数学建模课后感想
建模心得体会7篇
建模心得体会7篇心得体会是一种记录学习历程的重要方式,促进持续成长,心得体会是我们成长道路上的指引灯,照亮前行的方向,以下是本店铺精心为您推荐的建模心得体会7篇,供大家参考。
建模心得体会篇1说起心得最想说的一句话就是:年年岁岁花相似,岁岁年年人不同,去年的时候我也参加了建模培训,以为今年老师和去年讲的差不多,觉得自己不用怎么听就行了,反正内容差不多,其实不然,在此期间,确实有的老师和去年讲的题目一样,可是却发现去年对那些题目根本没有真的理解,还有去年很难理解的东西今年看着比去年好理解多了,有时心里想去年要是静下心来,说不定早理解了。
今年只要愿意看,就会理解一些东西,发现并不是像自己想象的那样难。
有时人不是被问题的本身打败,有时没进入就被自己打败了。
今年培训的时候,我们见到了不同的面孔,接触了不同的老师,不同的风格。
我是计教班的学生,培训的老师有的是数教班的老师,可能要不是建模培训,就无法一览他们的风采。
我同学问我:你在学校参加培训给你们钱不?我说:我们跟老师们学到了知识,我们不交钱就好了,怎么给我们钱呀?的确,我们参加了培训,可能失掉打工的机会,但是我不后悔,在培训的过程中我学到了知识,我们还没有毕业,最重要的是提高自己各方面的知识。
而不应该只看到眼前的一点利。
在培训的过程中,我体验到了友情的温暖。
那天我生病了,他们陪我一起看病,那给我力量的双手,那关爱的眼神,那关切的话语,那每一个平凡再也不能平凡的动作。
我想不仅仅是一杯水的问题,这一切在脑海里都定格了,他们都是我一生的朋友!他们都说我们是大部队,确实,共同的兴趣,共同的追求,永恒的友谊!总之,今年的培训,比去年学到了多了一点,其实学习是靠自己的,师傅领进门,关键是靠自己嘛!老师只是引导我们,要想让暑期培训的知识起到立竿见影的效果,自己可得好好的消化呀!不然的话会觉得用不上,不会用,消化的过程需要静下心来。
这是我从去年的和今年的培训中得到的。
建模心得体会篇2自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。
2024年学习数学建模心得体会(2篇)
2024年学习数学建模心得体会自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。
虽然我是学纯数学即数学与应用数学,但是在我的认知中,数学最多的是单纯地证明一些定理抑或是反复的计算一些步骤比较多的题进而求解。
随着老师在课堂上一点一点的引导、介绍、讲解,我渐渐地发现数学真的是很万能啊(在我看来),任何实际问题只要运用数学建立模型都可以抽象成一个数学方面的问题,进而单纯的分析、计算、求解。
这只是我大体的认识。
首先,通过数学模型这一门课我解开了数学模型的神秘面纱,与数学模型紧密相连的就是数学建模,简而言之来说数学建模就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数之间的关系的数学问题(或称一个数学模型),在借用计算机求解该数学问题,并解释,检验,评价所得的解,从而确定能否将其用于解决实际问题的多次循环,不断深化的过程。
2024年学习数学建模心得体会(2)2024年,我始终对数学建模充满了浓厚的兴趣,我参加了数学建模竞赛,以及参与了一些数学建模课程。
在这一年里,我有机会深入学习和理解数学建模的核心概念和技巧。
在这篇文章中,我将分享我在2024年学习数学建模过程中的心得和体会。
首先,我发现数学建模的核心在于问题的建模和数学模型的构建。
无论是实际问题还是抽象问题,数学建模都需要对问题进行深入的思考和分析。
在解决问题的过程中,我意识到了问题的复杂性和多样性。
对于复杂的问题,我们需要运用数学知识和技巧来抽象和简化问题,找到解决问题的关键点。
而对于多样性的问题,我们需要选择合适的数学方法和模型来解决问题。
这对我的数学思维能力提出了更高的要求,我需要结合数学知识和实际问题,灵活运用数学方法。
其次,我在学习数学建模的过程中,重视实践和实际问题的应用。
学习数学本身是抽象的和理论的,数学建模的目的在于将数学理论应用到实际问题中,解决实际问题。
数学建模教学实践心得(3篇)
第1篇一、引言数学建模是数学与实际问题相结合的一种重要方法,它不仅能够帮助学生提高数学思维能力,还能够培养学生的创新意识和实际操作能力。
近年来,随着我国教育改革的深入推进,数学建模教学在高等教育中得到了越来越多的重视。
作为一名数学建模教师,我深感责任重大,以下是我对数学建模教学实践的一些心得体会。
二、数学建模教学实践心得1. 注重培养学生的数学思维能力数学建模教学的核心是培养学生的数学思维能力。
在教学过程中,我注重以下几个方面:(1)引导学生从实际问题中抽象出数学模型,使学生对数学模型有直观的认识。
(2)引导学生运用数学知识对模型进行求解,培养学生的数学运算能力。
(3)引导学生对求解结果进行分析,培养学生的数学推理能力。
(4)引导学生对模型进行优化,培养学生的数学创新意识。
2. 营造良好的学习氛围良好的学习氛围是提高教学效果的关键。
在数学建模教学中,我注重以下几个方面:(1)鼓励学生积极参与课堂讨论,培养学生的团队协作能力。
(2)设置合理的评价机制,激发学生的学习兴趣。
(3)关注学生的个体差异,因材施教。
(4)加强师生互动,提高学生的自信心。
3. 注重实践教学环节数学建模教学不仅仅是理论知识的传授,更注重实践能力的培养。
以下是我对实践教学环节的一些心得:(1)结合实际案例,引导学生进行建模实践。
(2)组织学生参加数学建模竞赛,提高学生的实践能力。
(3)邀请企业专家进行讲座,让学生了解实际应用场景。
(4)开展课外实践活动,如参观企业、进行实地调研等。
4. 不断更新教学内容和方法随着科技的发展,数学建模领域也在不断更新。
作为一名教师,我应紧跟时代步伐,不断更新教学内容和方法。
以下是我对这一方面的体会:(1)关注数学建模领域的最新研究成果,将新知识、新技术引入课堂。
(2)结合课程特点,创新教学方法,提高教学效果。
(3)关注学生的需求,调整教学内容,使课程更具实用性。
(4)加强与其他学科的交叉融合,拓宽学生的知识面。
数学建模心得体会6篇
数学建模心得体会6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作方案、工作总结、心得体会、演讲稿、合同协议、条据书信、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, insights, speeches, contract agreements, policy letters, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学建模心得体会6篇在写心得体会中促使大家明确自己的人生目标和追求,为我们的人生增添意义,通过心得体会,我们可以将自己的思考与感悟与他人分享,共同成长,本店铺今天就为您带来了数学建模心得体会6篇,相信一定会对你有所帮助。
数学建模心得体会(精选6篇)
数学建模心得体会(精选6篇)数学建模篇1这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。
同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。
通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。
数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。
在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
做数学建模的心得体会5篇
做数学建模的心得体会5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、合同协议、心得体会、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, job reports, contract agreements, personal experiences, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!做数学建模的心得体会5篇心得体会能够让大家更加贴近作者的思考和感受,经历某些意义非凡的事情后,大家都或多或少有所触动,是时候来写一篇心得了,本店铺今天就为您带来了做数学建模的心得体会5篇,相信一定会对你有所帮助。
数学建模感悟(精选五篇)
数学建模感悟(精选五篇)第一篇:数学建模感悟感想这一门数学建模课,实在是出乎我们的意料。
在上这门课之前,我们心中就惊恐:“建模”?不会吧?我们在担心,曾经高数带给我们的痛苦又要体会一遍。
而后,我们阻挡不了时间的意志,在赶鸭子上架之下,我们走进了3#433,开始了第一节课。
出乎我们的意料的是,老师讲课的方式好像在讲小故事一样,或者说,是在把一个个谜题给我们去解决。
而后,我们心里就释然了,还好,这明显就是在玩嘛。
抱着一颗非常轻松的心情,我们被老师引进了数学建模的世界。
原来数学建模不是一味的记公式讲题做题,而是实际事物的一种数学简化。
这就更好玩了,就跟看侦探故事一样,我们可以在看的时候可以想着怎么去解决问题。
数学建模常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。
要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。
而为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
所以,很明显的,这是在解决生活中的问题。
以前我们在学数学的时候,常听到这种言论:数学学不好又怎样,难道你买菜还要用到sin,cos吗?但现在,我们心中的想法是,你能学好建模,甚至用好建模,自己就可以出去牛气一段时间了。
只是,有点奇怪的是,有些同学根本就将这门课当成自习课了,这就明白着表示不重视。
然而就想老师所说的那样,不论是什么课,只要你用心学了,你总会有所收获的。
是的,这也应了石油大王的那句话:不论什么时候,都不要放弃提升自己的机会。
或许,这个道理是我们在这门课上的额外收货。
第二篇:数学建模感悟学完数学建模,使我感触良多,古语云:“经一事,长一智,”然而从我当初参加学校举办的全国大学生数学建模培训开始,到现在的数学建模的结束,我却要感慨万千地说:“一次建模,终生受益。
数学建模培训心得体会(3篇)
数学建模培训心得体会(3篇)第1篇数学建模培训心得体会第2篇暑期数学建模培训心得体会第3篇暑期数学建模培训心得【第1篇】数学建模培训心得体会数学建模培训心得体会数学建模培训心得体会1转瞬之间,一个月的集训静静过去,仿佛又经受了一次难以遗忘的军训。
无疑,这对我今后的进展产生了重大影响。
由于不仅我的意志力从中得到磨练,而且思维力量、学习力量更进异步得到提高,这次集训大大挖掘了我的潜力,我想者会让我更加从容的面对以后的诸多考验,如考研等。
期间每一天都过的非常劳碌,非常充实。
一开头感觉时间过得很慢,后来就觉得根本没法让人去感觉了。
从收集资料、理解题义到着手建模,编程计算到写论文,每一步都分散我们辛勤的汗水。
尽管,我知道有几个模型做得并不好,但我们始终没放弃,抱者以后肯定会作的很好的想法连续着。
说实话,一开头建模,我没什么感觉,就像做作业一样,但后来,我渐渐仔细乐观了,直到23好,我才真正感到了压力,巨大的压力。
一方面,假如我没有机会参与全国大赛,那将是一个难以弥补的圆满;假如去参与全国大赛而没获奖,那将会沉重的打击我的自信念;另一方面,我非常清晰自己的势力同全国一等奖之间的差距。
因此,我产生了一个想法,不管结果怎么样,从现在到建模集训结束,我争取再多学一些东西。
这样我才感觉找回了真正的自己。
总之,我从中受到了难得的启发和训练。
数学建模培训心得体会2通过一个月的集训,我受益非浅。
我进一步的熟悉到数学建模的实质和对参赛队员的要求。
数学建模就是培育同学运用数学学问解决实际问题的力量。
它要求参赛队员有较强的创新精神,有较大的敏捷性和随机应变力量,要求参赛队员之间有良好的团队精神和相互协作意识。
在一个月里,我们学了很多学问放方法,可以说数学建模需要的学问我们都了解了一点,关键在于如何应用这些学问。
这种即学即用的力量是我们以后学习、工作所必需的力量。
在此我对建模是消失的一些现象发表一些看法。
随着信息的高速化,我们很简单找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有关心的。
数学建模心得体会(共4篇)
数学建模心得体会(共4篇)篇:数学建模一、在初中数学课堂中开展建模的必要性在生活中,处处存在数学,而有数学应用的地方就有数学建模。
荷兰著名的数学家弗赖登塔尔,国际数学教育权威,他主张“数学源于现实,寓于现实,用于现实”。
在新一轮的课程改革中,数学课本在教学内容方面进行强有力的变革。
加强了数学的应用性、创新性,注意培养学生的应用意识,重视联系学生生活实际和社会实践的要求。
因此,作为数学教师的我们在数学课堂教学上有必要,也必须要向学生渗透数学寓于现实生活这一理念。
我们的数学教学不能离开现实生活而教。
《课标》明确指出:有效的数学学习活动书不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式学生在课题学习过程中接触到一些有研究和探索价值题材和方法,有利于学生全面认识数学、了解数学,使数学在学生未来的职业和生活中发挥重要作用。
二、在初中数学课堂中渗透数学建模数学建模是指根据具体问题,在一定的假设下找出解这个问题数学框架,求出模型的解,并对它进行验证的全过程。
它是一个“迭代”的过程。
即:准备→假设→建模→求解→分析→检验→应用(必要时循环执行)。
数学模型在实际应用的数学问题有时过难,不宜作为教学内容;有时过易,不被人们重视,而中学数学教科书中“现成”的数学建模内容又很少,再加上我国数学建模研究起步较晚,数学建模的氛围在中学尚不浓厚,在这种情况下,只有在教学活动中起主导作用的教师首先具有数学建模的自觉意识,数学建模思想的教学渗透不仅仅是大学生、研究生的教育问题,在中学里逐步进行有关数学建模思想的渗透更是顺应了当前素质教育和教学改革的需要。
如何在初中数学课堂设计建模教学我们在初中数学课堂中渗透数学建模,目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海中解放出来,把学生应用数学的意识的培养贯穿于教学的始终,让学生学得有趣、学得生动活泼。
因此,在数学建模课堂教学设计方面要遵从以下几点:使学生体会数学与生活的密切联系,体会数学的应用价值,培养学生学习数学的应用意识。
建模心得体会(15篇)
建模心得体会(15篇)建模心得体会1通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。
同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。
当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。
数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。
我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
建模心得体会2随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。
学习数学建模的心得3篇
学习数学建模的心得学习数学建模的心得精选3篇(一)学习数学建模是一个非常有意义和有挑战性的过程。
在我的学习过程中,我总结了以下几点心得:1. 基础知识的扎实是前提:数学建模需要运用到各种数学理论和方法,因此掌握数学基础知识是非常重要的。
在学习建模之前,要先巩固数学的基本概念和技巧,包括微积分、线性代数、概率统计等,这样才能更好地理解和运用到建模中。
2. 实际问题的挖掘和分析:数学建模的前提是要有一个实际问题或者现象,因此在学习建模的过程中,我们要培养观察和思考问题的能力,学会从现实中捕捉一些有趣和有价值的问题。
在挖掘问题的过程中,要善于思考问题的背后原因和影响因素,分析问题的本质和特点,这对于后续的建模和求解是非常重要的。
3. 模型的建立和假设:在进行数学建模时,我们需要根据实际问题建立数学模型。
模型的建立要建立在对问题的充分理解和分析基础之上,要选择恰当的数学方法和理论来描述问题。
同时,由于实际问题的复杂性,建模过程中会存在很多不确定的因素和参数,因此需要合理地做出一些假设和简化,使问题能够得到合理的描述和求解。
4. 模型的求解和验证:在建立完模型之后,我们需要运用数学工具和方法来求解模型,并通过验证和比较模型的结果和实际数据来评估模型的准确性和可行性。
在求解过程中,要熟练掌握常用的数学工具和计算软件,同时还要具备一定的编程和算法设计能力,这样才能高效地求解复杂的模型。
总之,数学建模是一门非常综合和实践性很强的学科,它需要我们掌握扎实的数学基础知识,培养问题思考和分析的能力,同时要学会合理地建立模型和求解模型。
通过不断地实践和学习,我们可以不断提高数学建模的能力和水平。
学习数学建模的心得精选3篇(二)学习数学的心得体会:1. 理解概念的重要性:数学是一个基于逻辑推理的学科,概念的理解是非常关键的。
只有真正理解了概念,才能够运用它们解决问题。
2. 建立扎实的基础:数学的学习是一个渐进的过程,每个新的概念都依赖于前面所学的知识。
数学建模心得体会3篇
数学建模心得体会3篇通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。
同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。
当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。
数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。
我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
数学建模学习心得体会许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。
那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
关于学习数学建模的感想5篇
关于学习数学建模的感想5篇第一篇:关于学习数学建模的感想姓名:魏绍云班级:08数控关于学习数学建模的感想通过这一学期的数学建模课程的学习,使我对数学建模有了一定的认知和了解。
在我们生活中很多的物体模型,以及数学和物理方面一些定理和公理,都是通过数学建模而建立的。
学习数学建模就应该了解数学建模的基本概念、方法、步骤,并且以几个典型的例题来加深我们对数学建模的认识。
接下来就是我对学习数学建模的一些基本认识。
一、数学建模数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学认识方法。
运用这种科学方法,必须从实际问题出发,遵循从实践到认识再到实践的认识规律,围绕建模的目的,运用观察力、想象力和抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决问题的数学模型。
因此,数学建模是来一种定量解决实际问题的创新过过程。
二、数学模型的概念模型是人们对所研究的客观事物有关属性的模拟。
例如在力学中描述力、质量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。
一般地,可以给数学模型下这样的定义:数学模型是关于以部分现实世界为一定目的而做的抽象、简化的数学结构。
通俗而言,数学模型是为了一定目的对原形所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。
三、建立数学模型的方法和步骤(建立数学模型没有固定模式)1、建模准备建模准备是确立建模课题的过程。
这类课题是众在生产和科研中为了使认识和实践进一步发展必须解决的问题。
因此,我们首先要发现这类需要解决实际问题。
其次要弄清所解决问题的目的要求并着手惧数据。
进行建模筹划,组织必要的人力、物力等,确立建模课题。
2模型假设作为建模课题的实际问题都是错综复杂的、具体的。
如果不对这些实际问题进行抽象和简化,人们就无法准确把握它的本质属性,而模型假设就是根据建的目的对原形进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。
数学建模感悟与展望(5篇)
数学建模感悟与展望(5篇)第一篇:数学建模感悟与展望数学建模的收获与展望每一件事,只有用心,才能经久不衰;每一个人,只有坚持,才能享受精彩。
这是我通过对《数学建模》的学习,得到的最大感受与领悟。
我走进了新的数学天地,学习与众不同的知识,被它的魅力深深地所吸引,陶醉在知识的海洋。
我认识了数学建模,接触后就爱不释手,从茫然的无所适从到学会用它解决实际问题,我终于知道什么是数学建模,什么是它的特点,逐渐我慢慢能用它解决生活中的问题,我们都知道数学科学的地位也在发生巨大的变化,它正在从经济和科技的后备走到了前沿。
经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。
培养我们应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。
建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。
数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。
数学建模的内容让我在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子。
线性规划——主要学习线性规划模型、运用MATLAB 优化工具箱解线性规划、运用LINGO解线性规划等。
非线性规划——目标函数或约束条件中至少有一个是非线性函数的最优化问题叫做非线性规划问题。
本章主要学习的是非线性规划的数学模型、非线性规划问题的解、用MATLAB优化工具箱解非线性规划等。
微分方程——微分方程是研究函数变化规律的有力工具,在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。
关于数学建模学习心得体会
数学建模学习心得体会当我们积累了新的体会时,通常就可以写一篇心得体会将其记下来,从而不断地丰富我们的思想。
那么写心得体会要注意的内容有什么呢?下面是小编帮大家整理的数学建模学习心得体会,仅供参考,欢迎大家阅读。
数学建模学习心得体会1刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。
那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。
过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。
它给学生再现了一种“微型科研”的过程。
数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的`情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。
同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
数学建模心得体会
数学建模心得体会心得体会是我们每一个人在生活或者学习中所产生的所思所想所感,写下这些心得体会可以帮助我们更好的认识事物。
下面是由小编为大家整理的“数学建模心得体会”,仅供参考,欢迎大家阅读。
数学建模心得体会(一)数学建模是利用数学方法解决实际问题的一种实践应用。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式来表达,建立起数学模型,然后运用先进的数学方法和计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
一、数学建模在国内的兴起与发展数学建模是在上世纪六七十年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。
经过30多年的发展,现在,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。
可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
全国大学生数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,创办于1992年,每年一届,目前也是世界上规模最大的数学建模竞赛。
20xx年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。
二、数学建模的过程与方法数学建模是一种数学的思想方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。
其过程主要包括以下六个阶段:1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
数学建模学习心得
数学建模学习心得数学建模也激发我们学习数学的兴趣,丰富了数学探索的情感体验。
店铺整理了学习数学建模心得体会范文,希望对你有帮助!数学建模学习心得篇【1】以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。
因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。
选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。
但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、简答题谢俊雄信计一班
1、通过数学建模选修课程的学习,请谈谈对数学建模的认识,学习数学建模课程的收获。
(不少于500字)(30分)
通过学习数学建模,我觉得不管对我的学习还是对我的人生都是一次很重要的成长,通过学习数学建模使我懂得了利用数学的知识去解决的生活中的问题,以前我刚进入大学的时候得知我学习的学习的专业可是数学的时候就常抱怨说,学习以后能干吗啊?,数学在生活中能有什么作用啊?但是通过建模课,让我对数学有了新的认识,数学无处不在。
重要的是我们只要懂得怎么样用数学的知识通过建立模型去解决生活中的问题。
通过学习让我知道了睡你觉数学建模,当需要从定量的角度分析和研究一个实际问题
时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的
模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
2、简要说明数学建模的一般过程或步骤。
(10分)
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。