新课标高考数学选修1-11-24-4知识点汇集

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修1-1、1-2数学知识点

第一部分 简单逻辑用语

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.

2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.

3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”

4、四种命题的真假性之间的关系:

(1)两个命题互为逆否命题,它们有相同的真假性;

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).

利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;

6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.

p q p q ∧ p q ∨ p ⌝

真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假

7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;

全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。 ⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;

特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;

第二部分 圆锥曲线

1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

焦点的位置

焦点在x 轴上

焦点在y 轴上

图形

标准方程

()22

2210x y a b a b +=>> ()22

2210y x a b a b

+=>> 范围

a x a -≤≤且

b y b -≤≤ b x b -≤≤且a y a -≤≤

顶点

()1,0a A -、()2,0a A

()10,b B -、()20,b B

()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =

焦点 ()1,0F c -、()2,0F c

()10,F c -、()20,F c

焦距 ()222122F F c c a b ==-

对称性 关于x 轴、y 轴、原点对称

离心率

()2

2101c b e e a a

==-<<

3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:

|)|2(,2||||||2121F F a a MF MF <=-。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

4焦点的位置 焦点在x 轴上

焦点在y 轴上 图形

标准方程

()22

2210,0x y a b a b -=>> ()22

22

10,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈

顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =

焦点 ()1,0F c -、()2,0F c

()10,F c -、()20,F c

焦距 ()222122F F c c a b ==+

对称性 关于x 轴、y 轴对称,关于原点中心对称

离心率

()2

211c b e e a a

==+>

渐近线方程

b y x a

a y x b

56、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.

7、抛物线的几何性质:

标准方程

22y px =

()0p >

22y px =- ()0p > 22x py = ()0p > 22x py =-

()0p >

图形

顶点

()0,0

对称轴

x 轴

y 轴

焦点

,02p F ⎛⎫

⎪⎝⎭ ,02p F ⎛⎫

- ⎪⎝⎭

0,2p F ⎛

⎫ ⎪⎝

0,2p F ⎛

⎫- ⎪⎝

准线方程

2

p

x =-

2

p x =

2

p y =-

2

p y =

离心率

1e =

范围

0x ≥ 0x ≤

0y ≥ 0y ≤

8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:

若点()00,x y P 在抛物线()2

20y px p =>上,焦点为F ,则02p

F x P =+

; 若点()00,x y P 在抛物线()2

20x py p =>上,焦点为F ,则02

p F y P =+;

第三部分 导数及其应用

1、函数()f x 从1x 到2x 的平均变化率:

()()

2121

f x f x x x --

2、导数定义:()f x 在点0x 处的导数记作x

x f x x f x f y x x x ∆-∆+='='

→∆=)()(lim

)(000

00

;.

3、函数()y f x =在点0x 处的导数的几何意义是曲线()

y f x =在点

()()

00,x f x P 处的切线的斜率.

4、常见函数的导数公式:

①'

C 0=;②1

'

)(-=n n nx

x ; ③x x cos )(sin '

=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x

x e e ='

)(; ⑦a x x a ln 1)(log '

=

;⑧x

x 1)(ln '

= 5、导数运算法则:

相关文档
最新文档