力。
2.培养学生的逻辑推理能力,运用正多边形的性质和定理进行推理和解决问题。
人教版九年级数学上册教案:24.3正多边形和圆课堂教学设计
3.教学评价设想:
-采用多元化评价方式,包括课堂提问、课后作业、小组讨论表现、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在探究活动中的表现,鼓励学生展示思考过程,而非仅仅关注答案的正确性。
-定期进行教学反思,根据学生的反馈调整教学策略,确保教学效果的最优化。
3.正多边形的构造和证明问题,需要学生具备较高的逻辑思维和几何直观。
-重难点突破设想:采用启发式教学,引导学生通过画图、猜想、验证的步骤,自己发现和总结构造方法,同时结合数学证明,强化逻辑推理训练。
(二)教学设想
1.教学方法设想:
-采用探究式学习,鼓励学生通过观察、实验、推理等手段自主探索正多边形和圆的性质。
-重难点突破设想:通过动态几何软件或实物模型演示,让学生直观感受正多边形与圆之间的关系,逐步引导学生发现并理解性质,通过例题讲解和练习巩固,加深对这一关系的认识。
2.正多边形和圆相关的计算问题是难点,尤其是涉及面积和周长的计算。
-重难点突破设想:设计不同难度的计算题,从基础计算入手,逐步提升至综合应用题,让学生在解决问题的过程中掌握计算方法,并通过错题分析,帮助学生理清思路,避免常见错误。
1.学生在空间想象能力上的差异,针对不同学生的认知特点,设计合适的教学活动,帮助学生在直观感知的基础上,逐步提升抽象思维能力。
2.学生在几何证明方面的能力参差不齐,需要针对这一点进行有针对性的指导,引导学生运用已掌握的几何知识,通过严密的逻辑推理,完成正多边形和圆的性质证明。
3.学生在解决实际问题时,可能难以将理论知识与生活实际相结合。教学中应注重培养学生的应用意识,引导学生将所学知识应用于解决生活中的问题。
正多边形和圆教案
正多边形和圆教案第一章:正多边形的定义和性质1.1 教学目标了解正多边形的定义和性质能够计算正多边形的边数和内角大小1.2 教学内容引入正多边形的概念,通过图片和实物展示让学生直观感受讲解正多边形的性质,如边数、内角大小、对称性等引导学生通过观察和推理得出正多边形的性质1.3 教学活动通过图片和实物引导学生思考什么是正多边形学生自主探究正多边形的性质,记录下来并与同学交流教师总结正多边形的性质,并给出相关例题让学生巩固第二章:圆的定义和性质2.1 教学目标了解圆的定义和性质能够计算圆的半径和直径2.2 教学内容引入圆的概念,通过图片和实物展示让学生直观感受讲解圆的性质,如半径、直径、圆心等引导学生通过观察和推理得出圆的性质2.3 教学活动通过图片和实物引导学生思考什么是圆学生自主探究圆的性质,记录下来并与同学交流教师总结圆的性质,并给出相关例题让学生巩固第三章:正多边形和圆的关系3.1 教学目标了解正多边形和圆的关系能够计算正多边形的内切圆和外接圆3.2 教学内容讲解正多边形和圆的关系,如内切圆和外接圆的概念引导学生通过观察和推理得出正多边形和圆的关系3.3 教学活动学生通过观察和推理得出正多边形和圆的关系学生自主探究正多边形的内切圆和外接圆的计算方法,记录下来并与同学交流教师总结正多边形和圆的关系,并给出相关例题让学生巩固第四章:正多边形和圆的面积计算4.1 教学目标能够计算正多边形的面积和圆的面积4.2 教学内容讲解正多边形和圆的面积计算公式引导学生通过观察和推理得出正多边形和圆的面积计算方法4.3 教学活动学生通过观察和推理得出正多边形和圆的面积计算方法学生自主探究正多边形和圆的面积计算公式,记录下来并与同学交流教师总结正多边形和圆的面积计算方法,并给出相关例题让学生巩固第五章:正多边形和圆的应用5.1 教学目标了解正多边形和圆在实际中的应用5.2 教学内容讲解正多边形和圆在实际中的应用,如几何图形、建筑设计等5.3 教学活动学生通过图片和实物观察正多边形和圆在实际中的应用学生自主探究正多边形和圆在其他领域的应用,记录下来并与同学交流教师总结正多边形和圆的应用,并给出相关例题让学生巩固第六章:正多边形的内切圆和外接圆6.1 教学目标理解正多边形的内切圆和外接圆的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形和圆(一)教案
教材分析
学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。
在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。
接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。
让学生体会到化归思想在研究问题中的重要性。
培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。
教学目标
知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
能运用正多边形的知识解决圆的有关计算问题。
数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。
解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。
情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。
重点难点
教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
教学难点:探索正多边形与圆的关系。
教学过程:
一、观察图案,提出问题
(设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。
)
问题l:观看教科书图24。
3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。
你能从这些图案中找出正多边形来吗?
教师引导学生回忆、理解正多边形的概念。
问题2:菱形,矩形,正方形是正多边形吗?
问题3:通过观察图案,你们知道正多边形和圆有什么关系吗?
问题4:给你一个圆,怎样就能做出一个正多边形来?
(教师引导学生观察、思考,学生分组讨论、交流,发表各自见解)
此问题比较抽象,是本节课的难点。
教师要求学生观察教材图案,会发现正多边形的边数多给人一种接近圆的印象。
教师展示课件:在圆中依次出现几条相等的弦,学生会想到弧相等,教师迸一步引导学生明确只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。
二、自主探究,获得新知
(设计说明:在上面的活动中学生发现了只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形。
教师指导学生进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度和运用所学知识解决问题的能力。
)
问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是,该如何证明这个结论呢?
教师利用课件演示,把圆分成相等的5段弧,依次连接各个分点得到五边形。
教师引导学生从正多边形的定义入手证明,学生通过观察、分析能够得出5段相等的弧所对的弦也是相等的,证明五边形的各边相等。
思考l:五边形的角在圆中是什么角?学生通过观察发现圆内接五边形的各内角都是圆周角。
思考2:每一个圆周角所对的弧有什么特点?
学生分析、讨论发现每一个圆周角所对的弧都是三等分的弧,证明五边形的各内角相等,从而证明圆内接五边形是正五边形。
教师利用课件展示证明的过程(略)。
问题2:如果将圆n等份,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
(教学设计:将结论由特殊推广到一般,并教给学生这种研究问题的方法。
)教师要求学生分组讨论、分析,同学之间进行合作交流,教师巡回指导并总结、归纳证明思路;
对应的弦相等
多边形各边相等
对应的圆周角相等多边形各内角相等
问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明为什么。
如果不是,举出反例。
(设计说明:此问题的提出是为了巩固所学知识,明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角都相等,这两个条件缺一不可。
同时教给学生学会举反例,培养学生思维的批判性。
)
让学生讨论,思考回答,教师讲评。
三、了解概念,巩固练习
(设计说明:教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想在解题中的作用。
)
教师演示课件,给出正多边形的中心,半径,中心角,边心距等概念。
问题1:我们在前面的章节中学过的正多边形有哪些?
教师要求学生分别画一个正三角形和正方形,让学生找出它的中心,画出它的半径、边心距、中心角,加深对概念的理解。
问题2:让学生阅读教科书例题。
引导学生把实际问题形成数学问题,结合图形,明确哪一部分是地基,知道要计算的是哪一部分。
教师演示地基的数学图形,引导学生进行分析。
思考:欲求地基的周长和面积,需要先求出正六边形的什么?
学生分析、讨论得出先求出正六边形的边长和边心距。
教师通过演示图形引导学生将正六边形的边长、半径和边心距集中到一个
三角形中来研究。
学生通过分组讨论、交流,发现将正六边形的中心与顶点连接后分割成六个全等的等腰三角形,每个等腰三角形的顶角为中心角,腰为半径,底边为边长,底边上的高为边心距,可利用勾股定理进行计算,进而能求得正多边形的周长和面积。
教师巡视,个别指导。
(教学说明:问题1比较简单,主要是巩固正多边形的有关概念;问题2目的是让学生在了解有关正多边形的概念后,掌握正多边形的计算。
通过问题2引导学生将实际问题转化成数学问题一,将多边形化归成三角形来解决,体现化归思想在解题中的应用,让学生领会化未知为已知,化复杂为简单的解题思路。
问题3利用网格图呈现,便于学生比较,加深对图形的理解。
这也是本节课学生要掌握的内容。
)
问题4:巩固练习
四、反思总结,深化拓展
(设计说明:围绕两个问题,师生以谈话交流的形式,共同总结本节课的学习收获。
)
问题1:本节课你学习了什么?。
有何收获?
问题2:正n边形的一个内角的度数是多少?中心角呢?
问题3:正多边形的中心角与外角的大小有什么关系?正多边形有哪些性质?
问题4:正n边形的半径,边心距,边长有什么关系?
(教学说明:学生自己总结,不全面的由其他学生补充完善。
通过问题的思考引导学生回顾自己的学习过程,加强反思、提炼及知识的归纳,纳入自己的知识结构;通过问题2拓宽学生的视野,引导学生注意在学习过程中加强知识点之间的联系,关注不同层次学生对本节课知识的理解)
五、布置作业
教材习题24。
3第3,5,6题。
(教学说明:通过对实际问题的探究,完成从具体一抽象一具体的思维螺旋上升过程,形成应用数学的意识,加深对本节知识的理解。
)。