九年级数学上册人教版:24.3正多边形和圆(2) 教案
人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。
人教版数学九年级上册第24章圆24.3正多边形和圆教学设计
2.在解决实际问题时,可能无法灵活运用所学的正多边形知识,需要加强练习和指导。
3.部分学生对几何图形的观察能力和空间想象力有待提高,需要在教学过程中给予关注和培养。
4.学生在小组合作中,可能存在沟通不畅、分工不明确等问题,需要教师在教学过程中引导学生形成良好的合作氛围。
3.培养学生的空间观念,提高学生对几何图形的观察力和想象力,为后续几何学习打下基础。
4.通过解决实际问题,培养学生的责任感、使命感和创新精神,使学生在面对问题时敢于挑战、勇于探索。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何基础和逻辑思维能力。在本章节的学习中,他们能够运用已掌握的圆的相关知识,进一步探索正多边形与圆之间的关系。然而,学生在面对正多边形的性质和计算方法时,可能会出现以下情况:
-选择2-3道题目进行详细解答,要求步骤清晰,逻辑严谨。
-针对学生在课堂练习中出现的典型错误,设计类似题目进行针对性练习。
2.提高作业:结合生活实际,设计一道综合性的问题,让学生运用本节课所学的正多边形和圆的知识解决。
-鼓励学生运用数形结合、转化等数学思想方法,提高解决问题的能力。
-要求学生在解答过程中,注意逻辑推理和几何直观的运用。
3.通过小组合作,讨论解决正多边形和圆相关问题的方法,培养学生的团队协作能力和沟通能力。
4.运用数形结合、转化等数学思想方法,解决实际问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对正多边形和圆的美的认识,激发学生对数学美的追求,提高学生的审美情趣。
2.增强学生对数学学习的兴趣,使学生感受到数学与现实生活的密切联系,体会数学的实用价值。
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。
在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。
但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。
三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。
2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。
2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。
2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。
2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。
3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。
4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。
5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。
人教版九年级数学上册(RJ)第24章 圆 正多边形和圆 教案 正多边形和圆2
24.3 正多边形和圆教学过程一、复习回顾,引入新课问题1:观察下面多边形,找出它们的边、角有什么特点?(幻灯3)问题2:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗? (幻灯4)问题3:圆具有哪些对称性?(幻灯5)二、目标导学,探索新知目标导学1:理解正多边形的定义(幻灯6~8)问题1:什么叫正多边形?问题2:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?【教师强调】判断一个多边形是否是正多边形,必须同时具备两个)填空。
(2)你认为这个五边形ABCDE是正五边形,简单说说理由。
目标导学3:正多边形的有关概念及性质(幻灯12~13)问题1:类比圆的相关概念,观察下面的图,你能说出什么是正多边形的中心、半径、边心距、中心角吗?问题2:正多边形的内角、中心角、外角怎样计算?请完成下面填空:正多边形内角中心角外角边数3分析:由于亭子地基是正六边形,如图所示,所以它的中心角等于3600 ÷6=600 ,△OBC 是等边三角形,从而得到:正六边形的边长等于它的半径。
三、巩固训练,熟练技能见幻灯18、19、20四、归纳总结,板书设计(幻灯21)4mOABCD EF Mr 正多边形正多边形的定义与对称性正多形的有关概念及性质()(m),,46241122BC 42(m),r 4223.22112 lr 242341.6).22OB OC O OM BC M l m m ⊥=⨯=∆=⨯==-=∴=⨯⨯≈解:连接半径、过点作于,因此亭子地基的周长。
在Rt OMB 中,MB=利用勾股定理,可得边心距亭子的面积S=(① 正多边形的内角=(2)180n n-⨯︒② 中心角=3600÷n。
人教版九年级上册数学 24.3 正多边形和圆教案2
24.3 正多边形和圆1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系.3.会应用正多边形和圆的有关知识画正多边形.一、情境导入如图,要拧开一个边长为6cm的正六边形螺帽,扳手张开的开口至少是多少?你能想办法知道吗?二、合作探究探究点一:正多边形的有关概念和性质【类型一】求正多边形的中心角已知一个正多边形的每个内角均为108°,则它的中心角为________度.解析:每个内角为108°,则每个外角为72°,根据多边形的外角和等于360°,∴正多边形的边数为5,则其中心为360°÷5=72°.【类型二】正多边形的有关计算已知正六边形ABCDEF的半径是R,求正六边形的边长a和面积S.解:作半径OA、OB,过O作OH⊥AB,则∠AOH=180°6=30°,∴AH=12R,∴a=2AH=R.由勾股定理可得:r2=R2-(12R)2,∴r=32R,∴S=12·a·r×6=12·R·32R·6=332R2.方法总结:熟练掌握多边形的相关概念,以及等边三角形与圆的关系及有关计算.【类型三】圆的内接正多边形的探究题如图所示,图①,②,③,…,,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形边数n的关系.(直接写出答案)解:图①中,连接OB,OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∠OCN=30°,∠BOC=120°,而BM=CN,OB=OC,∴△OBM≌△OCN,∴∠BOM=∠CON,∴∠MON=∠BOC=120°;(2)90°72°;(3)∠MON=360°n.探究点二:作圆的内接正多边形如图,已知半径为R的⊙O,用多种工具、多种方法作出圆内接正三角形.解析:度量法:用量角器量出圆心角是120度的角;尺规作图法:先将圆六等分,然后再每两份合并成一份,将圆三等分. 解:方法一:(1)用量角器画圆心角∠AOB =120°,∠BOC =120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法二:(1)用量角器画圆心角∠BOC =120°;(2)在⊙O 上用圆规截取AC ︵=AB ︵; (3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形.方法三:(1)作直径AD ;(2)以D 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法四:(1)作直径AE ; (2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.方法总结:解决正多边形的作图问题,通常可以使用的方法有两大类:度量法、尺规作图法;其中度量法可以画出任意的多边形,而尺规作图只能作出一些特殊的正多边形,如边数是3、4的整数倍的正多边形.三、板书设计教学过程中,强调正多边形与圆的联系,将正多边形放在圆中便于解决、探究更多关于正多边形的问题.。
人教版数学九年级上册24.3.2《正多边形和圆》教案
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时
第二十四章圆24.3 正多边形和圆第2课时一、教学目标1.巩固正多边形与圆的关系.2.掌握用尺规画图作正多边形.二、教学重点及难点重点:画特殊的正多边形.难点:利用直尺与圆规作特殊的正多边形.三、教学用具多媒体课件,三角板、直尺、圆规、量角器.四、相关资源五、教学过程【复习回顾,引入新课】师生活动:教师展示复习的课件,让学生回顾上节课所学知识.设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法.我们可以用量角器画正六边形吗?如果可以,请说说作图原理.师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充.归纳用“量角器等分圆”:依据:同圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.【例题分析,深化提升】例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看.师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力.【练习巩固,综合应用】已知⊙O的半径为1 cm,求作⊙O的内接正八边形.解:(1)如图所示,作直径AC,使AC=2 cm.(2)作AC的中垂线BD交⊙O于B,D两点.(3)连接AD,作AD的中垂线交AD于M点.,,的中点E,F,G.(4)用同样的方法作出AB BC CD(5)依次连接各分点,即得正八边形.正八边形AEBFCGDM即为所求作的⊙O的内接正八边形.设计意图:巩固正多边形画法.六、课堂小结学完这节课你有哪些收获?1.量角器画正多边形2.尺规作正多边形师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.七、板书设计24.3 正多边形和圆(2)1.量角器画正多边形2.尺规作正多边形。
人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例
3.总结本节课的学习方法,如观察、操作、探究、合作等。
4.布置课后作业,巩固所学知识。
(五)作业小结
1.教师发放课后作业,要求学生运用所学知识解决实际问题。
2.提醒学生在完成作业过程中注意审题、仔细计算、规范书写。
3.鼓励学生遇到问题时互相讨论、请教教师,提高解题能力。 Nhomakorabea五、案例亮点
1.生活情境的创设:本节课通过展示生活中的正多边形实例,让学生感受到了数学与生活的紧密联系,激发了学生的学习兴趣。这种情境的创设,不仅让学生在课堂上保持高度的热情,而且有助于提高学生的应用能力,使他们在解决实际问题时能够自然而然地想到运用所学知识。
1.教师展示一系列生活中常见的正多边形图片,如正方形、正三角形、正六边形等,引导学生关注正多边形的美感及其在生活中的应用。
2.提问:“同学们,你们能找出这些图片中的共同特征吗?这些图形有什么特别之处?”让学生思考并回答。
3.总结:正多边形具有对称性、边长相等、内角相等等特征。这些特征使得正多边形在生活中的应用非常广泛。
4.最后提问:“如何用圆规和直尺绘制正多边形?请同学们尝试绘制一个正六边形。”激发学生的动手操作欲望。
(三)小组合作
1.将学生分成若干小组,每组选定一个正多边形进行研究。
2.给出研究任务:“请同学们探究你们所选的正多边形的性质,并尝试用数学语言表达。”
3.组织小组讨论,鼓励学生发表自己的观点,培养学生的合作精神和团队意识。
本节课的教学策略旨在激发学生的学习兴趣,培养学生的探究能力和合作精神。通过情景创设、问题导向、小组合作和反思与评价等环节,引导学生主动参与课堂,提高学生的数学素养。同时,关注学生的情感态度与价值观的培养,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计
4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
九年级数学上册24.3正多边形和圆(第2课时)教案新人教版
24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。
5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
九年级数学人教版上册24.3正多边形和圆优秀教学案例
在实际教学过程中,我将以知识与技能、过程与方法、情感态度与价值观为目标,设计丰富多样的教学活动和实例,引导学生积极参与,主动探究,使学生在掌握知识的同时,也能提高自身的综合素质和能力。同时,注重因材施教,关注每个学生的个体差异,充分调动学生的积极性和主动性,使每个学生都能在数学学科的学习中得到充分的发展和提高。
2.培养学生的动手操作能力,提高学生运用数学知识解决实际问题的能力。
3.引导学生运用归纳、推理等方法,总结正多边形的性质和规律,培养学生的创新思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
2.培养学生独立思考、合作交流的习惯,提高学生的人际沟通能力和团队合作精神。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习成果和不足之处,提高学生的自我认知和评价能力。
3.教师对学生的学习情况进行总结和评价,关注学生的个体差异,给予有针对性的指导和鼓励,激发学生的学习动力和信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示各种正多边形的实物图片,如正方形、正三角形等,引导学生关注正多边形在现实生活中的应用。
2.问题导向与小组合作相辅相成:在教学过程中,教师引导学生提出问题并自主探究,通过小组合作的形式进行研究讨论。这样的教学方式既培养了学生的提问意识和自主学习能力,又提高了学生的团队合作和交流沟通能力。
3.反思与评价注重个体差异:教师在教学过程中注重引导学生进行反思和评价,关注学生的个体差异,给予有针对性的指导和鼓励。这种教学方式既激发了学生的学习动力,又培养了学生的自我认知和评价能力。
2.设计一个正多边形的拼图游戏,让学生在游戏中体会正多边形的性质和特点,激发学生的学习兴趣。
人教版九年级上册24.3正多边形和圆教学设计docx
九年级的学生已经具备了一定的几何知识基础,对平面图形的性质和计算方法有了一定的了解。在此基础上,学生对正多边形和圆的学习将面临以下挑战:
1.学生在理解正多边形的性质和特征时,可能会对对称轴、对称中心等概念产生混淆,需要教师在教学过程中进行引导和梳理。
2.学生在运用圆的对称性质推导正多边形的性质时,可能会遇到一定的困难,需要教师在教学中注重数形结合,培养学生的空间想象能力。
2.圆的对称性质:讲解圆的对称性质,强调圆的半径、直径与圆周角的关系,为学生理解正多边形的对称性质打下基础。
3.正多边形与圆的关系:通过绘制正多边形和圆的图形,引导学生发现正多边形的外接圆、内切圆等关系,并总结正多边形与圆的性质。
4.计算方法:讲解正多边形和圆的周长、面积的计算公式,通过具体实例进行演示,让学生掌握计算方法。
2.引导学生运用数形结合的方法,将正多边形与圆的对称性质相结合,培养学生的空间想象能力和逻辑思维能力。
3.通过实际操作和练习,让学生掌握正多边形和圆的计算方法,培养学生的计算能力和解决问题的能力。
4.鼓励学生将所学知识运用到实际生活中,培养学生的创新意识和实践生对几何图形的兴趣,培养学生的审美观念,提高学生对几何图形的欣赏能力。
三、教学重难点和教学设想
(一)教学重难点
1.正多边形的性质和特征:如何引导学生理解和掌握正多边形的对称性质、对角线性质以及边角关系是教学的重点和难点。
2.圆的对称性质的应用:如何运用圆的对称性质来推导正多边形的性质,并能够灵活运用这一性质解决相关问题,是教学的难点。
3.正多边形和圆的计算:正多边形周长和面积的计算方法,以及圆的周长和面积的计算公式的运用,是学生需要重点掌握的技能。
6.拓展延伸,提升能力:设计具有一定挑战性的拓展练习,如正多边形密铺问题、圆形设计等,鼓励学生运用所学知识解决问题,提升学生的思维能力和创造力。
《正多边形和圆(第2课时)》教案 人教数学九年级上册
24.3 正多边形和圆第2课时一、教学目标【知识与技能】会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】用圆的有关知识,解决正多边形的问题.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到事物之间是相互联系,相互作用的.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】作圆内接正多边形.【教学难点】作圆内接正多边形.五、课前准备课件、图片、圆规、量角器、直尺等.六、教学过程(一)导入新课正多边形和圆有什么关系?你能借助圆画一个正多边形吗?(出示课件2)(二)探索新知探究正多边形的画法学生活动:观察生活中的正多边形图案.(出示课件4)观察几种常见的正多边形.(出示课件5)学生活动:已知⊙O的半径为2cm,求作圆的内接正三角形.(出示课件6)学生操作后口述过程.①用量角器度量,使∠AOB=∠BOC=∠COA=120°.②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.教师问:你能用以上方法画出正四边形、正五边形、正六边形吗?(出示课件7)学生活动:教师问:你能尺规作出正四边形、正八边形吗?(出示课件8)学生活动:教师强调:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……教师问:你能尺规作出正六边形、正三角形、正十二边形吗?(出示课件9)学生活动:教师强调:以半径长在圆周上截取六段相等的弧,依次连结各等分点,则作出正六边形.先作出正六边形,则可作正三角形,正十二边形,正二十四边形………教师问:说说作正多边形的方法有哪些?(出示课件10)学生答:(1)用量角器等分圆周作正n边形;(2)用尺规作正方形及由此扩展作正八边形,用尺规作正六边形及由此扩展作正12边形、正三角形.出示课件11:例已知☉O和☉O上的一点A(如图).求作☉O的内接正方形ABCD和内接正六边形AEFCGH;学生观察,独立思考后,师生共同解答.作法:①作直径AC;②作直径BD⊥AC;③依次连接A、B、C、D四点,∴四边形ABCD即为☉O的内接正方形;④分别以A、C为圆心,OA的长为半径作弧,交☉O于E、H、F、G;⑤顺次连接A、E、F、C、G、H各点;∴六边形AEFCGH为☉O的内接正六边形,如图所示.巩固练习:(出示课件12)画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星.学生自主操作.(三)课堂练习(出示课件13-18)1.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A B.()r C.()r D.r2.在图中,用尺规作图画出圆O的内接正三角形.3.利用量角器画一个边长为2cm的正六边形.4.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( )A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a45.画一个正十二边形.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON 的度数与正n 边形的边数n 的关系.参考答案:1.D2.作法:⑴作出圆的任意一条半径,⑵作半径的垂直平分线,交圆于点A 、B ,⑶分别以A 、B 为圆心,线段AB 的长为半径作弧,两户交于点C ,连接AC 、BC.则△ABC 即为所求.3.作法:如图,以2cm 为半径作一个⊙O ,用量角器画一个等于 360606的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形.4.B5.作法:如图,分别以⊙O的四等分点A,B,E,F为圆心,以⊙O的半径长为半径,画8条弧与⊙O相交,就可以把⊙O分成12等份,依次连接各等分点,即得到正十二边形.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?(五)课前预习预习下节课(24.4第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:1.画正多边形的方法:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.2.画正多边形的方法:⑴用量角器等分圆;⑵尺规作图等分圆.九、教学反思:等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
人教版数学九年级上册24.3《正多边形和圆》教学设计
人教版数学九年级上册24.3《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24.3节的内容。
本节内容是在学生已经掌握了圆的概念和性质的基础上进行学习的,主要让学生了解正多边形的定义、性质及其与圆的关系。
通过本节内容的学习,学生能够理解正多边形的对称性,掌握正多边形的计算方法,并为后续学习圆的周长、面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有一定的了解。
但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解正多边形的性质,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握正多边形的定义、性质及其与圆的关系,能够运用正多边形的性质解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:正多边形的定义、性质及其与圆的关系。
2.难点:正多边形的计算方法及其在实际问题中的应用。
五. 教学方法1.引导发现法:通过引导学生观察、思考、探究,发现正多边形的性质及其与圆的关系。
2.案例分析法:通过分析实际问题,让学生学会运用正多边形的性质解决实际问题。
3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作精神。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.教学素材:准备一些关于正多边形的实际问题,用于巩固和拓展。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的正多边形,如正方形、正三角形等,引导学生关注正多边形,激发学生的学习兴趣。
2.呈现(10分钟)介绍正多边形的定义和性质,引导学生通过观察、思考,发现正多边形的特点。
3.操练(10分钟)让学生分组讨论,分析一些实际问题,运用正多边形的性质解决问题。
九年级数学人教版上册24.3正多边形和圆教学设计
1.学生需独立完成作业,确保作业质量。
2.作业完成后,认真检查,确保解答过程正确、书写规范。
3.教师批改作业后,学生要认真对待反馈,及时改正错误,巩固知识点。
4.鼓励学生积极参与课堂讨论,分享自己的学习心得和作业成果。
4.通过正多边形在实际生活中的应用,让学生认识到数学与生活的紧密联系,增强学生学以致用的意识。
二、学情分析
九年级的学生已经具备了一定的几何知识和逻辑思维能力,他们已经熟悉了三角形、四边形等基本多边形的性质和计算方法。在此基础上,学习正多边形和圆的相关知识,对学生来说是几何学习的深入和拓展。学生在这个阶段好奇心强,求知欲旺盛,对新鲜事物充满探索欲望。因此,本章节的教学应注重激发学生的兴趣,引导他们通过观察、思考、实践,发现正多边形的规律和性质,提高学生的几何素养和解决问题的能力。同时,考虑到学生的个体差异,教学中应关注不同层次学生的需求,设置适宜的难度,使每个学生都能在原有基础上得到提高。
4.小组合作:
-以小组为单位,讨论以下问题:正多边形与圆有哪些互为内外切的关系?这些关系在实际问题中如何应用?
-小组共同完成一份关于正多边形与圆的性质、应用的研究报告。
5.创新思维:
-鼓励学生运用正多边形的知识,设计一个独特的几何图案,并说明其寓意。
-学生可以尝试利用正多边形制作一个简易的装饰品或模型,培养动手能力和创新能力。
2.讨论主题:正多边形的性质、正多边形与圆的关系、正多边形周长与面积的计算方法等。
3.教师指导:在学生讨论过程中,教师巡回指导,引导学生发现规律,解答学生的疑问。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
-基础题:计算给定正多边形的周长、面积。
九年级数学人教版上册24.3正多边形和圆说课稿
二、学情分析导
(一)学生特点
本节课面向的是九年级学生,这个年龄段的学生正处于青春期,他们的好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的几何知识,具备了一定的逻辑推理和空间想象能力。此外,学生对新鲜有趣的事物充满兴趣,喜欢通过探究和合作来学习新知识。
然而,学生的学习习惯尚需引导,部分学生可能存在注意力不集中、学习自觉性不强等问题。因此,在教学过程中,需要关注学生的学习习惯培养,提高他们的学习效率。
(二)学习障碍
学生在学习本节课之前,已经掌握了多边形的性质、三角形和四边形的特殊性质等前置知识。但在学习正多边形和圆时,可能存在以下学习障碍:
1.对正多边形和圆的性质理解不深入,难以将其应用到实际问题中;
(三)巩固练习
我计划设计以下巩固练习或实践活动,帮助学生巩固所学知识并提升应用能力:
1.课堂练习:设计具有代表性的练习题,让学生独立完成,巩固正多边形和圆的性质际问题,如计算正多边形的周长、面积等。
3.实践活动:让学生动手制作正多边形和圆的模型,加深对几何图形的理解,提高空间想象能力。
2.空间想象能力不足,难以理解正多边形和圆之间的关系;
3.计算能力不足,导致在解决周长、面积等问题时出现错误。
(三)学习动机
为了激发学生的学习兴趣和动机,我打算采取以下策略或活动:
1.创设生活情境:通过展示生活中常见的正多边形和圆的实例,让学生感受到几何图形的美和实用性,从而激发他们的学习兴趣;
2.设疑导入:以问题为导向,引导学生主动探究正多边形和圆的性质,激发他们的求知欲;
本节课的主要知识点包括:
1.正多边形的定义及性质,如内角、外角、对角线的特点等;
人教版九年级数学上册24.3正多边形和圆(教案)
-正多边形的面积计算:掌握正多边形面积的求解方法,包括分割法和公式法。
-举例:计算正四边形的面积,应用分割法和公式法进行比较。
-实际问题中的应用:将正多边形和圆的知识应用于解决简 Nhomakorabea几何问题。
-举例:设计一个正六边形的花园,计算其面积和周长。
2.教学难点
-实际问题的抽象建模:将实际情境转化为数学模型,运用正多边形和圆的知识解决。
-突破方法:提供多个实际案例,指导学生如何提取关键信息,建立数学模型。
-正多边形与圆的对称性理解:理解正多边形与圆之间的对称关系,以及如何利用对称性简化问题求解。
-突破方法:通过图形变换和折叠等活动,帮助学生体会对称性在实际问题中的应用。
二、核心素养目标
1.培养学生的几何直观和空间观念,使其能够理解并运用正多边形的性质及其与圆的关系;
2.提升学生的逻辑推理能力,通过探索正多边形的特征,归纳出一般性规律;
3.增强学生的数学建模意识,将实际问题抽象为数学模型,利用正多边形和圆的相关知识解决;
4.培养学生的数据分析能力,通过对正多边形面积的计算,掌握几何图形的量化关系;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正多边形和圆的基本概念。正多边形是指所有边相等、所有角相等的多边形,而圆是平面上所有与给定点的距离都相等的点的集合。它们在几何学中有着广泛的应用,如建筑、艺术、工程设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。以正六边形为例,探讨它如何由圆的内接和外接构造,以及如何计算其面积。
-正多边形内角与外角的关系:理解正多边形内角与外角的补角关系,以及如何通过外角来求解内角。
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案一. 教材分析人教版九年级数学上册第24章《圆》中的第3节《正多边形和圆(2)》是本章的重要内容。
本节主要让学生了解并掌握圆的性质,以及正多边形与圆的关系。
通过本节的学习,学生能够更深入地理解圆的性质,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的概念有一定的了解。
但是,对于圆的性质和正多边形与圆的关系的理解还有待提高。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作、讨论等方式,自主探索并掌握圆的性质,以及正多边形与圆的关系。
三. 教学目标1.了解圆的性质,掌握圆的基本概念。
2.理解正多边形与圆的关系,提高解决问题的能力。
3.培养学生的观察能力、思考能力和合作能力。
四. 教学重难点1.圆的性质的理解和运用。
2.正多边形与圆的关系的理解。
五. 教学方法采用问题驱动法、合作学习法和操作实践法。
通过提出问题,引导学生思考和探索;通过合作学习,培养学生之间的交流和合作能力;通过操作实践,让学生亲身体验和理解圆的性质和正多边形与圆的关系。
六. 教学准备1.准备相关的教学材料,如课件、黑板、粉笔等。
2.准备一些实际的例子,以便引导学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过提出问题,如“什么是圆?圆有哪些性质?”引导学生回顾圆的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)通过课件或黑板,呈现圆的性质,如圆的直径、半径、圆心等。
同时,给出一些实际的例子,让学生观察和理解圆的性质。
3.操练(10分钟)让学生进行一些实际的操作,如画圆、测量圆的直径、半径等。
通过操作,让学生更深入地理解圆的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的圆的性质。
同时,引导学生将这些性质与正多边形联系起来,理解正多边形与圆的关系。
5.拓展(10分钟)引导学生思考和探索正多边形与圆的更深层次的关系。
例如,讨论在给定边长的情况下,如何找到一个正多边形,使其与给定的圆相切。
人教版数学九年级上册24.3.2《正多边形和圆》教学设计
人教版数学九年级上册24.3.2《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。
本节内容是在学生掌握了圆的概念、圆的性质、弧、弦、圆心角的基础上进行的。
本节主要介绍正多边形的定义、性质及正多边形与圆的关系。
教材通过生活中的实例引入正多边形和圆的概念,引导学生探究正多边形的性质,从而发现正多边形与圆的内在联系。
二. 学情分析初三学生已经具备了一定的几何基础知识,对圆的概念、性质有所了解。
但是,对于正多边形的定义、性质以及与圆的关系可能还比较模糊。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
三. 教学目标1.了解正多边形的定义、性质及正多边形与圆的关系。
2.能运用正多边形的性质解决实际问题。
3.培养学生的观察能力、操作能力、思考能力和探究能力。
四. 教学重难点1.正多边形的定义、性质。
2.正多边形与圆的关系。
五. 教学方法采用问题驱动法、探究法、合作学习法等,引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
六. 教学准备1.准备一些正多边形的图片,如正三角形、正方形、正五边形等。
2.准备一些圆的图片,如圆桌、轮子等。
3.准备黑板、粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的图片,如正三角形、正方形、正五边形等,引导学生观察这些图形的特点。
同时,展示一些圆的图片,如圆桌、轮子等,引导学生思考圆的特点。
2.呈现(10分钟)教师在黑板上画出一个正三角形,提问:“这个图形是什么?”学生回答:“正三角形。
”教师继续提问:“正三角形有哪些性质?”学生回答:“正三角形的三个角都相等,三条边都相等。
”教师引导学生观察正三角形的特点,然后引入正多边形的定义:“像正三角形这样的图形,所有的边都相等,所有的角都相等,我们称之为正多边形。
”3.操练(10分钟)教师发放一些正多边形的卡片,让学生分组讨论,找出正多边形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、教材分析:
学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这
些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有
关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨
论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数
学学习,尤其是圆锥曲线的学习的基础性工程.
学情分析:
2、九年级学生已具备一定知识储备和认知能力。
但学生的基础较差,中等、
差等生较多,优等生较少。
课堂上,多数学生表现欲不强,发言不积极,怕回
答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓
住已知条件进行论证推理。
因此,在教学中,注重学生学习方法的培养,通过
学生实践、探究、合作交流来完成本节课的教学。
1.理解正多边形的性质.
2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.
正多边形的画法.
难点
巩固上节课所学的内容
、等分圆周法:二、新课教学
实际生活中,经常遇到画正多边形的问
题,比如画一个六角螺帽的平面图、画一个
五角星等,这些问题都与等分圆周有关.
1.等分圆周.
由于同圆中相等的圆心角所对的弧相
等,因此作相等的圆心角就可以等分圆周,
从而得到相应的正多边形.
例如,画一个边长为1.5 cm的正六边形
时,可以以1.5 cm为半径作一个⊙O,用
量角器画一个等于=60°的圆心角,
它对着一段弧,然后在圆上依次截取与这条
弧相等的弧,就得到圆的6个等分点,顺次
连接各分点,即可得到正六边形(如下图).
2、尺规作图:对于一些特殊的正多边形,
还可以用圆规和直尺来作.如,用直尺和圆
规作两条互相垂直的直径,就可以把圆四等
分,从而作出正方形(下图).
通过生活中的
实际例子导入
新课的教学.
考查弧、弦之
间的关系的应
用
6
360
三、正多边形画法的应用
三、巩固练习3.实例探究.
用等分圆周的方法画出下列图案.
提示:第1幅图案.以圆的三等分点为
圆心,圆的半径为半径作三条弧.
第2幅图案.以正六边形的各边中点为
圆心,正六边形的边长为直径向圆外画半
圆,就得到这幅图案.
第3幅图案.作5的内接正五边形,再
以正五边形的各个顶点为圆心,边长为半径
画十条弧.
4、巩固练习:
画一个半径为2cm的正五边形,再作出
这个正五边形的各条对角线,画一个五角
星。
用画正多边形
的画法实际美
丽图案,感受
生活中的数学
美
巩固所学知
识、会用新知
解决问题
24.3 正多边形和圆
1、正多边形:各边相等,各角相等的多边形叫做正多边形.
2、正多边形的相关概念:
(1)中心(2)半径
(3)中心角,(4)边心距
3、正多边形的画法:(1)等分圆周;(2)尺规作图。