高中数学苏教版必修4教案:第一章三角函数第14课时1.3.3函数y=Asin(ωx+φ)的图象(2)
苏教版高中数学教材必修4第1章三角函数
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学金凤义
金陵中学
Jin Ling High School
(五)课堂练习 求下列三角函数的周期: (1) y=sin(x+3); (2) y=cos2x; x (3) y=3sin(2+5).
a b | a || b | cos
规定:零向量与任意向量的数量积为0,即 a 0 0.
( 1)两向量的数量积是一个数量,而不是向量,符号由夹 角决定;
苏教版高中数学教材必修4 三角函数·平面向量 金陵中学金凤义
金陵中学
Jin Ling High School
2.4向量的数量积
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学金凤义
金陵中学
Jin Ling High School
一、问题情景
一个物体在力F 的作用下产生的位移 s,且F与s的夹角为θ ,那么力F 所做的功应 当怎样计算? F θ s
θ为钝角时, | b | cosθ<0
θ为直角时, | b | cosθ=0
金陵中学金凤义
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学
Jin Ling High School
数学理论
平面向量的数量积的定义 已知两个非零向量a 和b ,它们的夹角为 ,我们把数量 | a || b | cos 叫做a 与b 的数量积(或内积),记作a ·b ,即
苏教版高中数学教材必修4 三角函数·平面向量 金陵中学金凤义
金陵中学
Jin Ling High School
(四)数学应用 例1 课本P26
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4-
1.3.3 函数y =Asin(ωx+φ)的图象(二)[学习目标] 1.会用“五点法”画函数y =A sin(ωx +φ)的图象.2.能根据y =A sin(ωx +φ)的部分图象,确定其解析式.[知识链接]由函数y =sin x 的图象经过怎样的变换得到函数y =sin(ωx +φ)(ω>0)的图象? 答 y =sin x 的图象变换成y =sin(ωx +φ)(ω>0)的图象一般有两个途径: 途径一:先相位变换,再周期变换先将y =sin x 的图象向左(φ>0)或向右(φ<0)平移|φ|个单位长度,再将得到的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),得y =sin(ωx +φ)的图象.途径二:先周期变换,再相位变换先将y =sin x 的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),再将得到的图象向左(φ>0)或向右(φ<0)平移|φ|ω个单位长度,得y =sin(ωx +φ)的图象.[预习导引]函数y =A sin(ωx +φ) (A >0,ω>0)的性质如下:定义域 R 值域 [-A ,A ]周期性T =2πω奇偶性φ=k π (k ∈Z )时是奇函数;φ=π2+k π (k ∈Z )时是偶函数;当φ≠k π2(k ∈Z )时是非奇非偶函数单调性单调增区间可由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )得到,单调减区间可由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )得到要点一 “五点法”作y =A sin(ωx +φ)的简图例1 用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的简图,并指出该函数的单调区间. 解 (1)列表如下:2x +π30 π2 π 3π2 2π x -π6π12 π3 7π12 5π6 y2-2(2)描点、连线,如图由图象知,在一个周期内,函数在⎣⎢⎡⎦⎥⎤π12,7π12上单调递减,函数在⎣⎢⎡⎦⎥⎤-512π,π12上单调递增.又因为函数的周期为π,所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z );单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ).规律方法 用“五点法”画函数y =A sin (ωx +φ)(x ∈R )的简图,先作变量代换,令X =ωx +φ,再用方程思想由X 取0,π2,π,32π,2π来确定对应的x 值,最后根据x ,y 的值描点、连线画出函数的图象.跟踪演练1 作出函数y =32sin ⎝ ⎛⎭⎪⎫13x -π3在长度为一个周期的闭区间上的图象.解 列表:X =13x -π3π2 π3π2 2πxπ 5π24π 11π27πy =32sin ⎝ ⎛⎭⎪⎫13x -π332-32描点画图(如图所示):要点二 求函数y =A sin(ωx +φ)的解析式例2 函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示,求此函数的解析式.解 方法一 (逐一定参法)由图象知A =3,T =5π6-⎝ ⎛⎭⎪⎫-π6=π,∴ω=2πT=2,∴y =3sin(2x +φ).∵点⎝ ⎛⎭⎪⎫-π6,0在函数图象上,且为第一个特值点, ∴0=3sin ⎝ ⎛⎭⎪⎫-π6×2+φ.∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z ).∵|φ|<π2,∴φ=π3.∴y =3sin ⎝ ⎛⎭⎪⎫2x +π3.方法二 (待定系数法)由图象知A =3.∵图象过点⎝ ⎛⎭⎪⎫π3,0和⎝ ⎛⎭⎪⎫5π6,0,∴⎩⎪⎨⎪⎧πω3+φ=π,5πω6+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝⎛⎭⎪⎫2x +π3.方法三 (图象变换法)由A =3,T =π,点⎝ ⎛⎭⎪⎫-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单位长度而得,所以y =3sin 2⎝ ⎛⎭⎪⎫x +π6,即y =3sin ⎝⎛⎭⎪⎫2x +π3.规律方法 给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法:(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ. (2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.跟踪演练2 如图,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象,根据图中条件,写出该函数解析式.解 由图象知A =5.由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23.∴y =5sin(23x +φ).下面用两种方法求φ: 方法一 (单调性法)∵点(π,0)在递减的那段曲线上, ∴2π3+φ∈[π2+2k π,32π+2k π](k ∈Z ).由sin(2π3+φ)=0,得2π3+φ=2k π+π(k ∈Z ),∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.方法二 (最值点法)将最高点坐标(π4,5)代入y =5sin(23x +φ),得5sin(π6+φ)=5,∴π6+φ=2k π+π2(k ∈Z ),∴φ=2k π+π3(k ∈Z ). ∵|φ|<π,∴φ=π3.所以该函数式为y =5sin(23x +π3).1.若函数y =A sin(ωx +φ)(A >0,ω>0)为偶函数,则φ满足的条件是________. 答案 φ=k π+π2(k ∈Z )2.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则ω=________,φ=________.答案π4 π4解析 由所给图象可知,T4=2,∴T =8.又∵T =2πω,∴ω=π4.∵图象在x =1处取得最高点,∴π4+φ=π2+2k π(k ∈Z ), ∴φ=2k π+π4(k ∈Z ),∵0≤φ<2π,,∴φ=π4.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象说法正确的有________.①关于点⎝ ⎛⎭⎪⎫π3,0对称;②关于直线x =π4对称;③关于点⎝ ⎛⎭⎪⎫π4,0对称; ④关于直线x =π12对称.答案 ①④4.作出y =3sin ⎝ ⎛⎭⎪⎫12x -π4在一个周期上的图象.解 (1)列表:12x -π40 π2 π 32π 2π xπ2 32π 52π 72π 92π 3sin ⎝ ⎛⎭⎪⎫12x -π43-3描点、连线,如图所示:1.由函数y =A sin(ωx +φ)的部分图象确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图象上的最大值、最小值来确定|A |.(2)因为T =2π|ω|,所以往往通过求周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一零点⎝ ⎛⎭⎪⎫-φω,0(也叫初始点)作为突破口.以y =A sin(ωx +φ)(A >0,ω>0)为例,位于单调递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.2.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想.例如,它在ωx +φ=π2+2k π (k ∈Z )时取得最大值,在ωx +φ=3π2+2k π (k ∈Z )时取得最小值.一、基础达标1.已知简谐运动f (x )=2sin ⎝⎛⎭⎪⎫π3x +φ(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为T =________,φ=________. 答案 6π6解析 T =2πω=2ππ3=6,代入(0,1)点得sin φ=12.∵-π2<φ<π2,∴φ=π6.2.函数图象的一部分如下图所示,则符合题意的解析式是__________________.①y =sin ⎝ ⎛⎭⎪⎫x +π6;②y =sin ⎝ ⎛⎭⎪⎫2x -π6;③y =cos ⎝ ⎛⎭⎪⎫4x -π3;④y =cos ⎝ ⎛⎭⎪⎫2x -π6. 答案 ④解析 由图知T =4×⎝ ⎛⎭⎪⎫π12+π6=π,∴ω=2πT =2. 又x =π12时,y =1,经验证只有④符合.3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=________.答案 4解析 设函数的最小正周期为T , 由函数图象可知T 2=⎝ ⎛⎭⎪⎫x 0+π4-x 0=π4,所以T =π2.又因为T =2πω,可解得ω=4.4.已知a 是实数,则函数f (x )=1+a sin ax 的图象可能是________.答案 ①②③解析 当a =0时f (x )=1,③符合,当0<|a |<1时T >2π,且最小值为正数,①符合, 当|a |>1时T <2π,②符合.5.函数y =12sin ⎝ ⎛⎭⎪⎫2x -π6与y 轴最近的对称轴方程是__________. 答案 x =-π6解析 令2x -π6=k π+π2(k ∈Z ),∴x =k π2+π3(k ∈Z ). 由k =0,得x =π3;由k =-1,得x =-π6.6.函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象重合,则φ=________. 答案5π6解析 函数y =cos(2x +φ)向右平移π2个单位,得到y =sin ⎝ ⎛⎭⎪⎫2x +π3,即y =sin ⎝ ⎛⎭⎪⎫2x +π3向左平移π2个单位得到函数y =cos(2x +φ),y =sin ⎝⎛⎭⎪⎫2x +π3向左平移π2个单位,得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2+π3=sin ⎝ ⎛⎭⎪⎫2x +π+π3=-sin ⎝ ⎛⎭⎪⎫2x +π3=cos ⎝ ⎛⎭⎪⎫π2+2x +π3=cos ⎝ ⎛⎭⎪⎫2x +5π6,即φ=5π6.7.已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎪⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝ ⎛⎭⎪⎫38π,0,若φ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象. 解 (1)由题意知A =2,T =4×⎝ ⎛⎭⎪⎫38π-π8=π,ω=2πT=2,∴y =2sin(2x +φ).又∵sin ⎝ ⎛⎭⎪⎫π8×2+φ=1,∴π4+φ=2k π+π2,k ∈Z , ∴φ=2k π+π4,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=π4,∴y =2sin ⎝⎛⎭⎪⎫2x +π4.(2)列出x 、y 的对应值表:x-π8 π8 38π 58π 78π 2x +π40 π2 π 32π 2π y2-2描点、连线,如图所示:二、能力提升8.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,那么a =________.答案 -1解析 方法一 ∵函数y =sin 2x +a cos 2x 的图象关于x =-π8对称,设f (x )=sin 2x +a cos 2x ,则f ⎝ ⎛⎭⎪⎫-π4=f (0), ∴sin ⎝ ⎛⎭⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎫-π2=sin 0+a cos 0. ∴a =-1.方法二 由题意得f ⎝ ⎛⎭⎪⎫-π8-x =f ⎝ ⎛⎭⎪⎫-π8+x ,令x =π8,有f ⎝ ⎛⎭⎪⎫-π4=f (0),即a =-1.9.函数f (x )=2sin(ωx +φ),⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象知34T =5π12-⎝ ⎛⎭⎪⎫-π3=3π4,解得T =π. 由T =2πω=π,解得ω=2, 得函数表达式为f (x )=2sin(2x +φ)又因为当x =5π12时取得最大值2, 所以2sin ⎝ ⎛⎭⎪⎫2×5π12+φ=2, 可得5π6+φ=π2+2k π(k ∈Z ) 因为-π2<φ<π2,所以取k =0,得φ=-π3. 10.关于f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )图象关于⎝ ⎛⎭⎪⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.答案 ②③解析 对于①,由f (x )=0,可得2x +π3=k π (k ∈Z ). ∴x =k 2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3利用公式得: f (x )=4cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫2x +π3=4cos ⎝ ⎛⎭⎪⎫2x -π6. ∴②对;对于③,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3的对称中心满足2x +π3=k π,k ∈Z ,∴x =k 2π-π6,k ∈Z . ∴⎝ ⎛⎭⎪⎫-π6,0是函数y =f (x )的一个对称中心,∴③对; 对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z .∴x =π12+k π2,k ∈Z ,∴④错. 11.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1),求函数的解析式.解 由于最小值为-2,所以A =2.又相邻的最高点与最低点横坐标之差为3π.故T =2×3π=6π,从而ω=2πT =2π6π=13, y =2sin ⎝ ⎛⎭⎪⎫13x +φ. 又图象过点(0,1),所以sin φ=12, 因为|φ|<π2,所以φ=π6. 故所求解析式为y =2sin ⎝ ⎛⎭⎪⎫13x +π6. 12.已知函数y =A sin(ωx +φ),(A >0,ω>0,|φ|<π2)的图象过点P (π12,0),图象与P 点最近的一个最高点坐标为(π3,5). (1)求函数解析式;(2)指出函数的增区间;(3)求使y ≤0的x 的取值范围.解 (1)∵图象最高点坐标为(π3,5),∴A =5.∵T 4=π3-π12=π4,∴T =π. ∴ω=2πT=2. ∴y =5sin(2x +φ).代入点(π3,5), 得sin(23π+φ)=1. ∴23π+φ=2k π+π2(k ∈Z ). 由|φ|<π2,得φ=-π6, ∴y =5sin(2x -π6). (2)∵函数的增区间满足2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴2k π-π3≤2x ≤2k π+2π3(k ∈Z ).∴k π-π6≤x ≤k π+π3(k ∈Z ). ∴增区间为[k π-π6,k π+π3](k ∈Z ). (3)∵5sin(2x -π6)≤0, ∴2k π-π≤2x -π6≤2k π(k ∈Z ), ∴k π-512π≤x ≤k π+π12(k ∈Z ). 三、探究与创新13.已知函数f (x )=sin(ωx +φ) (ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求φ和ω的值. 解 ∵f (x )在R 上是偶函数,∴当x =0时,f (x )取得最大值或最小值.即sin φ=±1,得φ=k π+π2,k ∈Z ,又0≤φ≤π,∴φ=π2. 由图象关于M ⎝⎛⎭⎪⎫3π4,0对称可知, sin ⎝ ⎛⎭⎪⎫3π4ω+π2=0,解得ω=43k -23,k ∈Z . 又f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调函数, ∴T ≥π,即2πω≥π,∴ω≤2,又ω>0,∴当k =1时,ω=23;当k =2时,ω=2. 综上,φ=π2,ω=23或2.。
江苏省扬中市第二高级中学高中数学苏教版必修4《1.3.3函数y=Asin(ωx+φ)的图象》教学设计6
课题:1.3.3函数)sin(ϕ+ω=x A y 的图象教材:苏教版高中数学 必修4一、教学目标:1.结合具体实例,了解)sin(ϕω+=x A y 的实际意义,会用“五点法”画出函数)sin(ϕω+=x A y 的简图;2. 观察并研究参数ϕω,,A 对函数图象变化的影响,能由x y sin =的图象通过变换得到)sin(ϕω+=x A y 的图象,并在这个过程中认识到x y sin =与)sin(ϕω+=x A y 的联系;3. 在研究问题的过程中渗透“由简单到复杂、由特殊到一般”的化归思想,培养学生观察、分析、归纳等数学能力及逻辑思维能力;4.通过学生对问题的自主探究,培养学生独立思考能力;通过小组交流、合作学习,培养学生的合作意识,渗透情感态度价值观的教育.二、教学重点、难点:重点:函数)sin(ϕω+=x A y 的图象及参数ϕω,,A 对函数图象变化的影响;难点:函数)sin(ϕω+=x A y 的图象与x y sin =图象的关系.三、教学方法与手段:1.教学方法:开放式探究、启发式引导、互动式讨论.2.教学手段:运用几何画板、多媒体等电教手段.3.理论根据:著名教育心理学家布鲁纳指出:“教学过程是一种提出问题和解决问题的持续不断的活动”.思维永远是从问题开始的,因此,本节课采用了逐步设疑、诱导、解疑,引导学生去发现、解决问题;根据建构主义学习理论“学习不是由教师直接传递给学生,而是由学生自己主动建构知识的过程,这种建构无法由他人来替代”,因此,本节课强调落实学生学习的主体地位,通过学生有意义的主动建构、合作学习等方式,通过数形结合,借助图象观察,发现、总结一般规律,使学生学习始终处于积极的思维状态.四、教学过程:(一)创设情境,导入新课 1.引入:(播放flash 动画----弹簧振子作简谐运动)问:弹簧振子作简谐运动时,位移s 与时间t 所描绘的图象,它与我们学过的什么函数图象类似?(生答)实际上,物体作简谐运动时,位移s 与时间t 的关系式都可以写成)sin(ϕ+ω=t A s 的形式,其中ϕω,,A 为常数,0,0>ω>A . 2.三个量的物理意义:在)sin(ϕ+ω=t A s (其中0,0>>ωA )中,A 是物体离开平衡位置的最大距离,称振动的振幅;往复振动一次所需的时间ωπ=2T 成为这个振动的周期;单位时间内往复振动的次数πω==21T f 称为振动的频率;ϕ+ωt 称为相位,0=t 时的相位ϕ称为初相. 【检测1】 若函数)32sin(3π-=x y 表示一个振动量, 则这个振动的振幅为___ ,周期为___ , 频率为___ ,相位为___ ,初相为___.形如)sin(ϕ+ω=x A y 的函数,在三角函数问题中占有很重要的地位,对于它的函数图象,我们已经会用五点法作出,下面我们重点研究函数)sin(ϕ+ω=x A y 的图象与x y sin =图象的关系(板书课题).(二) 合作探究,探求规律1.利用“化繁为简”的思维策略引导学生先分别研究只有一个参数的函数情形.2.探究1:函数)sin(ϕ+=x y (0≠ϕ)的图象与函数x y sin =的图象的关系通过作图,借助“特殊到一般”的思想方法发现规律;学生齐读课本35页中的“变换规律”,强化语言的规范表述.【检测2】(1)将函数)1sin(-=x y 的图象 _______________,可以得到x y sin =的图象.(2)将函数)(x f y =的图象 ___________________,可以得到)1(-=x f y 的图象.通过练习,让学生理解三角函数的平移变换实际上是一般函数平移变换的特例,做到知识的同化与顺应.3.探究2:函数x A y sin =(0>A )的图象与函数x y sin =的图象的关系通过作图,学生在表述上述特殊图象之间的变换规律的基础上,进而表述一般规律.(强化规范语言的表述)4.探究3:函数x y ω=sin (0>ω)的图象与函数x y sin =的图象的关系通过作图,学生在表述上述特殊图象之间的变换规律的基础上,进而表述一般规律.(强化规范语言的表述)5.阶段性小结 通过几何画板课件演示,重温三种变换.(三) 数形结合,质疑拓展【问题1】 我们已经由x y sin =的图象,通过图象变换可以得到x y 2sin =的图象,那么想得到函数)32sin(π-=x y 的图象,又该作怎样的变换?自主回答(发现问题)——合作探究(辨析问题)——纠错订正(解决问题)【问题2】由函数x y sin =的图象,还可以通过哪些变换得到)32sin(π-=x y ?自主回答(发现问题)——合作探究(辨析问题)——纠错订正(解决问题)阶段性小结:函数x y ω=sin 和)sin(ϕ+=x y 的图象分别变换到函数)sin(ϕ+ω=x y 图象的方法.【检测3】不用计算机和图形计算器,画出函数)32sin(3π-=x y 的图象.(学生用规范语言表述并书写完整过程)(四)课堂小结(五)作业1.阅读课本相关内容;2.课后习题3,6,7.。
高中数学苏教版必修4第1章《1.3.3 函数y=Asin(ωx+φ)的图象》优质课公开课教案教师资格证面试试讲教案
高中数学苏教版必修4第1章《1.3.3 函数y=Asin(ωx+φ)的图象》优质课公开课教案教师资格证面试试讲教案1教学目标(1)知道参数A,ω,φ对函数y=Asin(ωx+φ)图象的影响,会由正弦曲线变换得到y=Asin (ωx+φ)的图象;(2)进一步提高研究数学知识的能力,感受数学与现实的联系,以及数学探究的魅力。
2学情分析本节课的教学对象是高一学生,他们精力旺盛,思维活跃,学习数学的积极性较高.他们在本节内容的学习之前,学生已经积累了一定的函数研究经验,掌握了研究函数的套路方法,并且探究能力、逻辑思维能力得到了一定的锻炼,这些均为本课的探究学习提供了基础。
学生已经学习了函数的概念和一般性质是学习三角函数的基础,学生在指数函数学习过程中掌握了形如y=2x+1、y=2x−1的图象与y=2x图象的关系,具备了学习本节内容所需的知识储备。
但是,函数y=Asin(ωx+φ)中有三个参数A,ω,φ学生研究y=Asin(ωx+φ)的图象问题可能会存在一定的困难,在教学中,应通过教师的指导,教会学生学会独立思考、大胆探索和灵活运用联想、类比、转化、归纳等数学思想的学习方法。
3重点难点本课的重点:函数y=Asin(ωx+φ)的图象以及参数A,ω,φ对函数变化的影响。
难点:函数y=sinωx的图象与函数y=sinx的图象关系,及y=sin(ωx+φ)图象与函数y=sin ωx图象之间的关系。
4教学过程4.1第一学时4.1.1教学目标(1)知道参数A,ω,φ对函数y=Asin(ωx+φ)图象的影响,会由正弦曲线变换得到y=Asin (ωx+φ)的图象;(2)进一步提高研究数学知识的能力,感受数学与现实的联系,以及数学探究的魅力。
4.1.2学时重点。
高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教
中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.
高中数学苏教版必修4课件第一章 三角函数 1.3.3.2精选ppt课件
由图象关于 M34π,0对称可知, sin34πω+π2=0,则34πω+π2=kπ,k∈Z, 解得 ω=43k-23,k∈Z. 又 f(x)在0,2π上是单调函数, ∴T≥π,即2ωπ≥π,∴ω≤2,又 ω>0, ∴当 k=1 时,ω=23;当 k=2 时,ω=2.
【提示】 均相差半个周期.
已知函数 f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是 R 上的偶函数,其图象 关于点 M34π,0对称,且在区间0,π2上是单调函数,求 φ 和 ω 的值.
【精彩点拨】 由 f(x)为偶函数求 φ,由对称中心及单调性求 ω. 【自主解答】 ∵f(x)在 R 上是偶函数, ∴当 x=0 时,f(x)取得最大值或最小值. 即 sin φ=±1,得 φ=kπ+2π,k∈Z, 又 0≤φ≤π,∴φ=π2.
1.3 三角函数的图象和性质
1.3.3 函数 y=Asin(ωx+φ)的图象
学 业
分
第 2 课时
函数 y=Asin(ωx+φ)的图象与性质
层 测
评
1.能由三角函数的图象求出解析式.(重点,易错点) 2.掌握 y=Asin(ωx+φ)的图象和性质.(重点)
[基础·初探] 教材整理 y=Asin(ωx+φ)的性质 阅读教材 P37~P38 的有关内容,完成下列问题. 函数 y=Asin(ωx+φ)(A>0,ω>0)的性质如下:
且 2×71π2+φ=kπ+π(k∈Z),φ=kπ-6π(k∈Z). 又|φ|<2π,∴φ=-π6. 【答案】 2 -π6
3.已知 ω>0,0<φ<π,直线 x=4π和 x=54π是函数 f(x)=sin(ωx+φ)图象的两 条相邻的对称轴,则 φ=________. 【导学号:06460034】
【答案】 ②③
函数y=Asin(ωx+φ)的图象和性质教学设计(丁菁 南京师范大学附属中学)
NSFZ
函数 y=Asin(ωx+φ)的图象
(五)思考巩固,深化铺垫
探究: 如何由y=sin2x的图象得到
y=sin(2x+1)的图象呢?
NSFZ
函数 y=Asin(ωx+φ)的图象
探究
如何由y=sin2x的图象得 到 y=sin(2x+1)的图象呢?
探究ω不为1时的 平移变换.
NSFZ
函数 y=Asin(ωx+φ)的图象
从具体到抽象;
从感性到理性.
NSFZ
函数 y=Asin(ωx+φ)的图象
(四)类比方法,自主探究 三)合作探究
问题3:
(1) 如何由y=sinx的图象得到y=Asinx(A>0) 的图象?
(2) 如何由y=sinx的图象得到y=sinωx(ω>0) 的图象?
NSFZ
函数 y=Asin(ωx+φ)的图象
思考巩固,深化铺垫
NSFZ
函数 y=Asin(ωx+φ)的图象
探究
如何由y=sin2x的图象得 到y=sin(2x+1)的图象呢?
仅作为平移变换的 巩固;
深化对变换本质的 把握,为下节课的 研究铺垫.
NSFZ
函数 y=Asin(ωx+φ)的图象
整理 小结
规划 任务
先对A 、ω 、 φ两两整合, 最终到达 研究目的.
1 2
研制策略 优化方案
3 4
类比方法 自主探究
—研究A、ω 对图象的影响
5 6
整理小结 规划任务
NSFZ
函数 y=Asin(ωx+φ)的图象(一)创来自情境,提出问题NSFZ
函数 y=Asin(ωx+φ)的图象
创设情境,提出问题
NSFZ
高中数学新苏教版精品教案《苏教版高中数学必修4 1.3.4 三角函数的应用》1
浅谈高中数学建模核心素养的培养-----以“三角函数的应用”教学为例数学是研究现实生活中数量关系和空间形式的数学。
——恩格斯。
21世纪中叶以来,数学自身发生了巨大的变化。
一方面,数学因其日益公理化、形式化而忽视与现实生活的密切联系。
另一方面,因数学应用的发展,数学几乎渗透到每一个学科领域及人们生活的方方面面。
割断数学与现实生活的联系的教学内容、教学方式,不仅会极大地降低学生数学学习的热情与动力,而且会造成学生对数学学科的错误理解,更无法让学生感受到数学在日常生活中的作用。
因此,必须沟通生活中的数学与教科书上的数学之间的联系,使数学与生活融为一体。
数学建模就很好的搭建了数学与外部世界联系的桥梁,是数学应用的重要形式。
《普通高中数学课程标准2021年版》指出:数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法建构模型解决问题的过程。
数学建模过程主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题。
数学建模搭建了数学与外部世界联系的桥梁,是数学应用的重要形式。
数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。
从核心素养的角度认识数学建模,这中间有三层意思:一是对现实问题的数学抽象,二是用数学语言表达问题,三是用数学方法构建模型解决问题。
通过高中数学课程的学习,学生能有意识地用数学语言表达现实世界,发现和提出问题,感悟数学与现实之间的关联;学会用数学模型解决实际问题,积累数学实践的经验;认识数学模型在科学、社会、工程技术诸多领域的作用,提升实践能力,增强创新意识和科学精神。
数学建模的学业质量被划分成递进的三个水平,一了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义。
知道数学建模的过程包括:提出问题、建立模型、求解模型、检验结果、完善模型。
能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题。
高中数学 第一章 三角函数本章复习教案 苏教版必修4-苏教版高一必修4数学教案
第一章三角函数本章复习整体设计知识网络1.任意角的概念是本章的基础,推广了角,扩大了研究的范围.在此基础上,为了计算中的简单,引入了两种度量制度:角度制与弧度制,但是其本质是一样的.其最基本的一个应用就是简化了弧长与扇形面积公式.同时也为定义任意角的三角函数作了前期工作,也就得到了本章的核心问题——任意角的三角函数定义.从这个核心出发,分成四条路线走,研究最基本的比例,就可以得到同角三角函数的基本关系式,同时根据定义就可以推导出诱导公式.知道了核心的本质意义在坐标系里面,可以定义点的坐标,为推导第三章和角公式作了应有的准备.而和角公式的两个特殊方面只是本身的一个推广,由此就得来了复杂多变的三角函数公式,而这些复杂的公式(第三章的倍角公式,差角公式)的本质又是和角公式.抛开比例的式子,应用弧度制的度量作为基础,就有了三角函数的图象和性质,这是三角与函数结合的产物,既有函数的特征,因此可以用函数的知识来解,又具有三角的特性,因此还可以用这一特点进行一些特殊的运算.所有的推导可以应用在计算与化简、证明恒等式上.2.数学的魅力在于系统、严密,学习的兴趣在于环环相扣.本章最为理想的复习方法就是引导学生打通本章中的这张知识网络图,这是进行具体问题具体分析的理论依据,也是解决问题最基本的方法.教师指导学生步步为营,将其引入数学王国,畅游科学殿堂.《三角函数》一章知识网络图三维目标1.通过全章复习,让学生切实掌握三角函数的基本性质,会判定三角函数的奇偶性,确定单调区间及求周期的方法.熟练掌握同角三角函数的基本关系式及六组诱导公式,弄清公式的推导关系和互相联系,让学生做到记准、用熟.2.要求学生会用“五点法”作正、余弦函数的简图,掌握应用基本三角变换公式的求值、化简、证明.3.本章的最终目标是让学生熟练掌握三角函数基础知识、基本技能、基本运算能力,以及数形结合思想、转化与化规思想,激发学生学习兴趣,培养他们善于总结、善于合作、善于创新以及应用数学解决实际问题的能力.重点难点教学重点:三角函数的定义,诱导公式,以及三角函数的图象与性质.教学难点:三角恒等变形及三角函数的图象与性质的综合运用.课时安排1课时教学过程导入新课思路1.(复习导入)了解一下全章的知识网络结构,并回顾思考本章学习了哪些具体内容:首先,我们给出了三角函数的定义,包括任意角的三角函数的符号,同角三角函数的关系式,诱导公式.又共同学习了正弦函数、余弦函数、正切函数的图象和性质.接下来,我们又共同探讨了它们的应用,并能运用上述公式和性质进行三角函数式的化简、求值、证明以及它们的综合运用.由此展开全章的系统复习.思路2.(问题导入)你现在已经会求任意角的三角函数值,会画三角函数的图象,会用三角函数模型来解释现实生活中具有周期性变换规律的一些现象.你是如何学习到这些知识的?又是如何提高自己能力的?由此引导学生回顾全章知识的形成过程,进而展开全面复习.推进新课知识巩固①我们是怎样推广任意角的?又是怎样得到任意角的三角函数定义的?②本章学习了哪些同角三角函数的基本关系式?怎样推导的?③本章都学习了哪些诱导公式?各有什么用途?怎样记忆?④你是如何得到正弦曲线、余弦曲线和正切曲线的?⑤你能从图象上说出三角函数的哪些性质?活动:问题①,为了使学生了解知识的形成顺序与过程,教师可引导学生回忆从前的学习情景,让学生感悟数学是在什么样的背景下向前推进的,同时也加强系统数学知识的记忆,居高临下地来掌握全章知识.问题②,教师引导学生回忆三角函数定义,回忆同角三角函数的基本关系式的推导,并回忆这些公式的作用和应用方法技巧.利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,也就是要就角所在象限进行分类讨论.同角三角函数的基本关系式揭示了同一个角的三角函数间的相互关系,利用它可以使解题更方便,但要注意公式成立的前提是角对应的三角函数有意义.sin 2α+cos 2α=1,sinαcosα=tanα. 问题③,教师引导学生回顾的同时,最好能利用多媒体或幻灯片来展示这些公式.以前学习的都是孤立的、零碎的,现在是放在一起记忆提高.幻灯片如下:问题④,三角函数性质是通过图象来研究的,而且画图、识图、用图也是对学生的基本要求.教师要让学生亲自动手画一画,以加深学生对三角函数性质的进一步理解提升.让学生明了:利用平移正弦线,可以比较精确地画出正弦函数的图象,利用正弦函数的图象和诱导公式,可以画出余弦函数的图象,可以看出在长度为一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为0的点).这五个点在确定正弦函数、余弦函数图象的形状时起着关键的作用.因此,在精确度不太高时,我们常用“五点法”画正弦、余弦函数以及与它们类似的一些函数〔特别是函数y =Asin(ωx+φ)〕的简图.教师同时打出幻灯(如图1、图2、图3):图1图2图3问题⑤,让学生由图象说性质,教师可引导学生从函数的定义域、值域、奇偶性、单调性、最值、周期性、对称性等方面叙述.教师要强调,正弦、余弦、正切函数的图象以及它们的主要性质非常重要,要牢固掌握,但不要死记硬背.讨论结果:①~⑤略.应用示例例1已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.活动:本例属于较为简单的题目,目的是要学生熟悉任意角的三角函数定义,也要明确解题中的一种很重要的方法是回归定义.教师引导学生思考距离与坐标的不同、是否需要对点的坐标进行分类讨论,然后让学生独立完成此题.解:由题意,需对角α终边的位置进行讨论:①若角α终边过点P(4,3),则2sinα+cosα=2×35+45=2; ②若角α终边过点P(-4,3),则2sinα+cosα=2×35+-45=25; ③若角α终边过点P(-4,-3),则2sinα+cosα=2×-35+-45=-2; ④若角α终边过点P(4,-3),则2sinα+cosα=2×-35+45=-25. 点拨:任意角的三角函数定义不仅是本章的核心,也是整个三角函数的中心问题.要指导学生深刻理解三角函数定义的内涵,它只是一个比值,只与角的大小有关,而与点P 在角的终边上的位置无关.例2已知sinα+3cosα=0,求:(1)3cosα-sinα3cosα+sinα;(2)2sin 2α-3sinαcosα+2的值. 活动:教师引导学生观察本题的条件与结论,关键是求sinα与cosα的值,由sinα+3cosα=0及sin 2α+cos 2α=1联立方程组即得sinα与cosα的值.教师进一步点拨:根据同角三角函数的基本关系,不直接求sinα与cosα的值,需作怎样的变形即可?对看出本题由已知可得tanα=-3的同学教师给予鼓励并作进一步探究,对看不出这一步的学生再给予进一步引导,直至其独立解出此题.解:(1)3cosα-sinα3cosα+sinα=3-tanα3+tanα=3+33-3=-2- 3. (2)2sin 2α-3sinαcosα+2=4sin 2α-3sinαcosα+2cos 2α=cos 2α(4tan 2α-3tanα+2)=11+tan 2α(4tan 2α-3tanα+2)=11+-32(4×9+3×3+2)=4710. 点拨:本题主要考查利用同角三角函数关系式求值.对于只含有正弦、余弦函数的齐次式,在求解时常常转化为只含有正切的式子,这种变形技巧十分重要,也称为“1”的代换,在今后的学习中经常用到,应要求学生仔细体会并熟悉掌握.变式训练1.已知α是三角形的内角,且sinα+cosα=15,求tanα的值. 解:由sinα+cosα=15平方整理,得sinαcosα=-1225<0. ∵α为三角形的内角,∴0<α<π,sinα>0,cosα<0.∴sinα-cosα>0.∵(sinα-cosα)2=1-2sinαcosα=4925, ∴sinα-cosα=75. 由⎩⎪⎨⎪⎧ sinα+cosα=15sinα-cosα=75 ⇒⎩⎪⎨⎪⎧ sinα=45,cosα=-35,∴tanα=-43. 点拨:本题主要考查同角三角函数的基本关系式.对于三角求值题目,一定要注意角的范围,有时要根据所给三角函数值的大小,适当缩小所给角的范围,才能求出准确的值.教师要抓住时机就此进一步挖掘,以激起学生的探究兴趣.2.已知sinθ=m -3m +5,cosθ=4-2m m +5,π2<θ<π,则m 的取值范围是… ( ) A .3≤m≤9 B .m≤-5或m≥3C .m =0或m =8D .m =8答案:D例3已知函数y =Asin(ωx+φ),x∈R (其中A>0,ω>0)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x 轴正半轴的第一个交点为N(6,0),求这个函数的解析式. 活动:本例是一道经典例题,主要考查三角函数模型的应用及训练学生的分析思维能力,对数形结合的思维要求也较高.教师可引导学生展开思考讨论,怎样根据题目中给出的条件找到思维的切入点.题目中虽然没有直接给出图象,实质是已知图象求解析式问题.指导学生画出草图,利用数形结合来深化题意的理解,事实上,学生很容易看出A 的值.如果学生没找出周期问题,教师可进一步点拨:题目中告诉的x 轴的横坐标2与6表示图象的哪段.根据题意,知道点M 、N 恰是函数y =As in(ωx+φ),x∈R (其中A>0,ω>0)在对应于包含0的周期的那段图象的五个关键点中的两个.由此可知A 、T ,但要注意指导φ的求法.解:方法一:根据题意,可知T 4=6-2=4,所以T =16. 于是ω=2πT =π8.又A =22, 将点M 的坐标(2,22)代入y =22sin(π8x +φ), 得22=22sin(π8×2+φ), 即sin(π4+φ)=1. 所以满足π4+φ=π2的φ为最小正数解.所以φ=π4. 从而所求的函数解析式是y =22sin(π8x +π4),x∈R . 方法二:由题意可得A =22,将两个点M(2,22),N(6,0)的坐标分别代入y =22sin(ωx+φ)并化简,得⎩⎪⎨⎪⎧ sin 2ω+φ=1,sin 6ω+φ=0,故在长度为一个周期且包含原点的闭区间上,有⎩⎪⎨⎪⎧ 2ω+φ=π2,6ω+φ=π,从而所求的函数解析式是y =22sin(π8x +π4),x∈R .点拨:由三角函数图象求解析式确定φ时,答案可能不只一个,这里可提醒学生注意,习惯上一般取离x 轴最近的一个,这样的解析式简洁.本例对学生有着很高的训练价值,特别是数形结合思想、转化与化归思想的运用.数形结合是数学中重要的思想方法,对各类函数的研究都离不开图象,在中学阶段,几乎所有函数的性质都是通过观察图象而得到的.例4已知函数f(x)=12log (sinx -cosx).(1)求它的定义域;(2)判断它的奇偶性;(3)判断它的周期性.图4活动:这是一组知识性很强的基础题,要求学生全面掌握有关三角函数的定义和性质.教师可先让学生自己动手操作,必要的时候给予点拨帮助.本题的关键是熟悉三角函数线或三角函数图象,利用数形结合直观性训练学生快速解题.如图4、图5.图5解:(1)x 必须满足sinx -cosx>0,利用图4或图5,知2kπ+π4<x<2kπ+5π4(k∈Z ), ∴函数定义域为(2kπ+π4,2kπ+5π4),k∈Z . (2)∵f(x)定义域在数轴上对应的点关于原点不对称,∴f(x)不具备奇偶性.(3)函数f(x)的最小正周期为T =2π.点评:利用单位圆中的三角函数线或正、余弦线可知:以第Ⅰ、Ⅱ象限角平分线为标准,可区分sinx -cosx 的符号;以第Ⅱ、Ⅲ象限角平分线为标准,可区分sinx +cosx 的符号.要让学生在深刻理解的基础上记忆这点,因函数的定义域是函数的核心,故研究函数的性质都必须以函数的定义域为前提.变式训练1.如图6,⊙O 与x 轴的正半轴的交点为A ,点C 、B 在⊙O 上,且点C 位于第一象限,点B 的坐标为(45,-35),∠AOC=α(α为锐角). 图6(1)求⊙O 的半径,并用α的三角函数表示C 点的坐标;(2)若|BC|=2,求tanα的值. 解:(1)⊙O 的半径r =452+-352=1,点C(cosα,sinα).(2)在△BOC 中,由于|OB|=|OC|=1,|BC|=2,∴∠COB 是直角.由三角函数的定义,知cos(α-90°)=sinα=45,且α为锐角, 故cosα=35,tanα=43. 2.已知函数f(x)=sin(ωx+π3)(ω>0)的最小正周期为π,则该函数的图象( ) A .关于点(π3,0)对称 B .关于直线x =π4对称 C .关于点(π4,0)对称 D .关于直线x =π3对称 答案:A知能训练教科书复习题1~18.课堂小结提出问题让学生回顾总结,通过本节复习,系统掌握三角函数有关知识,你对三角函数有什么新的认识?三角函数与以前所学函数有什么异同之处?在灵活应用本章知识进行三角函数式的化简、求值、证明方面你都有哪些提高?我们都解决了哪些实际问题?教师与学生一起归纳总结,共同完成本节小结.作业已知函数f(x)=sinπx 图象的一部分如图7(1),则图7(2)的函数图象所对应的函数解析式可以为( )图7A .y =f(2x -12)B .y =f(2x -1)C .y =f(12x -1)D .y =f(12x -12) 答案:B设计感想1.本章复习课只安排了1课时,课堂设计的容量较大,指导思想是充分利用多媒体,放手让学生根据教师提供的知识网络自己进行归纳总结,教师在知识的交汇处、在思维的提高上给予指导、点拨.建议教师课堂上不要把自己的思路、提前归纳的方法直接告诉学生.2.加强学生的学法指导,因为“在不断变动的世界上,没有任何一门或一套课程可供在可见的未来使用,或可供你终身受用.现在需要的最重要的技能是如何学习”.因此数学课的学习过程,不仅是传授知识、技能的过程,更是教会学生如何学习数学的过程.也就是说,学习数学的过程实际上就是学生获取、整合、储存、运用数学知识和获得学习能力的过程.在本章复习课设计中,就体现了学生如何学习的问题.3.复习不是简单的重复,不是练习堆积的习题课,而是成为学生再发现、再提高、再创造的氛围场所,是学生对所学知识居高临下的掌握和学生身心健康成长的愉悦体验.备课资料一、备用习题1.已知集合A ={α|α=60°+k·360°,k∈Z },B ={β|β=60°+k·720°,k∈Z },C ={γ|γ=60°+k·180°,k∈Z },那么集合A ,B ,C 之间的关系是( )A .BA CB .A BC C .B C AD .C B A2.若α是第四象限角,则π-α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.一扇形的半径与弧长之比是3∶π,则该扇形所含弓形的面积与该扇形的面积之比是A .(2π-33)∶2π B.(6π-33)∶6πC .(4π-33)∶4π D.(8π-33)∶8π4.把函数y =4cos(x +π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小值是( )A.π6B.π3C.2π3D.5π65.如果|x|≤π4,设函数f(x)=cos 2x +sinx 的最大值为M ,最小值为m ,则M m的值为… ( )A .-54B .-3-2 2C .3+2 2D .-52+526.已知函数y =Asin(ωx+φ)(A>0,ω>0)的周期为1,最大值与最小值之差是3,且函数图象过点(18,34),则函数表达式为( ) A .y =3sin(2x +7π12) B .y =3sin(2x -π12) C .y =32sin(2πx+π12) D .y =32sin(2πx-π12) 7.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y =π4所得线段的长为π4,则f(π4)=__________.8.已知α、β∈(0,π2),且α+β>π2,求证:对于x∈(0,π),有f(x)=(cosαsinβ)x +(cosβsinα)x <2. 参考答案:1.A 2.C 3.A 4.C 5.D 6.D 7.08.由α+β>π2,知α>π2-β. 又由α、β∈(0,π2),知π2-β∈(0,π2). ∵y=sinx 在(0,π2)内为增函数,y =cosx 在(0,π2)内为减函数, ∴sinα>sin(π2-β)=cosβ,cosα<cos(π2-β)=sinβ.∴0<cosβsinα<1,0<cosαsinβ<1. 又∵x∈(0,π),∴(cosβsinα)x <1,(cosαsinβ)x <1.∴f(x)=(cosαsinβ)x +(cosβsinα)x <2. 二、三角函数的拓展1.关于三角函数的发展史三角函数亦称圆函数,是正弦、余弦、正切、余切、正割、余割等函数的总称.在平面直角坐标系xOy 中,在与x 轴正向夹角为α的动径上取点P ,P 的坐标是(x ,y),OP =r ,则正弦函数sinα=y r ,余弦函数cosα=x r ,正切函数tanα=y x ,余切函数cotα=x y,正割函数secα=r x ,余割函数cscα=r y. 这6种函数在1631年徐光启等人编译的《大测》中已齐备.正弦最早被看作圆内圆心角所对的弦长,公元前2世纪古希腊天文学家希帕霍斯就制造过这种正弦表,公元2世纪托勒密又制造了0°~90°每隔半度的正弦表.公元5世纪时印度最早引入正弦概念,还给出正弦函数表,记载于《苏利耶历数书》(约400年)中.该书中还出现了正矢函数,现在已很少使用它了.约510年印度数学家阿那波多考虑了余弦概念,传到欧洲后有多种名称,17世纪后才统一.正切和余切函数是由日影的测量而引起的,9世纪的阿拉伯计算家哈巴什首次编制了一个正切、余切表.10世纪的艾布·瓦法又单独编制了第一个正切表.哈巴什还首先提出正割和余割概念,艾布·瓦法正式使用.到1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中收入正弦、余弦、正切、余切、正割、余割6种函数,并附有正割表.他还首次用直角三角形的边长之比定义三角函数.1748年欧拉第一次以函数线与半径的比值定义三角函数,令圆半径为1,并创用许多三角函数符号.至此现代形式的三角函数开始通行,并不断发展至今.现在的许多教辅资料中,有关三角函数的运算都是6种函数的综合运算.2.关于三角函数的定义法三角函数定义是三角函数的核心内容.关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”,这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.由上述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”,所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角α,这三个比值(如果有的话)都不会随点P 在α的终边上的位置的改变而改变等,对于确定的角α,上面三个比值都是惟一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角α的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.3.关于《新课程》中的三角函数种类《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的,因此教师在教学中没有必要对其他的三角函数再作补充.。
高中数学 第1章(三角函数)函数y=sin(wx+f)的图象(2)教学案 苏教版必修4 教学案
某某省射阳县盘湾中学高中数学 第1章《三角函数》函数y=sin(wx+f)的图象(2)教学案 苏教版必修4教学目标:会用“五点法”画出函数y= Asin(x ωϕ+)的简图,能由正弦曲线通过平移、伸缩变换得到y= Asin(x ωϕ+)的图象,并在这个过程中认识到函数y=sinx 与y= Asin(x ωϕ+)的联系。
能根据图象确定函数解析式。
教学重点:函数y= Asin(x ωϕ+)的图象教学难点:函数y= Asin(x ωϕ+)的图象与正弦曲线的关系教学过程:一、问题情境:问题:函数y=3sin(2x 3π-)的振幅、周期、初相分别为多少?其图象可由正弦曲线如何变换得到?二、学生活动:探究:分别可以通过怎样的变换使得A 、ω、ϕ发生变化?方法:y=sinx 的图象-----------------------------→y=sin(x 3π-)的图象 -----------------------------------------→y=sin(2x 3π-)的图象 ----------------------------------------→y=3sin(2x 3π-)的图象 思考:你还有其它变换方法吗?三、知识建构:函数y= Asin(x ωϕ+)的图象可由正弦曲线变换得到:四、知识运用:例1、不用计算机和图形计算器,画出函数y=3sin(2x 3π-)的简图小结:例2、某地一天从6时至14时的温度变化曲线近似地满足y= Asin(x ωϕ+)+b ,(1)求这段时间的最大温差(2)写出这段曲线的函数解析式。
小结:练习: 书P40 4、5、6、7五、回顾反思:知识: 思想方法:六、作业布置:书P45 8(1)、9。
高中数学 第1章 三角函数 14 三角函数的应用教学案苏教版必修4
江苏省泰兴中学高一数学教学案(50)必修4_01 三角函数的应用班级 姓名目标要求1. 掌握三角函数的图象与性质;2. 利用三角函数的图象与性质解决一些简单的实际问题,体会三角函数是描述周期现象的重要数学模型.重点难点:建立三角函数的模型.典例剖析例1 如图所示,某地一天从2时到14时的温度变化曲线近似满足函数()sin()p t y A x b ωϕ==++,(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.例2 在图中,点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.(1) 求物体对平衡位置的位移x (cm )和时间t (s )之间的函数关系;(2) 求该物体在t=5s 时的位置.例3 一半径为4m 的水轮如图所示,水轮圆心O距离水面2m,已知水轮每分钟按逆时针转动4圈,如果当水轮上点P从水中浮现时(图中点P)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?4 课堂练习1.图中是一弹簧振子做简谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则这个振子振动的函数解析式________________________.2.甲、乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高度分别为__________________________.课堂小结1.三角函数能够模拟现实中的许多周期现象,如物理中简谐振动、交流电中的电流、潮汐等,都可以建立三角函数模型,利用三角函数性质解决;2.解决三角函数应用问题主要分三步:第一步把实际问题化归为数学问题;第二步解决数学问题;第三步把数学问题还原成实际问题.江苏省泰兴中学高一数学作业(50)班级 姓名 得分1、如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s (单位 cm )和时间t (单位s )的函数关系式为6sin(2)6s t ππ=+,那么单摆来回摆动 一次所需的时间为 __________s2、 如图中,点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向.若已知振幅为5cm ,周期为4s ,且物体向右运动到平衡位置时开始计时,(1)求物体对平O衡位置的位移x(cm)和时间t(s)之间的函数关系;(2)求该物体在t=7.5s时的位置.3、心脏跳动时,血压在增加或减小,血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg为标准值 .设某人的血压满足函数式()11525sin(160)p t为血压(mmHg),t为时间( min), 试回答下=+,其中()p t tπ列问题:(1)求函数()p t的周期;(2)此人每分钟心跳的次数;(3)画出函数()p t的草图;(4)求出此人的血压在血压计上的读数,并与标准值比较.4、一个大风车的半径为8 m,12min旋转一周,它的最低点离地面2m(如图所示),求风车翼片的一个端点P离地面距离h(m) 与时间t(min)之间的函数关系,其中点P的起始位置在最低点处.5、如图,ABCD是一块边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现一开发商想在平地上建一个有边落在BC与CD 上的矩形停车场PQCR,写出矩形停车场面积S关于 的函数关系式..。
(完整版)高中数学苏教版教材目录(必修+选修)
苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4----------------------------------- 第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理 第二章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章 计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4----------------------------------- 4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5----------------------------------- 5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。
高中数学教学设计--函数y=Asin(ωx+φ)的图象教案
课题:函数y=A sin(ωx+φ)的图象教材:苏教版普通高中课程标准实验教科书数学必修4一、内容与内容解析1.本课地位和作用三角函数是描述周期现象的数学模型,也是一种基本初等函数,在数学和其他领域中具有重要的作用.“函数y=A sin(ωx+φ)的图象”是三角函数的一个重要内容,通过揭示参数A,ω,φ变化对函数y=A sin(ωx+φ)图象的影响,有助于进一步深化对函数图象变换的理解和认识,同时也有助于体会三角函数是描述周期现象的重要数学模型.2.本课内容剖析“函数y=A sin(ωx+φ)的图象”主要是探讨函数y=A sin(ωx+φ)的图象与函数y=sin x的图象之间的关系.图象是由点构成的,图象变换的本质是图象上点的变换,而点的位置变化对应着点的坐标变化,因此,欲研究函数图象的变换规律,只需研究图象上每个点的坐标变化规律.本节课教学设计是先分别探讨φ、A、ω对函数y=sin(x+φ)、y=A sin x(A>0)、y=sinωx(ω>0)的图象的变化规律,再探究y=sin(2x+1)的图象和函数y=sin2x的图象之间的变化关系.其中,φ对y=sin(x+φ)的图象的变化规律的探讨方法可以迁移到后续问题解决中去.本节课的重点是:分别探讨φ、A、ω对y=sin(x+φ)、y=A sin x(A>0)、y=sinωx(ω>0)的图象的变化规律.本节课的难点是:①函数y=sinωx的图象与正弦曲线的关系;②函数y=sin(2x +1)的图象与函数y=sin2x的图象的关系.二、目标与目标解析1.探索并发现φ对y=sin(x+φ)的图象的变化规律,A对y=A sin x(A>0)的图象的变化规律,ω对y=sinωx(ω>0)的图象的变化规律;2.在理解φ、A、ω对y=sin(x+φ)、y=A sin x(A>0)、y=sinωx(ω>0)的图象的变化规律的基础上,探究y=sin(2x+1)的图象和函数y=sin2x的图象之间的变化关系;3.学生在活动中经历观察、归纳、验证的过程,体会从简单到复杂,从具体1。
连云港市灌云县四队中学高中数学教案:1.3.3 函数y=Asin(ωx+φ) 的图象(2) (苏教版必修4)
四队中学教案纸 (学科: 高一数学 )备课时间教学课题 1.3.3 函数sin()y A x ωϕ=+的图像(2)教时计划2教学课时2教学 目标 1.明确函数sin()y A x ωϕ=+中,,A ωϕ的物理意义及它们对函数的图象有什么影响 2.逐步掌握由sin y x =,x R ∈的图象,通过图象的伸缩平移变换得到函数sin()y A x ωϕ=+,x R ∈的图象的方法。
重点难点函数图象的伸缩、平移变换函数图象的伸缩、平移变换教学过程(一)复习:1.sin y A x =型函数的图象; 2.sin y x ω=型函数的图象; 3.sin()y x ϕ=+型函数的图象。
(二)新课讲解: 1.,,A ωϕ的物理意义当sin()y A x ωϕ=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T πω=称为这个振动的周期,单位时间内往复振动的次数12f T ωπ==,称为振动的频率。
x ωϕ+称为相位,0x =时的相位ϕ称为初相。
2.图象的变换例 画出函数3sin(2)3y x π=+的简图。
解:函数的周期为22T ππ==,先画出它在长度为一个周期内的闭区间上的简图,再左右拓展即可,先用五点法画图:xyO π 3π- 6π- 53π2π sin()3y x π=+ sin(2)3y x π=+sin y x = 3sin(2)3y x π=+函数3sin(2)3y x π=+的图象可看作由下面的方法得到的:①sin y x =图象上所有点向左平移3π个单位,得到sin()3y x π=+的图象上;②再把图象上所点的横坐标缩短到原来的12,得到sin(2)3y x π=+的图象;③再把图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3y x π=+的图象。
一般地,函数sin()y A x ωϕ=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动||ϕ个单位长度;②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的1ω倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。
高中数学苏教版必修4教案:第一章 三角函数 第14课时 1.3.3函数y=Asin(ωx+φ)的图象
第十四课时 §1.3.3 函数的图象(2)【教学目标】一、知识与技能: (1) 会用“五点法”画y =A sin(ωx +)的图象;(2) 会用图象变换的方法画y =A sin(ωx +)的图象;(3) 会求一些函数的振幅、周期、最值等。
二、过程与方法在研究函数y =Asin (ωx +) 的图象的过程中进一步体会化归的数学思想,自觉运用数形结合思想解决问题。
三、情感态度价值观:会用联系的观点看问题,了解各个量之间内在的联系。
教学重点难点:函数图象的伸缩、平移变换。
【教学过程】一.复习回顾1.型函数的图象-----振幅变换:2.型函数的图象-----周期变换3.型函数的图象-----相位变换二.新课讲解问题: 函数y =Asin (ωx +)(A >0,ω>0)的图象可以由正弦曲线经过哪些图象变换而得到?引例 画出函数y =3sin(2x +),x ∈R 的简图 解:(五点法)由T =,得T =π 列表:)sin(ϕω+=x A y ϕϕϕx A y sin =x y ωsin =)sin(ϕ+=x y ϕ3π22π描点画图:这种曲线也可由图象变换得到:方法一:即:y =sin x y =sin(x +) y =sin(2x +) y =3sin(2x +) 一般地,函数y =A sin(ωx +),x ∈R (其中A >0,ω>0)的图象,可以看作用下面的方法得到:先把正弦曲线上所有的点向左(当_______时)或向右(当______时平行移动||个单位长度,再把所得各点的横坐标缩短(当______时)或伸长(当________时)到原来的倍(纵坐标不变),再把所得各点的纵坐标伸长(当________时)或缩短(当________时)到原来的A 倍(横坐标不变) 问题:以上步骤能否变换次序?方法二:3π3π3πϕϕω1____移 个单位 纵坐标不变横坐标变为 倍 纵坐标变为 倍横坐标不变另外,注意一些物理量的概念:A :称为振幅;T =:称为周期;f =:称为频率; ωx +:称为相位x =0时的相位称为初相三、例题分析:例1、已知函数x ()的图象一个最高点为A (2,),由点A 到相邻最低点的图象交x 轴于(6, 0),求此函数的解析式。
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(一)学案 苏教版必修4-
1.3.3 函数y =Asin(ωx+φ)的图象(一)[学习目标] 1.理解y =A sin(ωx +φ)中ω、φ、A 对图象的影响.2.掌握y =sin x 与y =A sin(ωx +φ)图象间的变换关系,并能正确地指出其变换步骤.[知识链接] 1.“五点法”作图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).2.交流电电流随时间变化的图象与正弦曲线有何关系? 答 交流电电流随时间变化的图象与正弦曲线很相似,从解析式来看,函数y =sin x 就是函数y =A sin(ωx +φ)在A =1,ω=1,φ=0时的情况. [预习导引]1.函数s =A sin(ωx +φ)的振幅、周期、频率等在s =A sin(ωx +φ)(A >0,ω>0)中,其中A 为物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间T =2πω,称为这个振动的周期;单位时间内往复振动的次数f =1T =ω2π,称为振动的频率;ωx +φ称为相位,x =0时的相位φ称为初相.2.φ、ω、A 对y =A sin(ωx +φ)图象的影响(1)函数y =sin(x +φ)(其中φ≠0)的图象,可以看做是将函数y =sin x 上所有点向左(当φ>0时)或向右(当φ<0时)平移|φ|个单位而得到的.(2)函数y =sin(ωx +φ)的图象,可以看做是把y =sin(x +φ)的图象上的所有点的横坐标变为原来的1ω倍(纵坐标不变)而得到的.(3)函数y =A sin(ωx +φ)的图象,可以看做是把y =sin(ωx +φ)的图象上所有点的纵坐标变为原来的A 倍(横坐标不变)而得到的.3.函数y =sin x 与y =A sin(ωx +φ)图象间的变换函数y =A sin(ωx +φ)(其中A >0,ω>0)的图象可以看做是由下面的方法得到:先画出函数y =sin x 的图象;再把正弦曲线向左(当φ>0时)或右(当φ<0时)平移|φ|个单位长度,得到函数y =sin(x +φ)的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数y =sin(ωx +φ)的图象;最后把曲线上各点的纵坐标变为原来的A 倍(横坐标不变),这时的曲线就是函数y =A sin(ωx +φ)的图象.要点一 三角函数图象的平移变换例1 要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只要将y =sin 2x 的图象________. ①向左平移π3个单位;②向右平移π3个单位;③向左平移π6个单位;④向右平移π6个单位.答案 ③解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2⎝⎛⎭⎪⎫x +π6, 所以把y =sin 2x 的图象上所有点向左平移π6个单位,就得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象.规律方法 已知两个函数的解析式,判断其图象间的平移关系的步骤:①将两个函数解析式化简成y =A sin ωx 与y =A sin(ωx +φ),即A 、ω及名称相同的结构. ②找到ωx →ωx +φ,变量x “加”或“减”的量,即平移的单位为⎪⎪⎪⎪⎪⎪φω. ③明确平移的方向.跟踪演练1 要得到y =cos ⎝ ⎛⎭⎪⎫2x -π4的图象,只要将y =sin 2x 的图象________.①向左平移π8个单位;②向右平移π8个单位;③向左平移π4个单位;④向右平移π4个单位.答案 ①解析 y =sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎝⎛⎭⎪⎫2x -π2 =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4若设f (x )=sin 2x =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4,则f ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x -π4,所以向左平移π8个单位.要点二 三角函数图象的伸缩变换例2 把函数y =sin x (x ∈R )的图象上所有的点向左平行移动π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是__________________. 答案 y =sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 解析 把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,再把所得图象上所有的点的横坐标缩短到原来的12倍,得到函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象. 规律方法 三角函数图象变换容易出错,尤其是既涉及平移变换又涉及伸缩变换.平移时,若x 的系数不是1,需把x 的系数先提出,提出后括号中的x 加或减的那个数才是平移的量,即x 的净增量.方向的规律是“左加右减”.伸缩时,只改变x 的系数ω,其余的量不变化,伸长时系数|ω|减小,缩短时|ω|增大.跟踪演练2 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标扩大到原来的2倍(纵坐标不变),得到的图象所表示的函数解析式是__________________.答案 y =sin ⎝ ⎛⎭⎪⎫x 2+π3,x ∈R 解析 将y =sin x 图象上的所有的点向左平移π3个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π3.再将图象上所有点的横坐标扩大到原来的2倍,得y =sin ⎝ ⎛⎭⎪⎫x 2+π3.要点三 三角函数图象的综合变换例3 把函数y =f (x )的图象上各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝ ⎛⎭⎪⎫12x +π3,求f (x )的解析式.解 y =2sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的32倍y =3sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的12倍y =3sin ⎝⎛⎭⎪⎫x +π3――――――――→向左平移π6个单位y =3sin ⎝⎛⎭⎪⎫x +π6+π3=3sin ⎝ ⎛⎭⎪⎫x +π2=3cos x .∴f (x )=3cos x .规律方法 (1)本例已知变换途径及变换后的函数解析式,求变换前函数图象的解析式,宜采用逆变换的方法.(2)已知函数f (x )图象的伸缩变换情况,求变换前后图象的解析式.要明确伸缩的方向及量,然后确定出A 或ω即可.跟踪演练3 将y =f (x )的图象上所有点的横坐标缩短到原来的12倍,然后再将整个图象沿x轴向右平移π2个单位,得到的曲线与y =12sin x 图象相同,则y =f (x )的函数解析式为________.答案 y =12sin ⎝ ⎛⎭⎪⎫12x +π2⎝ ⎛⎭⎪⎫或y =12cos x 21.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________________________. 答案 向左平行移动12个单位长度解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.2.由y =3sin x 的图象变换到y =3sin ⎝ ⎛⎭⎪⎫12x +π3的图象主要有两个过程:先平移后伸缩和先伸缩后平移,前者需向左平移________个单位,后者需向左平移________个单位. 答案π3 23π 3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为________. 答案 ±124.将函数y =sin(-2x )的图象向左平移π4个单位,所得函数图象的解析式为__________________. 答案 y =-cos 2x解析 y =sin(-2x )――――――――→左移π4个单位y =sin ⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫x +π4,即y =sin ⎝ ⎛⎭⎪⎫-2x -π2=-sin ⎝⎛⎭⎪⎫2x +π2=-cos 2x .1.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)(A >0,ω>0)的图象,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin[ω(x +φω)]=sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).注意:两种途径的变换顺序不同,其中变换的量也有所不同: (1)先相位变换后周期变换,平移|φ|个单位. (2)先周期变换后相位变换,平移|φ|ω个单位.2.类似地,y =A cos(ωx +φ) (A >0,ω>0)的图象也可由y =cos x 的图象变换得到.一、基础达标1.函数y =sin 2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=________. 答案 sin x2.要得到y =sin ⎝⎛⎭⎪⎫x -π3的图象,只要将y =sin x 的图象________.①向左平移π3个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向右平移π6个单位长度.答案 ②3.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是__________________. 答案 y =1+cos 2x解析 将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin 2(x +π4),即y =sin(2x+π2)=cos 2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos 2x . 4.将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数________.①在区间[π12,7π12]上单调递减;②在区间[π12,7π12]上单调递增;③在区间[-π6,π3]上单调递减;④在区间[-π6,π3]上单调递增.答案 ②解析 y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z .令k =0得其中一个增区间为[π12,712π],故②正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x -23π)在[-π6,π3]上不具有单调性,故③④错误.5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是________. ①y =f (x )是奇函数; ②y =f (x )的周期为π;③y =f (x )的图象关于直线x =π2对称;④y =f (x )的图象关于点(-π2,0)对称. 答案 ④解析 由题意知,f (x )=cos x ,所以它是偶函数,①错;它的周期为2π,②错;它的对称轴是直线x =k π,k ∈Z ,③错;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,④对.6.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象________.①向右平移π6个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向左平移π3个单位长度.答案 ②解析 y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π6=cos ⎝⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos 2⎝⎛⎭⎪⎫x -π3.7.怎样由函数y =sin x 的图象变换得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,试叙述这一过程.解 方法一 y =sin x ――→向右平移π3个单位y =sin ⎝ ⎛⎭⎪⎫x -π3――→纵坐标不变横坐标缩短为原来的12y =sin ⎝ ⎛⎭⎪⎫2x -π3. 方法二 y =sin x ――→纵坐标不变横坐标缩短为原来的12y =sin 2x ――→向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3. 二、能力提升8.要得到函数y =2cos x 的图象,只需将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4图象上的所有点的________.①横坐标缩短到原来的12(纵坐标不变),再向左平行移动π8个单位长度;②横坐标缩短到原来的12(纵坐标不变),再向右平行移动π4个单位长度;③横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π4个单位长度;④横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π8个单位长度.答案 ③解析 ∵y =2cos x =2sin ⎝⎛⎭⎪⎫x +π2,∴y =2sin ⎝ ⎛⎭⎪⎫2x +π4――→纵坐标不变横坐标伸长到原来的2倍 y =2sin ⎝⎛⎭⎪⎫x +π4―――――――――――→向左平移π4个单位长度 y =2sin ⎝⎛⎭⎪⎫x +π2. 9.某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象;②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象; ③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象; ④函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上). 答案 ①③10.将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.答案22解析 将y =sin x 的图象向左平移π6个单位长度可得y =sin(x +π6)的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin(12x +π6)的图象,故f (x )=sin(12x +π6),所以f (π6)=sin(12×π6+π6)=sin π4=22.11.已知函数f (x )=sin ⎝⎛⎭⎪⎫π3-2x (x ∈R ).经过怎样的图象变换使f (x )的图象关于y 轴对称?(仅叙述一种方案即可).解 f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2x=cos ⎝ ⎛⎭⎪⎫2x +π6=cos 2⎝ ⎛⎭⎪⎫x +π12.∵y =cos 2x 是偶函数,图象关于y 轴对称, ∴只需把y =f (x )的图象向右平移π12个单位即可.12.使函数y =f (x )图象上每一点的纵坐标保持不变,横坐标缩小到原来的12倍,然后再将其图象沿x 轴向左平移π6个单位得到的曲线与y =sin 2x 的图象相同,求f (x )的表达式.解 方法一 正向变换y =f (x )――→横坐标缩小到原来的12y =f (2x )――→沿x 轴向左平移π6个单位y =f ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6,即y =f ⎝⎛⎭⎪⎫2x +π3, ∴f ⎝ ⎛⎭⎪⎫2x +π3=sin 2x . 令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝ ⎛⎭⎪⎫t -π3,即f (x )=sin ⎝⎛⎭⎪⎫x -π3.方法二 逆向变换据题意,y =sin 2x ――→沿x 轴向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3――→横坐标伸长到原来的2倍纵坐标不变 y =sin ⎝⎛⎭⎪⎫x -π3.三、探究与创新13.已知函数f (x )=2sin ωx ,其中常数ω>0;(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2)令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解 (1)因为ω>0,根据题意有⎩⎪⎨⎪⎧-π4ω≥-π2,2π3ω≤π2,解得0<ω≤34. (2)f (x )=2sin 2x , g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1 g (x )=0⇒sin ⎝ ⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3, 故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.。
高中数学 第1章 三角函数 1.3.4 三角函数的应用教学设计 苏教版必修4
1.3.4 三角函数的应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节通过例题,循序渐进地从四个层次来介绍三角函数模型的应用,本节在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过函数拟合得到具体的函数模型,提高数学建模能力,并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.3.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.重点难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题,是本节的难点,主要原因是背景陌生,数据处理较复杂,学习起来感到难以切入.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.(直接导入)我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究用三角函数的图象和性质解决一些简单的生活实际问题.活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助其回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.解决问题的一般程序是:(1)审题:逐字逐句地阅读题意,审清楚题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择适当函数模型;(3)求解:对所建立的数学模型进行分析研究得到数学结论;(4)还原:把数学结论还原为实际问题的解答.应用示例思路1例1见课本本节例1.变式训练如图1,某地一天从6~14时的温度变化曲线近似满足函数y =sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道题目是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本题是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本题给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决. 题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6时到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小 题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20 ℃.(2)从图中可以看出,从6~14时的图象是函数y =Asin(ωx+φ)+b 的半个周期的图象,∴A=12(30-10)=10,b =12(30+10)=20. ∵12·2πω=14-6,∴ω=π8.将x =6,y =10代入上式,解得φ=3π4.综上,所求解析式为y =10sin(π8x +3π4)+20,x∈[6,14]. 点评:本题中所给出的一段图象恰好是半个周期的图象,提醒学生注意抓关键.本题所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.例2见课本本节例2.例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h 0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?图2活动:本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意,两楼的间距应不小于MC.图3根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC=h0tanC=h0tan26°34′≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.知能训练课本本节练习1、2.课堂小结1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.作业1.图5表示的是电流I 与时间t 的函数关系I =Asin(ωx+φ)(ω>0,|φ|<π2)在一个周期内的图象.图5(1)根据图象写出I =Asin(ωx+φ)的解析式.(2)为了使I =Asin(ωx+φ)中的t 在任意一段1100s 的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A =300,第一个零点为(-1300,0),第二个零点为(1150,0), ∴ω·(-1300)+φ=0,ω·1150+φ=π. 解得ω=100π,φ=π3. ∴I=300sin(100πt+π3). (2)依题意有T≤1100,即2πω≤1100, ∴ω≥200π,故ωmin =629.2.搜集、归纳、分类现实生活中周期变化的情境模型.解:如以下两例:①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.设计感想1.本教案设计指导思想是:充分唤起学生已有的知识方法,调动起相关学科的知识,尽量降低实例背景的相对难度,加大实际问题的鲜明、活跃程度,以引发学生探求问题的兴趣.2.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,确定它的周期,从而建立起适当的三角函数模型.如果学生选择了不同的函数模型,教师应组织学生进行交流,或让学生根据自己选择的模型进行求解,然后再根据所求结果与实际情况的差异进行评价.3.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,有条件的要用多媒体进行动态演示,以使学生有更多的时间用于对问题本质的理解.备课资料一、备选习题1.下列函数中,图象的一部分如图6所示的是( )图6A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6) 2.已知函数y =Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图7所示,求函数的解析式.图73.已知函数y =Atan(ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象与x 轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3),求此函数的解析式. 4.单摆从某点开始来回摆动,离开平衡位置的距离s(厘米)和时间t(秒)的函数关系为s =6sin(2πt+π6). (1)单摆开始摆动(t =0)时,离开平衡位置多少厘米? (2)单摆摆动到最右边时,离开平衡位置多少厘米? (3)单摆来回摆动一次需要多少时间? 5.函数f(x)=sinx +2|sinx|,x∈[0,2π]的图象与直线y =kx 有且仅有两个不同的交点,求k 的取值范围.参考答案:1.D2.由图7,得A =2,T 2=3π8-(-π8)=π2,∴T=π.∴ω=2.∴y=2sin(2x +φ).又∵图象经过点(-π8,2),∴2=2sin(-π4+φ).∴φ-π4=2kπ+π2(k∈Z ).∴φ=2kπ+3π4.∴函数解析式为y =2sin(2x +3π4).3.∵T=πω=5π6-π6,∴ω=32.∵32×π6+φ=0,且-3=Atan(32×0+φ),∴A=3,φ=-π4.故y =3tan(32x -π4).4.(1)t =0时,s =3,即离开平衡位置3厘米;(2)振幅为6,所以最右边离平衡位置6厘米;(3)T =1,即来回一次需要1秒钟.5.将原函数化简为f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧ 3sinx ,x∈[0,π],-sinx ,x∈π,2π],由此可画出图8,图8由数形结合可知,k的取值范围为1<k<3.二、数学与音乐若干世纪以来,音乐和数学一直被联系在一起.在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中.今天的新式计算机正在使这条纽带绵延不断.乐谱的书写是表现数学对音乐的影响的第一个显著的领域.在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等.书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应.作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的.如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数.除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系.毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的.他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系.他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比.按整数比增加弦的长度,能产生整个音阶.例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C.不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状.19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点.他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和.每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来.傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来.音高与曲线的频率有关,音量和音质分别与周期函数的振幅和形状有关.如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展.数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的.许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较.电子音乐复制的保真度也与周期曲线密切相关.音乐家和数学家将继续在音乐的产生和复制方面发挥着同等重要的作用.(设计者:郑吉星)第2课时导入新课思路1.(作业导入)学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.推进新课新知探究三角函数性质在生活中的应用.本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,调动学生的学习气氛.应用示例例1货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生仔细、准确地观察散点图,如图9.图9教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例的(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型?求货船停止卸货、将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图9).根据图象,可以考虑用函数y =Asin(ωx+φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h =5,T =12,φ=0,由T =2πω=12,得ω=π6. 所以这个港口的水深与时间的关系可用y =2.5sin(π6x)+5近似描述. 由上述关系式易得港口在整点时水深的近似值:(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.令2.5sin(π6x)+5≥5.5,得sin π6x≥0.2.画出y =sin(π6x)的图象,由图象可得 0.4≤x≤5.6或12.4≤x≤17.6.故该船在0:24至5:36和12:24至17:36期间可以进港.图10(3)设在时刻x 货船的安全水深为y ,那么y =5.5-0.3(x -2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6~7时之间两个函数图象有一个交点(如图11).图11通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.7时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释. 变式训练 发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t 的函数,I A =Isinωt,I B =Isin(ωt+120°),I C =Isin(ωt+240°),则I A +I B +I C =__________. 答案:0例2已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f(x)的解析式;(2)若sinx +f(x)=23,求sinxcosx 的值. 解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).∴φ=π2.∴f(x)=sin(ωx+π2)=cosωx. 相邻两点P(x 0,1),Q(x 0+πω,-1). 由题意,|PQ|=πω2+4=π2+4,解得ω=1. ∴f(x)=cosx.(2)由sinx +f(x)=23,得sinx +cosx =23. 两边平方,得sinxcosx =-518. 例3小明在直角坐标系中,用1 cm 代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm 代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm 代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y =sinx ,x∈R ,由于纵坐标改用了2 cm 代表一个单位长度,与原来1 cm 代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm 只能代表12个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y =12sinx ,x∈R .同理,若纵坐标保持不变,横坐标改用2 cm 代表一个单位长度,则横坐标被压缩到原来的12,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y =sin2x ,x∈R .例4求方程lgx =sinx 实根的个数.解:由方程式模型构建图象模型.在同一坐标系内作出函数y =lgx 和y =sinx 的图象,如图12.可知原方程的解的个数为3.图12点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.知能训练课本习题1.3 14.课堂小结1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活地运用三角函数的图象和性质解决现实问题.作业课本习题1.3 13.设计感想1.本节是三角函数内容中新增加的一节,目的是加强学生的应用意识,本节教案设计的指导思想,是让学生围绕着采集到的数据展开讨论,在学生思考探究的过程中,学会积极冷静地对待陌生背景,正确处理复杂数据以及准确分析问题中的数量关系,这很符合新课改理念.2.现实生活中的问题是多变的,学生的思维是发散的,观察的视角又是多样的,因此课题教学中,教师要善于挖掘并发现学生思维的闪光点,通过讨论例题这个载体,充分激发学生的潜能,让学生从观察走向发现,从发现走向创造,走向创新.3.学生面对枯燥的数据,潜意识里是讨厌的,因此教师要在有限的课堂时间里,着重解决物理背景下、地理背景下的三角函数的函数模型的选定,不要把时间浪费在一些计算上.备课资料一、备选习题1.图13是周期为2π的三角函数f(x)的图象,那么f(x)可写成( )图13A.sin(1+x) B.sin(-1-x)C.sin(x-1) D.sin(1-x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四课时 §1.3.3 函数
)sin(ϕω+=x A y 的图象(2)
【教学目标】 一、知识与技能:
(1) 会用“五点法”画y =A sin(ωx +ϕ)的图象; (2) 会用图象变换的方法画y =A sin(ωx +ϕ)的图象; (3) 会求一些函数的振幅、周期、最值等。
二、过程与方法
在研究函数y =Asin (ωx +ϕ) 的图象的过程中进一步体会化归的数学思想,自觉运用数形结合思想解决问题。
三、情感态度价值观:会用联系的观点看问题,了解各个量之间内在的联系。
教学重点难点:函数图象的伸缩、平移变换。
【教学过程】 一.复习回顾
1.x A y sin =型函数的图象-----振幅变换: 2.x y ωsin =型函数的图象-----周期变换 3.)sin(ϕ+=x y 型函数的图象-----相位变换 二.新课讲解
问题: 函数y =Asin (ωx +ϕ)(A >0,ω>0)的图象可以由正弦曲线经过哪些图象变换而得到?
引例 画出函数y =3sin(2x +3
π
),x ∈R 的简图 解:(五点法)由T =2
2π
,得T =π 列表:
描点画图:
这种曲线也可由图象变换得到: 方法一:
即:y =sin x y =sin(x +3
π)
y =sin(2x +
3π
y =3sin(2x +3
π
)
一般地,函数y =A sin(ωx +ϕ),x ∈R (其中A >0,ω>0)的图象,可以看作用下面的
方法得到:
先把正弦曲线上所有的点向左(当_______时)或向右(当______时平行移动|ϕ|个单位长度,再把所得各点的横坐标缩短(当______时)或伸长(当________时)到原来的
ω
1
倍(纵坐标不
变),再把所得各点的纵坐标伸长(当________时)或缩短(当________时)到原来的A 倍(横坐标不变)
问题:以上步骤能否变换次序?
方法二:
____移 个单位
纵坐标不变 横坐标变为 倍
横坐标不变
另外,注意一些物理量的概念:
A :称为振幅;T =
ωπ2:称为周期;f =T
1
:称为频率; ωx +ϕ:称为相位x =0时的相位ϕ称为初相
三、例题分析:
例1、已知函数sin(A y =ωx )ϕ+(πϕω2,0,0<<>>A )的图象一个最高点为A (2,3),由点A 到相邻最低点的图象交x 轴于(6, 0),求此函数的解析式。
例2、已知如图是函数y =Asin(ωx +ϕ)(其中A>0,ω>0,|ϕ|<2
π
)的图象,求函数解析式。
例3、已知函数)3
2sin(2π
+
=x y
求(1)振幅、周期、相位、初相
(2)简要说明是由y =sin x 通过那些步骤变化得来; (3)周期、单调区间;
(4)对称轴方程,以及在()ππ,-上有几个对称中心;
三、课堂小结:
函数y =A sin (ωx +ϕ)(A >0,ω>0)的图象可以由y =sin x 经过哪些图象变换而得到? 平移法过程:
上
两种方法殊途同归
(1)y=sinx 相位变换 y=sin(x+φ) 周期变换 y=sin(ωx+φ)振幅变换 )sin(ϕ+ω=x A y
(2)y=sinx 周期变换 y=sin ωx 相位变换 y=sin(ωx+φ)振幅变换 )sin(ϕ+ω=x A y。