集成电路互连技术

合集下载

集成电路工艺原理接触及互连原理

集成电路工艺原理接触及互连原理

6/47




减小互连延迟的途径:
1)低电阻率金属(Cu) 2)low-k介质
7/47
对IC金属化系统的主要要求
电学、机械、热学、热力学及化学
(1) 金属和半导体形成低阻接触 (2) 低阻互连 (3) 与下面的氧化层或其它介质层的粘附性好 (4) 台阶覆盖好 (5) 结构稳定,不发生电迁移及腐蚀现象 (6) 易刻蚀 (7) 制备工艺简单
1540 2165 1326 992
TiN
50-150
2950
Ti30W70 Heavily doped poly-Si
75-200 450-10000
2200 1417
10/47
衡量欧姆接触质量的参数是比接触电阻 c
金属线 接触面积A
重掺杂硅
rc


1 dJ
dV V 0
定义:零偏压附近电流密
17/47
18/47
(1)铝的电迁移
当大密度电流流过金属薄膜时,具有大动量 的导电电子将与金属原子发生动量交换,使 金属原子沿电子流的方向迁移,这种现象称 为金属电迁移
电迁移会使金属原子在阳极端堆积,形成小 丘或晶须,造成电极间短路;在阴极端由于 金属空位的积聚而形成空洞,导致电路开路
void Hillock e
金属间介质(IMD)
钝化层(passivation)
3/47
后端工艺越来越重要 占了工艺步骤中大部分 影响IC芯片的速度
4/47
多层金属互 连增加了电 路功能并使 速度加快
5/47










由全局互连造成的延迟可以表达为:

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

UESTC-Ning Ning1Chapter 2Chip Level Interconnection宁宁芯片互连技术集成电路封装测试与可靠性UESTC-Ning Ning2Wafer InWafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆)Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬)Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型)Lead Scan (LS 检测)Packing (PK 包装)典型的IC 封装工艺流程集成电路封装测试与可靠性UESTC-Ning Ning3⏹电子级硅所含的硅的纯度很高,可达99.9999 99999 %⏹中德电子材料公司制作的晶棒(长度达一公尺,重量超过一百公斤)UESTC-Ning Ning4Wafer Back Grinding⏹PurposeThe wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process.⏹Process Methods:1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光)UESTC-Ning Ning5旋转及振荡轴在旋转平盘上之晶圆下压力工作台仅在指示有晶圆期间才旋转Method:The wafer is first mounted on a backgrind tape and is then loaded to the backgrind machine coarse wheel . As the coarse grinding is completed, the wafer is transferred to a fine wheel for polishing .。

tsv深宽比的定义

tsv深宽比的定义

tsv深宽比的定义TSV深宽比的定义TSV(Through-Silicon Via)是一种用于三维集成电路中的垂直互连技术。

它通过将金属填充到硅背板中的孔洞中,实现不同层次芯片之间的电连接。

在TSV技术中,深宽比是一个重要的参数,它定义了TSV的深度和宽度之间的比值。

深宽比是指TSV的深度与宽度之间的比例关系。

在三维集成电路中,TSV的深度通常是由制程工艺决定的,而宽度则由设计要求和电流传输能力等因素决定。

深宽比的大小对于TSV的性能和可靠性都有重要影响。

深宽比的大小直接影响TSV的电阻和电容。

在TSV中,电阻是由于电流通过金属填充的孔洞而产生的。

当TSV的深度增加时,电流路径变长,电阻也会增加,从而影响信号传输的速度和功耗。

而TSV 的电容主要是由于孔洞周围的绝缘层而产生的。

当TSV的宽度增加时,绝缘层的面积增大,电容也会增加,从而影响信号传输的带宽和功耗。

深宽比的大小还影响TSV的可靠性。

在TSV中,电流通过金属填充的孔洞时会产生热量,这会导致温度升高。

当TSV的深度增加时,孔洞内部的散热效果变差,温度升高的速度也会增加,从而可能导致热失控和可靠性问题。

此外,深宽比还会影响TSV的机械强度。

当TSV的深度增加时,孔洞的纵向表面积增大,机械应力也会增加,从而可能导致结构失稳和断裂等问题。

因此,深宽比的选择需要综合考虑电性能和可靠性需求。

一般来说,较小的深宽比可以提高信号传输的速度和功耗,但可能会降低带宽和可靠性;而较大的深宽比可以提高带宽和可靠性,但可能会增加功耗和延迟。

在实际应用中,需要根据具体的设计要求和制程工艺的限制来选择合适的深宽比。

TSV深宽比是三维集成电路中的一个重要参数,它定义了TSV的深度和宽度之间的比值。

深宽比的大小影响着TSV的电阻、电容、可靠性和机械强度等性能指标。

在实际应用中,需要综合考虑电性能和可靠性需求,选择合适的深宽比。

只有通过合理的设计和制程技术,才能充分发挥TSV技术的优势,推动三维集成电路的发展。

集成电路的基本原理和工作原理

集成电路的基本原理和工作原理

集成电路的基本原理和工作原理集成电路是指通过将多个电子元件(如晶体管、电容器、电阻器等)和互连结构(如金属导线、逻辑门等)集成到单个芯片上,形成一个完整的电路系统。

它是现代电子技术的重要组成部分,广泛应用于计算机、通信、嵌入式系统和各种电子设备中。

本文将介绍集成电路的基本原理和工作原理。

一、集成电路的基本原理集成电路的基本原理是将多个电子元件集成到单个芯片上,并通过金属导线将这些元件互连起来,形成一个完整的电路系统。

通过集成电路的制造工艺,可以将电子元件和互连结构制造到芯片的表面上,从而实现芯片的压缩和轻量化。

常见的集成电路包括数字集成电路(Digital Integrated Circuit,简称DIC)、模拟集成电路(Analog Integrated Circuit,简称AIC)和混合集成电路(Mixed Integrated Circuit,简称MIC)等。

集成电路的基本原理包括以下几个关键要素:1. 材料选择:集成电路芯片的制造材料通常选择硅材料,因为硅材料具有良好的电子特性和热特性,并且易于形成晶体结构。

2. 晶圆制备:集成电路芯片的制造过程通常从硅晶圆开始。

首先,将硅材料熔化,然后通过拉伸和旋转等方法制备成硅晶圆。

3. 掩膜制备:将硅晶圆表面涂覆上光感光阻,并通过光刻机在光感光阻表面形成图案。

然后使用化学溶液将未曝光的部分去除,得到掩膜图案。

4. 传输掩膜:将掩膜图案转移到硅晶圆上,通过掩膜上沉积或蚀刻等方法,在硅晶圆表面形成金属或电子元件。

5. 互连结构制备:通过金属导线、硅氧化物和金属隔离层等材料,形成元件之间的互连结构,实现元件之间的电连接。

6. 封装测试:将芯片放置在封装材料中,通过引脚等结构与外部电路连接,然后进行测试和封装。

集成电路的基本原理通过以上几个关键步骤实现电子元件和互连结构的制备和组装,最终形成一个完整的电路系统。

二、集成电路的工作原理集成电路的工作原理是指通过控制电流和电压在电路系统中的分布和变化,从而实现电子元件的工作和电路系统的功能。

半导体 第十五讲 互连

半导体 第十五讲 互连

铝互连的不足(二):电迁移现象
电迁移现象的本质是导体原 子与通过该导体电子流之间 存在相互作用,当一个铝金 属粒子被激发处于晶体点阵 电位分布的谷顶的时候,它 将受到两个方向相反的作用 力:
(1)静电作用力,方向沿 着电场(电流)的方向。 (2)由于导电电子与金属 原(离)子之间的碰撞引起的相 互间的动量交换,我们称之为 “电子风”作用力,方向沿着电 子流的方向。
以Cu作为互连材料的工艺流程
刻蚀引线沟槽 去掉刻蚀停止层 淀积刻蚀停止层 淀积介质材料 光刻通孔图形 去掉光刻胶 刻蚀通孔 溅射势垒和籽晶层 光刻引线沟槽图形 金属填充通孔 去掉光刻胶 CMP 金属层
电迁移现象是集成电路 制造中需要努力解决的 一个问题。特别是当集 成度增加,互连线条变 窄时,这个问题更为突 出。
早期互连技术:铝互连
铝互连的优点:
铝在室温下的电阻率仅为2.7μΩ·cm; 与n+ 和p+ 硅的欧姆接触电阻可以低至 10E- 6Ω/cm2;与硅和磷硅玻璃的附着 性很好,易于沉积与刻蚀。由于上述优 点,铝成为集成电路中最早使用的互连 金属材料。
• 引入铜工艺技术,可以说是半导体制造业的一场 革命。由此带来了设计、设备、工艺、材料、可 靠性以及工艺线管理等方面的巨大变化。从技术 层面上来说,涉及工艺线后段从光刻、等离子刻 蚀、铜金属化、化学机械抛光、多层介质、清洗 ,直到工艺集成的所有模块。 • 随着设计的进一步缩小,金属布线层不断增加, 随之而来的互联延迟也随之加大。
三层夹心结构
在两层铝膜之间增加一个约50nm的过渡金属层(如Ti)可以改 善铝的电迁移。这种方法可以使MTF值提高2-3个量级,但工艺 比较复杂。
采用新的互连金属材料
目前应用最广泛的互连技术:铜互连

什么是互连

什么是互连

什么是互连?随着深亚微米(Deep Sub-Micron)集成工艺的发展,集成电路中广泛存在宽度仅为深亚微米量级且多层分布的金属互连线,这些互连线已不能近似为一种等电势连接,而需要考虑在电路正常工作情况下,它们之间的电磁耦合寄生效应(Parasitic Effect)。

而且,与晶体管不同,互连线的寄生效应,随着集成电路特征尺寸的缩小和工作频率的增大而日益重要。

研究表明[1],在高速集成电路中,限制其发展的主要因素不是器件的门时延,而是互连线的寄生元件引起的时间时延、互连线之间信号的串扰和电路功耗。

与标准逻辑单元中的短线以及模块电路中的中长线不同,顶层的全局互连线长度不随工艺缩减而减小。

因此在深亚微米技术下,全局互连线的性能成为系统整体性能的主要限制因素。

全局互连线的设计和优化会对系统的整体性能,包括延时、带宽、功耗等产生直接影响,从而在深亚微米集成电路设计中,对全局互连线的极限性能的研究具有一定的理论意义。

互连线是指连接两个元器件之间的传输线。

按照互连线所在的设计层次的不同,可以将互连线分为以下几种:印刷电路版上的互连线、连接电路版的电缆线、芯片内部的互连线、芯片封装时管脚和芯片之间的互连线。

本文所讨论的均是芯片内部的互连线。

芯片内的互连线大致可以分成三种[1-4]:第一种是短线,即局部互连线。

短线主要用于逻辑门之间或者速度不是很快的器件间的连接,通常短线的长度远远小于信号波长,短线的时延主要受到耦合电容的影响,对系统时延没有显著影响一般可以忽略。

第二种是中长线,即模块间互连线。

中长线信号传输速度比短线快,电感耦合效应也变得突出,因而容易引起很高的噪声,中长线需要采用低电阻率金属和中等厚度的绝缘介质。

第三种是长线,即全局互连线。

长线对电路性能起着关键作用,长线特别需要采用低电阻率金属以减小信号线和电源线的电阻损耗,需要厚的绝缘层来增加特征阻抗,减小时延,需要较宽的线间距以减少串扰,虽然线宽和宽间距可以减小RC 时延和串扰,但同样也会影响布线密度。

集成电路设计的最新技术和趋势

集成电路设计的最新技术和趋势

集成电路设计的最新技术和趋势随着信息技术不断发展,集成电路设计也在不断更新换代。

今天,我们就来谈谈集成电路设计的最新技术和趋势。

一、三维集成电路设计三维集成电路设计是近年来的一个热门技术,其基本思想是将不同层次的电路堆叠在一起,从而提高集成度。

这种技术可以有效地利用垂直空间,减小电路面积,提高电路性能。

因此,三维集成电路设计被认为是未来电路设计的主流趋势之一。

目前,三维集成电路设计已经被广泛应用于高端芯片的制造,如服务器、智能手机等。

二、互连技术互连技术是指如何将大量的互联网设备连接起来,形成一个庞大的网络。

在集成电路中,互连技术也是至关重要的一环。

随着芯片容量的不断扩大,互连技术变得越来越复杂,需要更加高效和可靠的解决方案。

目前,高速串行通信和光通信是最流行的互连技术,它们能够提高数据传输速度,并减少功耗。

三、人工智能人工智能已经成为近年来最热门的技术之一,它在集成电路设计中的应用也越来越广泛。

人工智能能够识别物体、语音、图像等,从而实现智能控制和自主决策。

在集成电路设计中,人工智能可用于优化电路布局、减少功耗、提高性能等方面。

例如,使用深度学习技术可以实现智能预测和异常检测,从而保障电路的稳定性和可靠性。

四、功耗优化功耗优化一直是集成电路设计的重点,随着智能设备的普及,功耗优化的意义更加凸显。

为减少功耗,目前大多数芯片采用了多种技术,如功率管理单元、时钟门控技术、电压调节等。

而且,一些新兴的技术,如体感识别技术、环境感知技术等,也可以帮助实现更加智能化的功耗优化。

总之,随着信息技术的不断进步,集成电路设计也在不断更新换代。

未来的集成电路设计将更加注重性能、功耗、智能化和可靠性等方面。

相信随着技术的不断发展,集成电路将在更多领域得到广泛应用。

4第二章 互连技术FCB

4第二章 互连技术FCB

2.4 倒装焊技术(FCB)2.4.1 FCB2.4.4 C42.4.5倒装焊接机简介*微组装工艺*一、FCB技术2.4.1FCB技术及特点倒装焊(FCB)是芯片与基板直接安装互连的一种方法。

在芯片连接的地方制作出突起的焊点,在后期操作中直接将芯片的焊点与基板的焊区形成连接。

WB和TAB互连法通常那是芯片面朝上安装互连、而FCB则是芯片面朝下,芯片上的焊区直接与基板上的焊区互连。

*微组装工艺*制作的凸点芯片既可以用于在厚膜陶瓷基板上进行FCB,又可以在薄膜陶瓷或Si基板上进行FCB,还可以在PCB上直接将芯片进行FCB。

使用FCB的基板一般有:陶瓷、Si基板、PCB环氧树脂基板。

Samples with Different DimensionsPCB 上不同尺寸倒装焊样品Flip Chip on Flexible substrate 在软质底板上倒装焊*微组装工艺*基板芯片表面互连线基板表面互连线凸点基板芯片表面互连线基板表面互连线*微组装工艺*二、发展历史1964倒装芯片出现;1969年,IBM公司C4技术(可控塌陷技术);至今,已广泛应用于SIP,MCM,微处理器,硬盘驱动器以及RFID等领域。

*微组装工艺*三、FCB技术的优缺点优点:FCB的互连线非常短。

互连产生的杂散电容、互连电阻和互连电感均比WB和TAB小得多,从而更适合高频、高速的电子产品应用;FCB芯片安装互连占的基板面积小.因而芯片安装密度高。

此外,FCB芯片焊区可面阵布局、更适合高I/O数的LSI、VLSI芯片使用;芯片的安装、互连是同时完成的,这就大大简化了安装互连工艺,快速、省时,适于使用先进的SMT 进行工业化大批量生产。

*微组装工艺*缺点:芯片面朝下安装互连,会给工艺操作带来一定难度,焊点检查困难(只能使用红外线和X光检查); 在芯片焊区一般要制作凸点,增加了芯片的制作工艺流程和成本;倒装焊同各材料间的匹配所产生的应力问题也需要很好地解决等。

集成电路互连技术

集成电路互连技术

Cu互连面临的挑战
✓ 铜在硅和二氧化硅中都有很高的扩散率,这种高扩散率将破坏器件的 性能。可淀积一层阻挡层金属,作用是阻止上下层的材料互相混合。
阻挡层金属 铜
➢ 铜需要由一层薄膜阻挡层完全封闭起来,这层封闭薄膜的作用是加固附着并有效 地阻止扩散。
Cu互连面临的挑战
✓ 钽作为铜阻挡层金属:对于铜互连冶金术来说,钽、氮化钽和钽化硅 都是阻挡层金属的待选材料,阻挡层厚度必须很薄(约75Å),以致它不 影响具有高深宽比填充薄膜的电阻率而又能扮演一个阻挡层的角色。
Cu互连面临的挑战
✓ 目前IC芯片内的互连线主要是铜材料,与原来的 铝互连线相比,铜在电导率和电流密度方面有了 很大的改进。但是,随着芯片内部器件密度越来 越大,要求互连线的线宽越来越小,铜互连的主 导地位也面临着严峻的考验。当芯片发展到一定 尺寸,在芯片内以铜作为互连线就会遇到一系列 问题。
Cu互连面临的挑战
倍的通路电阻。
Contents
集成电路互连技术简介 早期互连技术——铝互连 目前应用最广泛的互连技术——铜互连 其他互连技术——碳纳米管互连
其他互连技术——碳纳米管互连
✓ 碳纳米管(Carbon Nanotubes)于1991年发现以来, 就一直 是纳米科学领域的研究热点。
✓ 由于其超高电流密度承载能力的特性(碳纳米管上可以 通过高达1010A/cm2的电流 ),引起了集成电路器件制造领 域专家的关注。
Contents
集成电路互连技术简介 早期互连技术——铝互连 目前应用最广泛的互连技术——铜互连 其他互连技术——碳纳米管互连
目前应用最广泛的互连技术——铜互连
IBM利用亚0.25μm技术制备的 6层Cu互连表面结构的SEM图
✓ 金属铜的电阻率小于2.0μΩ·cm,使用金属铜取代传 统的金属铝,可以极大地降低互连线的电阻。 较低的电阻率可以减小引线的宽度和厚度,从而减

《集成电路封装和可靠性》培训课件:芯片互连技术

《集成电路封装和可靠性》培训课件:芯片互连技术
Forming/Singular (FS 去框/ 成型)
Lead Scan (LS 检测)
Packing (PK 包装)
集成电路封装测试与可靠性
1 电子级硅所含的硅的纯度很高,可 达 99.9999 99999%
1 中德电子材料公司制作的晶棒(长度 达一公尺,重量超过一百公斤)
集成电路封装测试与可靠性
debris l e f t over from the grinding process.
1 Process Methods:
1)Coarse grinding by mechanical. ( 粗磨)
2)Fine polishing by mechanical or plasma etching. ( 细磨抛光)
14
集成电路封装测试与可靠性
Wire Bonding Technology -- Die Attach Process
Purpose:
The die attach process i s to attach the sawed die in the right orientation accurately onto the substrate with a bonding medium in between to enable the next wire bond f i r s t level interconnection operation .
刀刃
集成电路封装测试与可靠性
切割设备示意图
晶圆 工作台
Dicing Blade
Silicon Wafer Flame
Flame
Blue Tape
两次进刀切割法
Wafer sawing
集成电路封装测试与可靠性

半导体-第十五讲-互连

半导体-第十五讲-互连
• 在正、负电极之间加波形电场,有两种方 式,一是加脉冲波形,另一种是加多级直 流电场。
一种3参数2级直流电场示意图
• 正电场时加快图形底部扩散层的置换,最 终达到消除空洞的目的。负电场明显改进 图形侧壁的平均淀积速率,其产生的铜离 子梯度分布加快底部的淀积速度。人们研 究发现脉冲电场与低的正向电流相结合, 可以显著改进电镀铜在孔颈部位的夹断现 象,从而减小中间空洞。
铝互连的不足(二):电迁移现象
金属为良导体时,静电作用力将减小, 电子风作用力将起主要作用。
电迁移现象的本质是导体原 子与通过该导体电子流之间 存在相互作用,当一个铝金 属粒子被激发处于晶体点阵 电位分布的谷顶的时候,它 将受到两个方向相反的作用 力:
(1)静电作用力,方向沿 着电场(电流)的方向。
铜电镀工艺技术
• 电镀工艺早以应用于电子工业,但真正能 在铜金属布线工艺中得以推广还是近几年 的事情,铜电镀的重要优点是:
• (1)淀积条件易于控制; • (2)淀积速度较快,可以> 350nm/min; • (3)与低介电常数介质材料有良好兼容性
,因为铜电镀是在低温(通常为室温)、 常压的条件下进行。
具有较小的电阻率 易于沉积和刻蚀 具有良好的抗电迁移特性
电迁移现象:
金属化引线中的电迁移现 象是一种在大电流密度作 用下的质量输运现象。质 量输运是沿电子流动方向 进行的,结果在一个方向 形成空洞,而在另一个方 向则由于金属原子的堆积 形成小丘。前者将使互连 引线开路或断裂,而后者 会造成光刻的困难和多层 布线之间的短路。
以Cu作为互连材料的工艺流程
因为在很多方面Cu的性质与铝不同。所以不能用 传统的以铝作为互连材料的布线工艺。对以Cu作 为互连的工艺来说,目前被人们看好并被普遍采 用的技术方案是所谓的Daul Damascene(双镶 嵌)工艺。其主要特点是对任何一层进行互连材 料淀积的同时,也对该层与下层之间的Via进行 填充,而CMP平整化工艺只对导电金属层材料进 行,因此,与传统的互连工艺相比,工艺步骤得 到简化,相应的工艺成本得到降低,这是铜互连 工艺技术所带来的另一优点。

超大规模集成电路铜互连电镀工艺

超大规模集成电路铜互连电镀工艺

1.双嵌⼊式铜互连⼯艺 随着芯⽚集成度的不断提⾼,铜已经取代铝成为超⼤规模集成电路制造中的主流互连技术。

作为铝的替代物,铜导线可以降低互连阻抗,降低功耗和成本,提⾼芯⽚的集成度、器件密度和时钟频率。

由于对铜的刻蚀⾮常困难,因此铜互连采⽤双嵌⼊式⼯艺,⼜称双⼤马⼠⾰⼯艺(Dual Damascene),1)⾸先沉积⼀层薄的氮化硅(Si3N4)作为扩散阻挡层和刻蚀终⽌层,2)接着在上⾯沉积⼀定厚度的氧化硅(SiO2),3)然后光刻出微通孔(Via),4)对通孔进⾏部分刻蚀,5)之后再光刻出沟槽(Trench),6)继续刻蚀出完整的通孔和沟槽,7)接着是溅射(PVD)扩散阻挡层(TaN/Ta)和铜种籽层(Seed Layer)。

Ta的作⽤是增强与Cu的黏附性,种籽层是作为电镀时的导电层,8)之后就是铜互连线的电镀⼯艺,9)最后是退⽕和化学机械抛光(CMP),对铜镀层进⾏平坦化处理和清洗。

电镀是完成铜互连线的主要⼯艺。

集成电路铜电镀⼯艺通常采⽤硫酸盐体系的电镀液,镀液由硫酸铜、硫酸和⽔组成,呈淡蓝⾊。

当电源加在铜(阳极)和硅⽚(阴极)之间时,溶液中产⽣电流并形成电场。

阳极的铜发⽣反应转化成铜离⼦和电⼦,同时阴极也发⽣反应,阴极附近的铜离⼦与电⼦结合形成镀在硅⽚表⾯的铜,铜离⼦在外加电场的作⽤下,由阳极向阴极定向移动并补充阴极附近的浓度损耗。

电镀的主要⽬的是在硅⽚上沉积⼀层致密、⽆孔洞、⽆缝隙和其它缺陷、分布均匀的铜。

2.电镀铜⼯艺中有机添加剂的作⽤ 由于铜电镀要求在厚度均匀的整个硅⽚镀层以及电流密度不均匀的微⼩局部区域(超填充区)能够同时传输差异很⼤的电流密度,再加上集成电路特征尺⼨不断缩⼩,和沟槽深宽⽐增⼤,沟槽的填充效果和镀层质量很⼤程度上取决于电镀液的化学性能,有机添加剂是改善电镀液性能⾮常关键的因素,填充性能与添加剂的成份和浓度密切相关,关于添加剂的研究⼀直是电镀铜⼯艺的重点之⼀[1,2].⽬前集成电路铜电镀的添加剂供应商有Enthone、Rohm&Haas等公司,其中Enthone公司的ViaForm系列添加剂⽬前应⽤较⼴泛。

3第二章 2互连技术TAB

3第二章 2互连技术TAB

2.3载带自动焊接技术(TAB)2.3.1 TAB2.3.2 TAB2.3.6 TAB2.3.7 TAB*微组装工艺*一、TAB 技术载带自动焊(Tape Automated Bonding ,TAB)技术是一种将芯片组装在金属化柔性高分子聚合物载带上的集成电路封装技术;将芯片焊区与电子封装体外壳的I/O 或基板上的布线焊区用有引线图形金属箔丝连接,是芯片引脚框架的一种互连工艺。

2.3.1TAB技术及应用*微组装工艺*在类似于135胶片的柔性载带粘结金属薄片,像电影胶片一样卷在一带卷上,载带宽度8-70mm。

在其特定的位置上开出一个窗口。

窗口为蚀刻出一定的印刷线路图形的金属箔片(0.035mm厚)。

引线排从窗口伸出,并与载带相连,载带边上有供传输带用的齿轮孔。

当载带卷转动时,载带依靠齿孔往前运动,使带上的窗口精确对准带下的芯片。

再利用热压模将导线排精确键合到芯片上。

*微组装工艺**微组装工艺*二、TAB技术发展TAB技术有别于且优于WB技术,用于薄型LSI芯片封装的新型芯片互连技术。

但直到20世纪80年代中期.TAB技术一直发展缓慢,其主要原因在于:TAB技术初始投资大;开始时TAB工艺设备不易买到,而传统的引线工艺已得到充分的发展,且其生产设备也容易买到;有关TAB技术资料和信息少。

*微组装工艺*随着多功能、高性能LSI和VLSI的飞速发展,I/O 数迅速增加,电子整机的高密度组装及小型化、薄型化的要求日益提高,到1987年,TAB技术又重新受到电子封装界的高度重视。

美、日、西欧各国竞相开发应用TAB技术、使其很快在消费类电子产品中获得广泛的应用,主要用于液晶显示、智能IC卡、计算机、电子手表、计算器、录像机和照相机中。

日本使用TAB技术在数量和工艺技术、设备诸方面都是领先的,直至今日仍是使用TAB的第一大户,美、欧次之,亚洲的韩国也有一定的用量.俄罗斯也有使用。

*微组装工艺*三、TAB技术的优点:TAB的结构轻、薄、短、小,高度<1mmTAB的电极尺寸、电极与焊区的间距比WB大为减少 相应可容纳的I/O引脚数更高TAB的引线R、C、L均比WB的小的多采用TAB互连可对IC芯片进行电老化、筛选和测试TAB采用Cu箔引线,导热、导电好、机械强度高TAB焊点键合拉力比WB高3-10倍可实现标准化(载带的尺寸)和自动化*微组装工艺*四、TAB的分类和标准TAB按其结构和形状可分为Cu箔单层带、Cu-PI双层带、Cu-粘接剂-PI三层带和Cu-PI-Cu双金属带等四种。

封装互连技术

封装互连技术

封装互连技术是一种将集成电路和外部电路连接在一起的技术,它包括引脚插装、倒装焊、载带自动焊、超声键合等。

这些技术可以用来将集成电路封装在印刷电路板、陶瓷或其他类型的基板上,以实现电路的集成化和小型化。

在封装互连技术中,引脚插装是最常见的一种。

它使用金属引脚将集成电路与外部电路连接在一起。

这种技术可以提供较好的电气性能和可靠性,因此在许多领域得到广泛应用。

倒装焊是一种将集成电路直接焊在基板上的技术,不需要使用引脚。

这种技术可以减小封装体积,提高封装密度,因此被广泛应用于便携式电子设备和移动通信领域。

载带自动焊是一种将集成电路放置在塑料或陶瓷载带上,然后通过焊接将载带与外部电路连接在一起的技术。

这种技术可以提供高速度、高精度和高可靠性的封装互连,因此在许多高可靠性领域得到广泛应用。

超声键合是一种利用超声波能量将两个金属表面连接在一起的技术。

这种技术可以提供高可靠性和高稳定性的封装互连,因此在许多高可靠性领域得到广泛应用。

总的来说,封装互连技术是实现电路集成化和小型化的关键技术之一。

随着电子设备的发展,对封装互连技术的要求也越来越高,需要不断改进和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
1.2 集成电路对互连金属材料的要求

具有较小的电阻率 易于沉积和刻蚀 具有良好的抗电迁移特性


5
1.3 电迁移现象:
电迁移现象 是集成电路制造 中需要努力解决 的一个问题。特 别是当集成度增 加,互连线条变 窄时,这个问题 更为突出。
6
2、早期和目前应用最为广泛的 互连技术
7
2.1 早期互连技术----铝互连
在铝中加入硅饱和溶解度所需要的足量硅,形成Al-Si 合金,避免硅向铝中扩散,从而杜绝尖楔现象。

铝-掺杂多晶硅双层金属化结构 掺杂多晶硅主要起隔离作用。 铝-阻挡层结构

在铝与硅之间淀积一薄层金属,阻止铝与硅之间的作 用,从而限制Al尖楔问题。一般将这层金属称为阻挡层。

采用新的互连金属材料
解决Al/Si接触问题最有效的方法。


17
3.2 碳纳米管的结构
碳纳米管是由单层或多层石墨片按一定形式卷曲形成的中空 的无缝圆柱结构,是一种石墨晶体。碳纳米管的每层都是一 个C原子通过sp2杂化与旁边另外3个C原子结合在一起形成 六边形平面组成的圆柱。
18
3.3 碳纳米管的导电机制
碳纳米管的电子平均自由程约为1.6μm(室温下金属Cu的 电子平均自由程约为45nm ),如果碳纳米管长度小于这 个值,那么电子在碳纳米管中传输就可能为弹道输运,此 时碳纳米管的电阻跟管的长度无关 。
10

2.4 铝互连的不足(二):电迁移现象
电迁移现象的本质 是导体原子与通过该导 体电子流之间存在相互 作用,当一个铝金属粒 子被激发处于晶体点阵 电位分布的谷顶的时候, 它将受到两个方向相反 的作用力: (1)静电作用力, (2)“电子风”作用 力,
金属为良导体时,静电作用力将减小, 电子风作用力将起主要作用。
19
3.4 目前CNT的发展现状

日本: 1000根CNTs的Via互连技术; 美国:定向生长CNT,填充SiO2并进行抛光实现了 CNTs的互 连;


德国:20-60nm单根多壁CNT互连;
法国:单根40nm多壁CNT互连; 国内:研究集中在CNT互连模拟领域, CNT互连研究处于起 步阶段。
集成电路的互连技术
2015 年 8月
1
目 录

1、集成电路互连简介 2、早期和目前应用最为广泛的互连技术 3、下一代互连材料与互连技术


2
1、集成电路互连简介
3
1.1 什么是集成电路互连技术
所谓的集成电路互 连技术,就是将同 一芯片内各个独立 的元器件通过一定 的方式,连接成具 有一定功能的电路 模块的技术。
铝互连的优点: 铝在室温下的 电阻率很低,与硅 和磷硅玻璃的附着 性很好,易于沉积 与刻蚀。由于上述 优点,铝成为集成 电路中最早使用的 互连金属材料。
8
2.2 铝互连的不足(一):Al/Si接触中的尖楔现象
Al
Si
Al/Si接触中的 尖楔现象
9
2.3 Al/Si接触的改进

Al-Si合金金属化引线
11
2.5 改进电迁移的方法
“竹状“结构的选择
“竹状“结构
常规结构
12
2.5 目前应用最广泛的互连技术----铜互连
IBM 6层Cu互连表面结构图
13
2.6 以Cu作为互连材料的工艺流程
金属填充通孔 溅射势垒和籽晶层 淀积介质材料 CMP金属层 光刻引线沟槽图形 去掉刻蚀停止层 光刻通孔图形 刻蚀引线沟槽 去掉光刻胶
20
3.5 CNT应用于互连亟待解决的问题
碳纳米管的高密度定向生长问题
碳纳米管束的低温生长问题
碳纳米管的横向生长问题
21
22
刻蚀通孔 去掉光刻胶 淀积刻蚀停止层
14
2.7 Cu互连存在的问题

a 尺寸太大 b 导电能力不符合发展需求
15
3、下一代互连材料与互连技术
16
3.1 下一代互联材料与互连技术:碳纳米管互连

碳纳米管于1991年发现以来, 就一直是纳米科学领域的研究 热点。
由于其超高电流密度承载能力 的特性(碳纳米管上可以通过 高达1010A/cm2的电流 ),引 起了集成电路器件制造领域专 家的关注。 碳纳米管互连的研究目前主要 都集中在Via上。
相关文档
最新文档