新课标高考数学选修1-11-24-4知识点汇集

合集下载

高考 必会 知识点:高中数学选修1-1知识点清单

高考 必会 知识点:高中数学选修1-1知识点清单

高考必会知识点:高中数学选修1-1知识点清单一、函数概念1、定义:函数是一种特殊的数学关系,它满足一定的规律,可以把它表示为“y=f(x)”,其中x叫做函数f的自变量,y叫做函数f的因变量。

2、一次函数的直线性:如果一个函数的结果与自变量之间的比例是恒定的,那么这个函数就称为一次函数,它的自变量与因变量都是一次的关系,又因它的图象是一条直线,所以也叫直线性函数。

3、函数的分类:根据因变量与自变量之间的函数关系,把一元函数分为三大类:一次函数、二次函数和多项式函数,其中一次和二次函数是常见的。

二、一次函数性质1、一次函数的真或假性:当一次函数中存在着两个方程,即可以表示成y=ax+b,其中a和b是实数时,则此方程为真,如果a或b不是实数,则此方程为假。

2、一次函数的性质:一次函数的性质是自变量x和因变量y的关系是“线性的”。

一次函数的的横轴值与纵轴值的比值是恒定的,即一次函数的变化是线性的,这也是一次函数的最重要的特点。

此外,一次函数图象的最高点和最低点分别是图象的极值点,其中y值比x值改变的幅度最大,x值改变不会引起y值的改变。

3、一次函数的导数:一次函数的导数是表示一次函数变化量的量,其定义是:当自变量x增加某个极小量Δx时,函数f(x)的变化量与Δx的比值,即函数的变化率,该比值的极限为一个定值,也就是函数的导数。

四、多项式函数1、定义:多项式函数是多元函数,它指的是自变量是指数不同的有理数的乘积和,也可以把它看做是一次及以上次方的有理数系数的乘积之和。

例如多项式函数y=ax2+bx+c 就是3次多项式函数。

2、多项式函数的性质:它具有正面积性、抛物线性等特点,正面积性指的是多项式函数的图象大致是向上开口的曲线,抛物线性指的是多项式函数的图象会有拐点,多项式函数的极值也因此产生。

3、多项式函数的导数:多项式函数的导数也叫次导数,它是指函数变化量与自变量增加量的比值,也就是函数的变化率,它的极限为一定值,也就是次导数。

数学选修1 1知识点总结

数学选修1 1知识点总结

数学选修1 1知识点总结
集合与逻辑:
集合的基本概念和运算,包括并集、交集、补集等。

集合间的包含关系,如A是B的充分条件或B是A的必要条件。

逻辑联结词,如“且”(and)、“或”(or)等,以及它们的真假判断规则。

互逆命题的概念,即一个命题的条件和结论分别是另一个命题的结论和条件。

圆锥曲线:
椭圆:定义:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆。

焦点的位置判定:根据椭圆方程中的项判定焦点在哪一条轴上。

椭圆的几何性质:包括顶点、轴长、焦距、离心率等。

双曲线:定义:平面内与两个定点F1、F2的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹称为双曲线。

焦点的位置及双曲线的几何性质。

量词与命题:
全称量词和存在量词的概念,如“所有的”、“任意一个”表示全称量词,“存在一个”、“至少有一个”表示存在量词。

全称命题和特称命题的构成及其否定形式。

真命题和假命题的定义和判断。

这些知识点构成了数学选修1-1的主要内容,涵盖了集合、逻辑、圆锥曲线以及命题与量词等基本概念和原理。

掌握这些知识点,有助于学生深入理解数学的基本理论和应用,为后续的数学学习和研究打下坚实的基础。

请注意,具体的知识点可能会因教材版本或教学要求的不同而有所差异。

因此,在实际学习过程中,建议学生结合教材和教师的讲解,系统地梳理和总结这些知识点,以确保学习的全面性和准确性。

高中数学选修1:知识点总结归纳

高中数学选修1:知识点总结归纳

高中数学选修1-1知识点总结归纳常用逻辑用语1.1命题及其关系1.1.1命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间原命题若p ,则q 逆命题若q ,则p 否命题若p ⌝,则q ⌝逆否命题若q ⌝,则p⌝原命题逆命题否命题逆否命题互为逆否互为逆否互逆互否互否若p ⌝,则q⌝若q ⌝,则p⌝若p ,则q若q ,则p互逆的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系:(1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

全国版高中数学选修一知识点总结归纳

全国版高中数学选修一知识点总结归纳

全国版高中数学选修一知识点总结归纳高中数学选修一是进一步拓宽和深化学生对数学知识的学习,为进一步学习数学奠定基础。

下面是全国版高中数学选修一的知识点总结归纳:1.函数-函数的概念:自变量、因变量、定义域、值域、函数图像。

-初等函数:常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

2.二次函数-二次函数的定义与性质:顶点、对称轴、增减性、最值、零点。

-二次函数的图像与方程:平移、对称变换。

-二次函数的应用:最优化问题、几何问题、物理问题等。

3.三角函数-弧度制与角度制:弧度与角度的相互转换。

-正弦函数、余弦函数与正切函数:定义、性质、图像、周期、幅值。

-三角函数的图像与变换:平移、倍数、反函数。

-三角函数的应用:角的计算、几何问题、物理问题等。

4.数列与数列的极限-数列的概念:递推公式、通项公式。

-等差数列:通项公式、前n项和、公差与项数之间的关系。

-等比数列:通项公式、前n项和、初项与公比之间的关系。

-数列的极限:数列的有界性、数列的单调性、数列极限的概念与判定。

5.极坐标系与参数方程-极坐标系:坐标系的概念、极坐标的表示、平面上点的极坐标、点的极坐标与直角坐标的转换。

-极坐标与参数方程的图形:心形线、阿基米德螺线、渐开线等。

6.矩阵与行列式-矩阵的概念与运算:矩阵的表示、矩阵的运算(加法、数乘、乘法)。

-矩阵的初等变换与逆矩阵:初等行变换、初等列变换、矩阵的秩、矩阵的逆。

-行列式的定义与性质:二阶与三阶行列式的计算。

-线性方程组与矩阵方程:线性方程组的解法、齐次与非齐次线性方程组。

7.向量与坐标-向量的概念与运算:向量的表示、向量的运算(加法、数乘、数量积、向量积)。

-向量的坐标表示与相互关系:向量与坐标的转换、数量积、向量积与坐标的关系。

-平面向量的线性变换与应用:向量的平移、旋转、反射等。

8.空间几何-空间直线的表示与性质:点向式、对称式、规范式、平行与垂直关系。

-空间平面的表示与性质:点法式、方向向量、平行与垂直关系、点与平面的距离。

高三数学选修知识点

高三数学选修知识点

高三数学选修知识点一、概率与统计1. 排列与组合- 排列:对给定的元素进行有序的选取,可以考虑顺序。

- 组合:对给定的元素进行无序的选取,不考虑顺序。

2. 随机事件与概率- 随机事件:不确定性事件的结果。

- 概率:事件发生的可能性大小,用数字表示。

3. 事件的独立性与互斥性- 独立事件:前一事件发生与否,对后一事件发生的概率没有影响。

- 互斥事件:两事件不能同时发生,互为对立事件。

4. 事件的全概率公式与贝叶斯公式- 全概率公式:利用样本空间元素的划分,给出事件的概率计算方式。

- 贝叶斯公式:通过已知信息,计算条件概率。

5. 随机变量与概率分布- 随机变量:将随机试验的结果与实数对应的变量。

- 概率分布:随机变量在各个取值上的概率。

6. 离散型随机变量的概率分布- 二项分布:固定次数的独立重复实验中成功次数的概率分布。

- 泊松分布:在单位时间或单位面积内随机事件发生次数的概率分布。

7. 连续型随机变量的概率分布- 均匀分布:取值范围内的概率密度函数为常数的分布。

- 正态分布:钟形曲线状的分布,符合中心极限定理。

8. 统计量与抽样分布- 统计量:利用样本数据计算的一些特征指标,如均值、方差等。

- 抽样分布:样本统计量的概率分布。

9. 参数估计与假设检验- 参数估计:利用样本数据对总体参数进行估计。

- 假设检验:判断总体参数是否满足某种假设。

二、解析几何1. 点、向量和坐标- 点:在二维坐标系或三维坐标系上表示一个位置。

- 向量:有大小和方向的量,可以表示从一个点到另一个点的位移。

- 坐标:表示点的位置的有序数组。

2. 直线和平面方程- 直线方程:一般式、斜截式、点斜式等不同表示方式。

- 平面方程:点法式、一般式等不同表示方式。

3. 空间中的位置关系- 点与直线的位置关系:在线上、在线上延长线上或在线的两侧。

- 点与平面的位置关系:在平面上、在平面上延长线上或在平面的两侧。

4. 直线和平面的交点问题- 直线与直线的交点:联立直线方程求解。

高中数学选修1知识点总结

高中数学选修1知识点总结

高中数学选修1知识点总结1. 两点间的距离公式在平面直角坐标系中,两点A(x₁, y₁)和B(x₂, y₂)之间的距离可以通过以下公式计算:AB = √((x₂ - x₁)² + (y₂ - y₁)²)2. 圆的方程2.1 标准方程设圆心为C(h, k),半径为r,则圆的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程设圆的方程为:x² + y² + Dx + Ey + F = 0其中D、E、F为实数常数,则圆的一般方程为上述形式。

3. 对数函数3.1 定义对数函数以常数b(b > 0且b ≠ 1)为底的对数函数定义为:y = logₓ(b)其中x为自变量,y为函数值。

3.2 基本性质•logₓ(1) = 0•logₓ(x) = 1•logₓ(x * y) = logₓ(x) + logₓ(y)•logₓ(x / y) = logₓ(x) - logₓ(y)•logₓ(x^a) = a * logₓ(x)4. 幂函数4.1 定义幂函数定义为:y = a^x其中a为常数且a > 0。

4.2 基本性质•幂函数的定义域为全体实数。

•当a > 1时,幂函数呈现增长趋势;当0 < a < 1时,幂函数呈现下降趋势。

•幂函数的图像经过点(0, 1)。

•幂函数在底数为1时,始终为1。

5. 三角函数5.1 正弦函数正弦函数以周期2π为基础,定义为:y = sin(x)5.2 余弦函数余弦函数以周期2π为基础,定义为:y = cos(x)5.3 正切函数正切函数的定义为:y = tan(x)5.4 基本性质•三角函数的周期都为2π。

•正弦函数和余弦函数的取值范围为[-1, 1]。

•正切函数的定义域为全体实数,值域为(-∞, +∞)。

6. 反三角函数与三角函数相对应,反三角函数常用的包括反正弦函数、反余弦函数和反正切函数。

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。

- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。

- 函数的性质:奇偶性、周期性、单调性、极值、零点等。

2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。

- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。

- 直线的方程:点斜式、两点式、截距式等。

3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。

- 一元二次方程的解:实数解、复数解、无解等。

- 一元二次方程的求解方法:配方法、公式法、图解法等。

4. 不等式- 不等式的概念:比大小关系不是等号的代数式。

- 不等式的性质:加减、乘除等运算规则。

- 不等式的解集:解集可以用数轴图、区间表示等。

二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。

- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。

- 等差数列的性质:求和公式、前n项和等。

2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。

- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。

- 等比数列的性质:求和公式、前n项和等。

3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。

- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。

4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。

高中数学选修1-1知识点归纳1#

高中数学选修1-1知识点归纳1#

高中数学选修1-1知识点归纳1#高中数学选修1-1知识点归纳高中数学选修1-1是数学学科的一部分,内容较为丰富,涉及到多个知识点。

下面将对这些知识点进行归纳和总结,具体内容如下:一、函数的概念和表示方法1、函数的定义:函数是一种描述因果关系的数学工具,将一个集合的每个元素都唯一地对应到另一个集合的元素上。

2、函数的表示方法:常见的函数表示方法有显式表示法、参数表示法和隐式表示法。

二、平方根函数1、平方根函数的定义:平方根函数是指以x为自变量,y为因变量的函数y = √x。

2、平方根函数的图像:平方根函数的图像为一条开口向上的抛物线曲线。

3、平方根函数的性质:平方根函数的定义域为非负实数集,值域为非负实数集。

三、指数函数1、指数函数的定义:指数函数是指以x为自变量,y为因变量的函数y = a^x,其中a是正常数且不等于1。

2、指数函数的图像:指数函数的图像为一条递增或递减的曲线。

3、指数函数的性质:(1)指数函数的定义域为全体实数集,值域为正实数集(当a>1时)或(0,1)区间上的实数集(当0<a<1时)。

(2)指数函数与底数a的关系:当a>1时,指数函数递增;当0<a<1时,指数函数递减。

四、对数函数1、对数函数的定义:对数函数是指以x为自变量,y为因变量的函数y = loga(x),其中a是一个正常数且不等于1。

2、对数函数的图像:对数函数的图像为一条递增或递减的曲线。

3、对数函数的性质:(1)对数函数的定义域为正实数集,值域为全体实数集。

(2)对数函数与底数a的关系:当a>1时,对数函数递增;当0<a<1时,对数函数递减。

五、指数方程和对数方程1、指数方程的定义:指数方程是指含有未知数的指数的等式。

2、求解指数方程的一般步骤:(1)移项(2)底数相等的条件3、对数方程的定义:对数方程是指含有未知数的对数的等式。

4、求解对数方程的一般步骤:(1)移项(2)底数相等的条件六、指数函数与对数函数的图像与性质1、指数函数与对数函数的关系:指数函数与对数函数是互为反函数的函数。

高中数学知识点总结全2024

高中数学知识点总结全2024

高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。

集合的表示方法:列举法、描述法、图示法。

集合间的关系:子集、真子集、相等。

集合的运算:并集、交集、补集。

2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、对应关系、值域。

函数的性质:单调性、奇偶性、周期性、最值。

3. 函数的表示方法解析法:用数学式子表示函数关系。

表格法:用表格形式表示函数关系。

图象法:用图象表示函数关系。

二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。

性质:图象是一条直线,k为斜率,b为截距。

2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。

性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。

3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。

性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。

4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。

性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。

5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。

余弦函数:y=cos(x),周期为2π,图象为波形曲线。

正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。

三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。

旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。

2. 空间几何体的三视图主视图:从正面看到的图形。

俯视图:从上面看到的图形。

左视图:从左面看到的图形。

高二数学选修一知识点框架

高二数学选修一知识点框架

高二数学选修一知识点框架
一、函数与导数
1. 函数的定义与性质
2. 导数的定义与性质
二、三角函数与三角恒等变换
1. 三角函数的定义与性质
2. 三角恒等变换的基本公式
三、数列与数学归纳法
1. 数列的概念与性质
2. 数学归纳法的基本思想与应用
四、概率与统计
1. 概率的基本概念与计算方法
2. 统计的基本概念与应用
五、平面向量与解析几何
1. 平面向量的定义与运算法则
2. 解析几何中的点、线、面的方程与性质
六、数学建模与实际问题
1. 数学建模的基本步骤与方法
2. 实际问题的数学分析与求解
七、微积分基础
1. 极限的概念与计算方法
2. 级数的概念与性质
八、线性代数基础
1. 线性方程组的解与性质
2. 矩阵的基本运算与性质
九、数论基础
1. 整数的性质与整除关系
2. 同余与模运算的基本理论
十、解析几何基础
1. 直线与圆的方程与性质
2. 平面与空间中点、直线、圆锥曲线的方程与性质
十一、几何证明与图形的性质
1. 几何证明的基本方法与技巧
2. 二维图形的基本性质与判定
以上是高二数学选修一的知识点框架。

学习这些知识点将帮助你建立扎实的数学基础,为进一步学习和理解高等数学打下坚实的基础。

希望你能够认真学习,并能够灵活运用这些知识解决实际问题。

数学是一门非常重要的学科,掌握好数学知识对于你的学业发展和未来职业发展都将产生积极的影响。

祝你学业进步!。

全国版高中数学选修一知识点梳理

全国版高中数学选修一知识点梳理

全国版高中数学选修一知识点梳理高中数学选修一是高中阶段的一门选修课程,主要包括函数与方程、空间向量与立体几何和数列与数学归纳法三个模块。

下面将对这三个模块的知识点进行梳理。

一、函数与方程1.函数的概念:自变量、因变量、定义域、值域、图像等基本概念。

2.函数的性质:奇偶性、周期性等基本性质。

3.初等函数:幂函数、指数函数、对数函数、三角函数等基本函数。

4.逆函数:定义、性质以及求法。

5.函数的四则运算:加法、减法、乘法和除法。

6.复合函数:定义、性质以及求法。

7.函数的图像与变换:平移、伸缩、翻折等基本变换。

8.方程与不等式:一元一次方程、一次不等式、二次方程和二次不等式等基本方程与不等式的解法。

二、空间向量与立体几何1.空间向量的概念:矢量的定义、位移、共线与共面等基本概念。

2.空间向量的运算:加法、减法、数乘、点乘和叉乘等基本运算。

3.向量的坐标表示:向量的坐标表示、向量共线与线性相关等相关概念。

4.空间直线:直线的方向向量、点向式方程、两直线关系等基本概念。

5.平面与空间曲线:平面的法向量、点法式方程、平面与直线的关系、空间曲线参数方程等基本概念。

6.空间几何变换:平移、旋转、镜像等基本变换。

三、数列与数学归纳法1.等差数列:概念、通项公式、求和公式及其应用。

2.等比数列:概念、通项公式、求和公式及其应用。

3.求和与数学归纳法:求和公式的推导、归纳法的基本原理及其应用。

4.数列极限:数列极限的概念、极限存在的判定、常用极限等基本概念。

这里只是对整个高中数学选修一的知识点进行了简要梳理,具体每个知识点所包括的内容比较广泛。

高中数学选修一作为高中数学中的选修课,对学生的数学素养和解决实际问题的能力提出较高要求,需要学生能够熟练掌握和灵活运用这些知识点。

在学习过程中,需要注重理论学习与实际应用相结合,通过大量的练习和实例的分析,加深对知识点的理解和掌握。

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。

- 集合的运算:交集、并集、补集的定义、性质和运算规则。

例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。

2. 常用逻辑用语。

- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。

例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。

2. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。

数学高二选修一知识点总结

数学高二选修一知识点总结

数学高二选修一知识点总结高二学年是学生们接触到更加深入的数学知识的阶段。

而在高二的选修课中,数学是其中一门重要的学科。

下面我将对高二数学选修一的知识点进行总结。

一、函数与导数1. 函数的定义与性质函数是一个映射关系,将一个自变量映射到一个因变量上。

函数的定义域和值域是非常重要的概念。

2. 导数与导数的应用导数是函数变化率的度量,也可以用于解决最值问题和判断函数的单调性。

在实际问题中,导数可以用于求出曲线的切线和切线方程。

3. 高阶导数与泰勒公式高阶导数可以用于求出函数的凹凸性和拐点。

泰勒公式可以将函数近似表示为多项式。

二、数列与级数1. 数列与数列的极限数列是有序数的集合,极限给出了数列趋于无穷时的值。

通过数列的极限可以研究数列的有界性、单调性和收敛性。

2. 无穷等比数列与等比级数无穷等比数列是一种重要的数列形式,它具有特定的通项公式和求和公式。

等比级数则是无穷等比数列所有项的和。

3. 一般项数列与广义级数一般项数列是一种更通用的数列形式,可以通过数列的极限和收敛性来研究。

广义级数是一种无穷级数的推广形式。

三、立体几何1. 空间几何基本概念空间几何是研究三维空间中的图形和性质的学科。

点、直线、平面和面是空间几何的基本概念。

2. 空间几何中的平面与直线平面和直线是空间几何中重要的研究对象。

研究平面与直线的位置关系以及它们之间的交点问题是空间几何的关键内容。

3. 空间几何中的立体图形立体图形是三维空间中的具有一定形状和性质的图形,主要包括多面体、棱柱、棱锥和圆锥等。

四、解析几何1. 坐标系与坐标坐标系是将点与有序数对应的数学工具。

在平面直角坐标系和空间直角坐标系中,点的坐标代表了点的位置。

2. 直线与曲线的方程直线和曲线的方程是研究解析几何中的重要内容。

直线方程主要包括点斜式和一般式,曲线方程主要包括圆和抛物线等。

3. 空间几何中的曲线与曲面空间几何中的曲线和曲面是解析几何的进一步拓展。

研究曲线的参数方程和曲面的方程是解析几何的重要内容。

高中数学-11-24-4知识点归纳

高中数学-11-24-4知识点归纳

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

202X年人教版高中数学选修一知识点总结全面整理

202X年人教版高中数学选修一知识点总结全面整理

千里之行,始于足下。

202X年人教版高中数学选修一知识点总结全面整理202X年人教版高中数学选修一主要涵盖以下知识点:1. 数列与数列的极限:- 数列的定义与性质;- 数列的极限定义与性质;- 收敛数列和发散数列的判定方法;- 等差数列和等比数列的求和公式;- 数列极限的性质和运算法则。

2. 函数与映射:- 函数的定义与性质;- 函数的运算与复合函数;- 一元二次函数的图像与性质;- 二次函数的图像与性质,包括顶点、轴对称与对称轴方程;- 高次函数的图像与性质,包括奇、偶性、周期性与对称性。

3. 三角函数与反三角函数:- 三角函数的定义与性质,包括正弦函数、余弦函数、正切函数与余切函数;- 三角函数图像与性质;- 反三角函数的定义与性质;- 三角函数与反三角函数之间的基本关系。

4. 平面向量与向量的运算:- 平面向量的定义与性质,包括向量的模、方向和平行;第1页/共2页锲而不舍,金石可镂。

- 向量的线性运算,包括加法、乘法;- 向量的数量积与向量积的定义与性质;- 向量的坐标表示与坐标运算。

5. 矩阵与矩阵的运算:- 矩阵的定义与性质,包括矩阵的转置、加法与乘法;- 矩阵的乘法规律与矩阵方程的解法;- 矩阵的逆与逆矩阵的求解方法;- 线性方程组与矩阵的关系与解法。

6. 概率与统计:- 概率的基本概念与性质,包括事件、样本空间、概率的计算方法;- 条件概率与事件的独立性;- 随机变量与概率分布;- 统计数据的描述与分析,包括指标与统计图表。

以上为202X年人教版高中数学选修一的主要知识点总结,希望对您的学习有所帮助。

如有需要深入了解或其他问题,请继续提问。

高三数学选修一知识点总结

高三数学选修一知识点总结

高三数学选修一知识点总结在高三数学选修一课程中,我们学习了很多重要的数学知识点。

这些知识点不仅仅是为了应对高考,更是为了我们将来的学习和工作打下坚实的数学基础。

下面我将对这些知识点进行总结,希望能够帮助大家更好地复习和应用。

一、三角函数三角函数是高中数学中的重要内容,我们学习了正弦函数、余弦函数和正切函数,它们之间的关系以及相关的性质和公式。

我们需要掌握三角函数的定义、图像、周期性、奇偶性、单调性等特点,并能够熟练地应用这些知识解决实际问题。

二、向量向量是数学中的一种重要概念,我们学习了向量的定义、加法、数乘以及数量积和向量积的计算方法。

我们需要理解向量的几何意义,能够用向量表示和计算平面上的线段、设备位移、速度等物理量,并能够通过向量的知识解决空间几何问题。

三、数列与数学归纳法数列是数学中的重要概念,我们学习了等差数列、等比数列以及数列的通项公式和求和公式。

我们需要掌握数列的定义、性质和常用公式,并能够应用数学归纳法证明数学命题和解决实际问题。

四、导数与微分导数与微分是微积分的重要内容,我们学习了导数的定义、求导法则、高阶导数以及函数的凹凸性和极值等知识。

我们需要掌握导数的概念和性质,并能够应用导数求函数的极值、曲线的切线方程等问题。

五、概率与统计概率与统计是数学中的应用领域,我们学习了事件的概率、独立事件、条件概率以及统计图表的绘制与分析等内容。

我们需要掌握概率与统计的基本概念和方法,并能够应用概率和统计知识解决实际问题。

六、数学证明与解答数学证明与解答是数学思维能力的重要体现,我们需要通过数学证明题和解答题来提高我们的逻辑思维和问题解决能力。

我们需要熟练掌握数学证明的方法和技巧,并能够运用它们解决各种数学问题。

总之,高三数学选修一课程涵盖了多个重要的数学知识点,这些知识点在我们的学习和应试中都起着非常重要的作用。

只有我们掌握了这些知识点并且能够熟练地运用它们,我们才能在高考中获得好成绩,并且在将来的学习和工作中更好地应用数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±56、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥ 0y ≤8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;第三部分 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.4、常见函数的导数公式:①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。

第四部分 复数1.概念:(1) z =a +bi∈R ⇔b =0 (a,b∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d∈R );2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则: (1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i d c ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论:(1) i i 2)1(2±=±;⑷;11;11i ii i ii -=+-=-+(2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i (3) zz z z z 111=⇔=⇔=。

4.运算律:(1));,())(3(;))(2(;2121N n m z z z z z z zz z mm m mn n m nm n m ∈=⋅==⋅+5.共轭的性质:⑴2121)(z z z z ±=± ;⑵2121z z z z ⋅= ;⑶2121)(z zz z = ;⑷ z z =。

6.模的性质:⑴||||||||||||212121z z z z z z +≤±≤-;⑵||||||2121z z z z =;⑶||||||2121z z z z =;⑷n n z z ||||=;第五部分 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定: ⑴总偏差平方和:∑=-ni iy y12)(⑵残差:∧∧-=i i i y y e ;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=n i ii ni i iy y y yR 12122)()(1 。

相关文档
最新文档