ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)
abaqus中xfem扩展有限元教程
abaqus 中xfem扩展有限元教程part模块中的操作:1.生成一个新的part,取名为plate,本part 选取3D deformable solid extrusion 类型(如图1)2.通过Rectangle 工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension 和edit dimension 来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0, 3),右下角坐标为(3,-3)(如图2)3D '、2D Planw I ' AxisymmetricTyre Options” Di scr^te ri gi >1f'■ Analytical ri<id0 Euler i anBaseShapeSolidC? Shello灿电0 FeintApproKimat色size: 20Cancel3.完成后拉伸此矩形,深度为 1.(如图3)4.生成一个新的 part ,取名为 crack ,本 part 选取 3D deformable shell extrusion 类型(如图4) 叩刊网扌 rr Ack M ud-el L iLg. Spa-j-e(*) 3D { ' 29 Pl war ( ) Ajci symmetri c Typ« @ H 栏 £oir.ahle: :;Di 5«r «tc ari gi dCj An>lytic41 rigid ■.. j Euler i an Opti QKS None available Q hl 迥⑥*1】■:.\ Wire (.PoiittBase FeatureTypePlanar Ez trusi on Rezolution SwsepXppr^MiTatt =it eCine el5.生成一条线,此线的左端点坐标为( 0, 0.08 ),右端点坐标为(1.5 , 0.08 )6 .完成后拉伸此线,深度为 1.(如图6)7.保存此模型为XFEMtutor (如图7 ),以后经常保存模型,不再累述。
ABAQUS平台的扩展有限元方法模拟裂纹实现
ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
ABAQUS中扩展有限元(XFEM)功能简介
ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。
ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。
目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。
1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。
而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。
然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。
而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。
从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。
但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。
直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。
与之对应的形函数便是和其中H(x)是阶跃函数。
想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。
扩展有限元的ABAQUS实现
扩展有限元的ABAQUS实现常规有限元方法(CEFM)和其他数值方法相比,具有一些无法比拟的优点,但仍存在一些缺陷。
比如在解决类似裂纹这样的强不连续问题,由于裂纹尖端处的应力奇异性,导致计算量巨大而且精度不高。
然而扩展有限元方法(extended finite element method,XFEM)的出现,和常规有限元方法相比具有显著的优势,使得我们可以在裂尖和应力、变形集中处划分高密度的网格,也可以方便的模拟裂纹的扩展,使计算量不那么巨大,保留了常规有限元法的所有优点。
因此,扩展有限元得到了快速发展和应用,而且在裂纹的扩展研究中要的意义。
本文开展对扩展有限元方法和裂纹问题的研究,并且基于限元ABAQUS平台,对扩展有限元方法针对裂纹扩展问题进行模拟实现。
关键词:扩展有限元方法,裂纹扩展,ABAQUS第一章绪论1.1 引言21世纪以来,计算机硬件和数值仿真的快速发展以及工业工程实践与科学研究中存在的大量运算需求,世界上涌现出一批大型科研运算及科学模拟软件,能够极大的简化运算问题以及计算机模拟实验,使我们能够更加方便地研究虚拟工程及相关科学问题。
有限元方法的出现为数值分析方法的研究带来了新的曙光,力学学科本来就是连接理工学科的桥梁,计算力学是目前力学发展的一个重要分支。
有限元软件则是我们到达工程科学领域彼岸的非常重要的工具和桥梁之一。
ABAQUS软件是世界上最强大的大型有限元计算分析软件之一,具有不同种类的单元类型、材料类型和不同的分析过程,拥有很好的计算功能和模拟性能。
ABAQUS软件不但可以进行一种部件和复杂物理场的分析,而且可以处理多系统的部件分析;不仅可以分析简单的线弹性问题,还可以处理复杂的非线性组合问题等,相比其它软件具有无可比拟的优势[1,2]。
固体力学中存在的两类不连续问题之一则是因为物体内部几何结构突变引起的强不连续问题,裂纹问题就是这类问题的代表。
由于几何界面处的位移不连续性和裂纹尖端的应力奇异性使得这类问题的处理变得比较复杂。
裂纹扩展的扩展有限元(xfem)模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)
ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)
1.part部分:
plate模型为2D 变形壳体尺寸为0.5x0.2M(因为后面采用的是MPa,所以这里采用的是M,为了单位统一) 。
用partition命令将plate切割成装配图上面一样(尺寸0.24x0.06)Rigid模型为2D解析刚体尺寸为R0.06圆的下面部分的2/3半圆(看装配模型就知道)。
注意要在上面设置一个参考点,在load部分加载位移边界用。
wire模型2D变形线尺寸为0.01位置坐标(0.25,0.2),(0.25,0.19)线两端点的坐标,大家懂的。
添加一个装配图对照模型。
2.property部分这一部分尽量多用图片
主要设置了一下几部分的材料属性,用的材料为Q345-steel(因为刚好找到了它的应力应变数据)1、密度2、弹性属性3、塑性属性4、损失准则
5.interaction部分
1.首先创建contact controls,创建步棸菜单栏interaction->contact controls->create,参数的设置见下图:
2.裂纹的设置,创建步棸菜单栏special->crack->create->xfem ,区域的选择见下图
3其他包括相互作用的一些属性见下图
6.load部分
位移边界条件的加载如下图
7.Mesh部分
种子布置见下图
网格控制主要采取的是structured
8.Job就ok了,祝大家好运。
也同时感谢论坛里面帮助过我的朋友。
ABAQUS精选本FEM扩展元例子的详细图解
版本X F E M(扩展有限元)例子的详细图解一、part模块中的操作:二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1)三、 2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和editdimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)四、 3.完成后拉伸此矩形,深度为1.(如图3)五、图1,图2,图3,4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,),右端点坐标为(,)6.完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:1.创建材料elsa,其弹性参数为E=210GPa,泊松比为(如图12)最大主应力失效准则作为损伤起始的判据,最大主应力为(如图13)损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C=G2C=G3C=42200N/m,=1.(如图14)2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(,-3,0)(如图27,28)。
ABAQUS中的断裂力学及裂纹分析总结
ABAQUS中的断裂力学及裂纹分析总结(转自simwe)(1)做裂纹ABAQUS有几种常见方法。
最简单的是用debond命令, 定义*FRACTURE CRITERION, TYPE=XXX,参数。
***DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX0,1,……......time,0要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在*INITIAL CONDITIONS, TYPE=CONTACT中定义master, slave, 及指定的Nset这种方法用途其实较为有限。
(2)另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.裂尖及奇异性定义:在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。
这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。
如果midside nodes不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况.网格划分:裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type选cps6或者cpe6,外面四边形选sweep mesh, element type选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。
裂纹扩展的扩展有限元(xfem)模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
Abaqus扩展有限元(XFEM)例子(裂缝发展)
Abaqus扩展有限元(XFEM)例子(裂缝发展)part模块中的操作:1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1)2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)3. 完成后拉伸此矩形,深度为1.(如图3)4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08)6 . 完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示Material模块中的操作:1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12)2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14)4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此s ection赋给plate part(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(1.5,-3,0)(如图27,28)。
XFEM实现裂纹扩展
---因为专注,所以卓越!
网格划分
焊缝在管道的上下起始位置,造成几何模型的急剧变化, 导致网格不容易划分,因此,使用专业的的前处理软件 ANSA进行网格划分,使得焊缝的网格密度大于其他位置 的网格密度。
初始裂纹在焊缝中的位置
---因为专注,所以卓越!
分析过程
---因为专注,所以卓越!
I型裂纹扩展过程的动画演示
---因为专注,所以卓越!
II型裂纹扩展过程的动画演示
---因为专注,所以卓越!
ABAQUS采用XFEM模 案例2 块实现压力容器的裂纹 过程的模拟,如果图所 示,压力容器与外部连 接的接口处存在初始微 裂纹,当容器内压力达 到一定程度,裂纹开始 启裂并扩展。 模型的建模与应用针对 工程实例,很好的展现 了XFEM强大的裂纹扩 展功能。
石油管道的裂纹扩展模拟
利用ABAQUS的XFEM方法实现石油管道的裂纹扩展,在 已知起始裂纹尺寸的情况下,根据外部载荷模拟裂纹的起 裂和扩展过程。 由于裂纹的尺寸较整体模型尺寸较小,因此采用用户子模 型的方法对局部进行更加细致的分析。
一、XFEM模块功能简述
ABAQUS V6.9及其以后的版本将拓展有限元方法引入到 其分析中,并增加了新的模块XFEM,该方法可以认为是 有限元方法处理不连续问题的革命性变革。这是第一个将 XFEM商用化的软件。 固体力学中存在两类典型的不连续问题,一类是因材料特 性突变引起的弱不连续问题,这类问题以双材料问题和夹 杂问题为代表,其复杂性由物理界面处的应变不连续性引 起;另一类是因物体内部几何突变引起的强不连续问题, 这类问题以裂纹问题为代表,其复杂性由几何界面处的位 移不连续性和端部的奇异性引起。物体内部物理界面的脱 粘或起裂,是上述两类问题的混合。
裂纹扩展的扩展有限元xfem模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
abaqusXFEM方ń樯abaqusXFEM方法介绍aspanclass=
abaqus XFEM 方ń樯abaqus XFEM 方法介绍aspan class= 裂纹扩展分析体验热分析中的热物性参数:材料密度,热导率,比热容,电阻率,弹性模量,融化潜热的焓、泊松比、散热系数。
在ABAQUS模型中,需用3D的deformable、shell、exctrusion方式建立一个初始裂纹,长短适宜,初始裂纹要从开始起裂的点设置。
由于计算方法目前还不稳定,参数要适当调整。
设置网格划分参数的时候,应该对称设置,否则网格不对称。
断裂应力的大小要和断裂能量的设置相应,能量太大、太小导致不易收敛,断裂区域的网格要规则,各个方向尺寸要差不多,整个厚度方向单元数量一致,且越少越好,即使裂纹起始点两侧单元未参与裂纹,也要尽可能均匀规则,裂纹扩展的区域不能被PARTION开,应该是一体的。
冲击动载荷时,载荷步时间应尽可能小,maxps damage应力应大于ductile damage应力。
初始裂纹不能在单元界限扩展,否则导致不收敛。
裂纹可在两种弹性金属界面上。
适用于弹性材料、两种弹性材料界面裂纹和幂硬化材料。
我建立的弹塑性材料模型不容易收敛,把塑性去掉后反而容易收敛。
建立ductile manage模型时,需要材料的塑性行为,但必须同时有traction manage模型,否则就提示某些单元的fracture damage模型未能建立,。
traction manage模型和ductile manage模型中的damage evolution中的类型和数值要相同。
初始屈服应力和断裂应力不能差太多。
动力学的冲击裂纹分析,不能有塑性(当然也不能有ductile damage),可能是因为increment time 太大了,(或者是先分析一下不带塑性材料的,通过了才分析有塑性材料的,) 断裂能量要和断裂应力相适应,否则可能因为能量太高,还未达到,但应力达到了,导致裂纹不开裂、计算不收敛。
能量太低,很容易就满足了能量开裂原则,但应力未达到,裂纹不能开裂、计算不收敛。
扩展有限元的ABAQUS实现
扩展有限元的ABACUS实现绪论常规有限元方法(CEFM)和其他数值方法相比,具有一些无法比拟的优点, 但仍存在一些缺陷。
比如在解决类似裂纹这样的强不连续问题,山于裂纹尖端处的应力奇异性,导致计算量巨大而且精度不高。
然而扩展有限元方法(extended finite element method, XFEM)的出现,和常规有限元方法相比具有显著的优势, 使得我们可以在裂尖和应力、变形集中处划分高密度的网格,也可以方便的模拟裂纹的扩展,使讣算量不那么巨大,保留了常规有限元法的所有优点。
因此,扩展有限元得到了快速发展和应用,而且在裂纹的扩展研究中要的意义。
本文开展对扩展有限元方法和裂纹问题的研究,并且基于限元ABAQUS平台,对扩展有限元方法针对裂纹扩展问题进行模拟实现。
21世纪以来,计算机硬件和数值仿真的快速发展以及工业工程实践与科学研究中存在的大量运算需求,世界上涌现出一批大型科研运算及科学模拟软件,能够极大的简化运算问题以及计算机模拟实验,使我们能够更加方便地研究虚拟工程及相关科学问题。
有限元方法的出现为数值分析方法的研究带来了新的曙光,力学学科本来就是连接理工学科的桥梁,计算力学是U前力学发展的一个重要分支。
有限元软件则是我们到达工程科学领域彼岸的非常重要的工具和桥梁之一。
ABAQUS软件是世界上最强大的大型有限元计算分析软件之一,具有不同种类的单元类型、材料类型和不同的分析过程,拥有很好的计算功能和模拟性能。
ABAQUS软件不但可以进行一种部件和复杂物理场的分析,而且可以处理多系统的部件分析;不仅可以分析简单的线弹性问题,还可以处理复朵的非线性组合问题等,相比其它软件具有无可比拟的优势“】。
固体力学中存在的两类不连续问题之一则是因为物体内部儿何结构突变引起的强不连续问题,裂纹问题就是这类问题的代表。
山于儿何界面处的位移不连续性和裂纹尖端的应力奇异性使得这类问题的处理变得比较复杂。
有限元方法、无单元方法、边界元方法等是解决不连续问题的重要的数值方法⑶。
裂纹扩展的扩展有限元(xfem)模拟实例详解
裂纹扩展的扩展有限元(xfem)模拟实例详解基于ABAQUS 扩展有限元的裂纹模拟化⼯过程机械622080706010 李建1 引⾔1.1 ABAQUS 断裂⼒学问题模拟⽅法在abaqus中求解断裂问题有两种⽅法(途径):⼀种是基于经典断裂⼒学的模型;⼀种是基于损伤⼒学的模型。
断裂⼒学模型就是基于线弹性断裂⼒学及其基础上发展的弹塑性断裂⼒学等。
如果不考虑裂纹的扩展,abaqus可采⽤seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂⼒学的⽅法。
这种⽅法可以计算裂纹的应⼒强度因⼦,J积分及T-应⼒等。
损伤⼒学模型是指基于损伤⼒学发展⽽来的⽅法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题⽽提出来的,当然他们所处理的问题也有交叉的地⽅。
1.2 ABAQUS 裂纹扩展数值模拟⽅法考虑模拟裂纹扩展,⽬前abaqus有两种技术:⼀种是基于debond的技术(包括VCCT);⼀种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满⾜⼀定得释放条件后(COD 等,⽬前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采⽤这种⽅法时也可以计算出围线积分。
cohesive有⼈把它译为粘聚区模型,或带屈曲模型,多⽤于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤⼒学模型,最先由Barenblatt 引⼊,使⽤拉伸-张开法则(traction-separation law)来模拟原⼦晶格的减聚⼒。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元⽅法结合⾸先被⽤于混凝⼟计算和模拟,后来也被引⼊⾦属及复合材料。
Cohesive界⾯单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动⼒学失效及循环载荷失效等⾏为。
此外,从abaqus6.9版本开始还引⼊了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应⼒强度因⼦和J积分等参量,也可以模拟裂纹的开裂过程。
Abaqus提取XFEM(扩展有限元)裂缝长度和缝隙面积(精品)
Abaqus提取XFEM(扩展有限元)裂缝长度【壹讲壹插件】2015-7-20作者:星辰-北极星Abaqus提取XFEM(扩展有限元)裂缝长度 (1)第一部分:Abaqus 扩展有限元方法XFEM (2)1.1概要 (2)1.2这些你有注意到吗? (2)1.3 圆孔内压裂缝模拟实例 (2)1.3.1 部件建立 (2)1.3.2 材料性质定义(part1) (2)1.3.3 分析步定义 (3)1.3.4 参数输出 (3)1.3.5 接触模块定义Crack (3)1.3.6边界条件定义 (4)1.3.7 网格划分 (4)1.3.8初始地应力施加 (4)1.3.9 计算结果: (4)第二部分:扩展有限元裂缝长度求解 (5)2.1 概要 (5)2.2 基本求解思路: (5)第三部分:星辰-北极星插件介绍:POLARIS-XFEMCreckGeo2D (6)3.1 概要 (6)3.2 插件的主要功能 (6)3.3 使用注意事项 (6)3.4 插件使用简介 (7)3.4.1 打开插件 (7)3.4.2 数据获取 (7)3.4.3 裂缝信息获取 (8)3.4.4 示例 (8)第一部分:Abaqus 扩展有限元方法XFEM文章转自:/908754116/blog/14374022441.1概要XFEM即扩展有限元方法,它在标准有限元框架内研究问题,保留了有限元方法的所有优点。
扩展有限元法与有限元法最根本的区别在于所使用的网格与结构内部的几何或物理界面无关,从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格划分所带来的困难,在模拟裂纹扩展时也无需对网格进行重新划分。
如果要正常地使用它,我们首先要了解Abaqus中的扩展有限元方法有哪些特别,它在理论上做了哪些简化等,帮助文档进行了很好的讲解:《Abaqus Analysis User's Manual》10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method。
abaqus裂纹设置
Abaqus裂纹设置引言Abaqus是一种广泛使用的有限元分析软件,它可以用于模拟和分析各种工程结构的力学行为。
在许多工程应用中,裂纹是一个重要的研究对象。
通过合理地设置裂纹参数,可以模拟和分析材料在裂纹影响下的力学行为,从而为工程设计提供有价值的指导。
本文将介绍如何在Abaqus中设置裂纹。
Abaqus中的裂纹设置在Abaqus中,裂纹是通过创建几何实体和使用合适的单元类型来表示的。
以下是一些常用的裂纹设置技巧:1.创建几何实体:在Abaqus中,裂纹通常被视为特殊的几何实体。
可以使用Abaqus的几何建模工具来创建裂纹的几何形状。
一般情况下,裂纹可以通过将几个点连接起来或从一个面切割出来来表示。
2.设置裂纹的尺寸:在Abaqus中,可以通过调整裂纹的尺寸参数来模拟不同大小的裂纹。
一般情况下,裂纹的尺寸可以通过修改几何实体的尺寸参数来实现。
3.选择适当的单元类型:在Abaqus中,有多种单元类型可供选择。
对于裂纹分析,一般使用包含自由节点的单元类型。
例如,在二维裂纹分析中,常用的单元类型有二维平面应力单元(CPS4)和二维平面应变单元(CPE4)等。
4.定义边界条件:在Abaqus中,边界条件是模拟裂纹行为的关键。
通过适当地定义边界条件,可以模拟不同类型的裂纹行为,例如张开的裂纹、剪切裂纹等。
常用的边界条件有固定边界条件、施加外力等。
5.设置材料参数:在Abaqus中,材料参数的设置对于裂纹分析至关重要。
通过设置合适的材料参数,可以模拟材料在裂纹作用下的力学行为。
常用的材料参数有杨氏模量、泊松比等。
示例:使用Abaqus设置一个二维张开裂纹以下示例将介绍如何使用Abaqus设置一个二维张开裂纹:1.创建几何实体:在Abaqus中,打开几何建模工具,创建一个长方形的几何实体。
2.定义裂纹几何形状:通过选择切割工具,在长方形的一侧切割出一个直线形状的几何实体。
3.设置裂纹的尺寸:通过调整切割线的长度来设置裂纹的长度。
XFEMtutor问题汇总
《ABAQUS6.9版本XFEM(扩展有限元)例子的详细图解step by step》帖子的问题汇总已做出解答部分1、问一下为什么要添加赋予材料取向,谢谢!答:①我也试了,材料方向可以不设置。
同时Damage Stabilization也必须设置,否则不收敛。
Damage Stabilization是为了增加收敛性的,如果一个问题的非线性程度比较低,比如损伤应力比较低,相对应需要的能量也比较少的情况下,很容易收敛,所以就不需要Damage Stabilization,如果问题属于高度非线性,不设置这些参数,问题就可能发散。
兄台感觉如何?②发现这里有个多余的步骤,设置方向,对各向同性材料截面设置中选择homogeous 后,不用再设方向!2、Material模块中的操作的“3.赋予材料取向”时看不到“在part Plate中创建的4个集合:all,bottom,top和fixZ”,为何?答:能看到all这个集合,看不到bottom, top和fixZ,个人感觉后三个集合只是面或者点,而包含材料的集合只能是一个体集合,所以在赋予材料属性的时候将后面三个集合过滤掉了。
不知道是否正确?回复:果真如此!3、集合bdisp是只包含db这个点,还是包含db这个点和装配体?答:应该是bdisp这个集合只包含db这个点,因为在接下来的定义接触方程时,用到bdsip集合作为第二行,必须是只包含点。
如下图的提示中所述。
另外:对于定义这个方程的作用以及对于计算结果的后处理,希望楼主能再给出些讲解。
(P2)4、关于参考点的问题①定义这个方程的作用是将一个面的运动与一个点的运动相联系。
具体到此例,即为:底面bottom在x(自由度1)方向上与点bdisp的运动一致。
因为在x方向上的载荷是施加在点bdisp点上。
②回复楼主:谢谢楼主的讲解!另外,不用参考点加载,去掉参考点与底部的方程约束直接将底部的x方向载荷加载在底面上,计算出来的结果是一样的,不知道设置这个参考点的意义何在?或许是考虑到收敛性的问题吗?③个人认为加这个参考点的作用是为了以后输出加载点的位移和反力用的。
abaqus裂纹设置
裂纹应用:将裂纹 应用于模型中的特 定区域或边界
裂纹激活:在模拟 过程中激活裂纹并 进行相应的计算和 分析
abaqus裂纹分析 结果解读
裂纹应力分布
裂纹扩展应力:分析裂纹扩 展过程中的应力变化
裂纹尖端应力:描述裂纹尖 端附近的应力集中情况
应力强度因子:计算裂纹尖 端的应力强度因子,评估裂
纹扩展的驱动力
裂纹模型选择
裂纹模型分类: 线性和非线性
裂纹扩展准则: 应力强度因子、 能量释放率等
裂纹闭合准则: 闭合准则的选择 对计算精度和计 算效率的影响
裂纹扩展方向: 裂纹扩展方向对 计算结果的影响
abaqus裂纹设置 步骤来自 创建裂纹打开abaqus软件,进入模型模块 在模型树中选择需要创建裂纹的部件 在工具栏中选择“创建裂纹”按钮 在弹出的对话框中设置裂纹参数,如裂纹类型、位置、大小等 点击“确定”按钮,完成裂纹的创建
感谢您的观看
汇报人:
abaqus裂纹设置
汇报人:
目录
裂纹类型和模型
01
abaqus裂纹设置步骤
02
abaqus裂纹分析结果 解读
03
裂纹类型和模型
裂纹类型介绍
裂纹类型:I型裂纹、II型裂纹、III型裂纹 裂纹模型:线弹性断裂力学模型、弹塑性断裂力学模型 裂纹扩展准则:最大周向应力准则、应力强度因子准则 裂纹扩展路径:沿晶界扩展、穿晶扩展
应力分布特征:分析裂纹在 不同材料、不同加载条件下
的应力分布特点
裂纹扩展路径
裂纹起始位置 裂纹扩展方向 裂纹扩展长度 裂纹扩展速率
裂纹扩展速度
定义:裂纹扩展 速度是指裂纹在 材料中扩展的速 度
影响因素:材料 性能、裂纹类型、 应力状态等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABAQUS XFEM 柱面与平面滑动接触中裂纹的扩展xfem(step by step)
1.part部分:
plate模型为2D 变形壳体尺寸为0.5x0.2M(因为后面采用的是MPa,所以这里采用的是M,为了单位统一) 。
用partition命令将plate切割成装配图上面一样(尺寸0.24x0.06)Rigid模型为2D解析刚体尺寸为R0.06圆的下面部分的2/3半圆(看装配模型就知道)。
注意要在上面设置一个参考点,在load部分加载位移边界用。
wire模型2D变形线尺寸为0.01位置坐标(0.25,0.2),(0.25,0.19)线两端点的坐标,大家懂的。
添加一个装配图对照模型。
2.property部分这一部分尽量多用图片
主要设置了一下几部分的材料属性,用的材料为Q345-steel(因为刚好找到了它的应力应变数据)1、密度2、弹性属性3、塑性属性4、损失准则
5.interaction部分
1.首先创建contact controls,创建步棸菜单栏interaction->contact controls->create,参数的设置见下图:
2.裂纹的设置,创建步棸菜单栏special->crack->create->xfem ,区域的选择见下图
3其他包括相互作用的一些属性见下图
6.load部分
位移边界条件的加载如下图
7.Mesh部分
种子布置见下图
网格控制主要采取的是structured
8.Job就ok了,祝大家好运。
也同时感谢论坛里面帮助过我的朋友。